
REVIEW ARTICLE OPEN

Recent advances in the development of protein–protein
interactions modulators: mechanisms and clinical trials
Haiying Lu1, Qiaodan Zhou2, Jun He3, Zhongliang Jiang4, Cheng Peng5, Rongsheng Tong1 and Jianyou Shi1

Protein–protein interactions (PPIs) have pivotal roles in life processes. The studies showed that aberrant PPIs are associated with
various diseases, including cancer, infectious diseases, and neurodegenerative diseases. Therefore, targeting PPIs is a direction in
treating diseases and an essential strategy for the development of new drugs. In the past few decades, the modulation of PPIs has
been recognized as one of the most challenging drug discovery tasks. In recent years, some PPIs modulators have entered clinical
studies, some of which been approved for marketing, indicating that the modulators targeting PPIs have broad prospects. Here, we
summarize the recent advances in PPIs modulators, including small molecules, peptides, and antibodies, hoping to provide some
guidance to the design of novel drugs targeting PPIs in the future.
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INTRODUCTION
PPIs and diseases
Proteins are the basic building blocks of life that are made by
amino acids. The amino acids are coded by genes and form the
peptides, peptides further form various proteins, and the proteins
form the living tissues. Besides, proteins also have a central role in
biological processes such as catalyze reactions, transport
molecules, immune reactions to the various pathogens, and
signal transduction between cells. What is more, the critical
biological processes in the cells that directly associate with our
health like DNA replication, transcription, translation, and
transmembrane signal transduction all rely on the functional
specific proteins. The aforementioned biological activities are
regulated through protein complexes, which are typically
controlled via protein–protein interactions (PPIs).1–3 PPIs in cells
form a complicated network which has a term named “inter-
actome”.4,5 The interactome has a significant role in physiological
and pathological processes, including signal transduction, cell
proliferation, growth, differentiation, and apoptosis, etc.6–8 There-
fore, the aberrant PPIs are associated with many human diseases
such as cancer, infectious diseases, and neurodegenerative
diseases.9–11 Since the classic drug targets are usually enzymes,
ion channels, or receptors, the PPIs indicate new potential
therapeutic targets.12 In recent years, the PPIs have received
increasing attention and became attractive targets.13,14 Recent
studies indicate that the PPIs have great potential as an
intervention target for novel treatment of refractory diseases,
and its regulation is widely regarded as a promising strategy in
drug discovery8,15,16 (Table 1).

Challenges in discovering PPIs modulators
The classic small molecule drug discovery approach mainly
focuses on the protein–ligand interactions, such as enzymes, ion
channels, or receptors, because these proteins typically contain a
well-defined ligand-binding site that small molecules can interact
with.17 The PPIs modulation through small molecules is generally
considered difficult and PPIs were regarded as “undruggable”
targets.18,19 It is estimated that there are about 130,000–650,000
types of PPIs in the human interactome.4,8,20 Although the number
of protein complexes exceeds that of enzymes and receptors,
designing a small molecule to bind to a PPI interface is
challenging because of the reasons below. First, the PPIs occur
on the interface of a specific domain where two identical or
different proteins are in contact. The interface area of the
interaction usually reaches 1500–3000 Å2,21 which is larger than
that of receptor-ligand contact area (300–1000 Å2),22 and the
interface is highly hydrophobic.21 Second, the PPIs interface tends
to be flat and contains few grooves or pockets, thus making it
difficult for the designed small molecule compounds to bind.23–25

Third, the amino acid residues involved in PPIs are either
continuous or discontinuous in their respective protein structures,
thus results in high-affinity binding between the proteins, making
it difficult for the small molecular compounds to inhibit such high-
affinity interaction.26 Forth, compared with traditional drug target
enzymes or receptors, PPIs lack endogenous small molecular
ligands for reference.26 Besides, compared to traditional small
molecule drugs (200–500 Da), drugs acting on PPIs have a higher
molecular weight (>400 Da), which makes it challenging to meet
the criteria like Lipinski’s “rule of 5”.23,27
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Hot-spots
Theoretically, the large binding interfaces are not regarded as the
ideal drug targets because it is difficult to find a matching
molecule. However, the emergence of “hot-spots” makes the
designing drugs for PPIs possible.28 Usually, PPIs happen on
several amino acid residues in the interaction regions, having
critical roles in the interaction. The regions of the amino acid
residues on the PPIs interface that contribute to the binding-free

energy are called “hot-spots”.29–31 As the area of PPIs expands, the
number of hot-spots increases. The area of all hot-spots is about
600 Å2, usually located at or near the PPIs interface. The hot-spots
in the PPIs are identified through a point mutation experiment.
Specifically, the amino acid residues on PPI are muted into alanine,
and the change of the binding-free energy is measured to
determine the residues that contributes significantly to the
binding-free energy. Hot-spots have been defined as these sites

Table 1. Summary of some PPI modulators in clinical trials

PPI Related disease Drug Developer Status NCT number Refs.

Small molecules

MDM2/p53 Acute myeloid leukemia Idasanutlin Roche Phase III NCT02545283 245

MDM2/p53 Metastatic melanoma AMG232 Amgen Phase I/II NCT02110355 246

MDM2/p53 Solid tumor with p53 wild type status CGM097 Novartis Phase I NCT01760525 247

MDM2/p53 Advanced solid tumor, lymphoma DS-3032b Daiichi Sankyo Phase I NCT01877382 248

MDM2/p53 Neoplasm malignant SAR405838 Sanofi Phase I NCT01636479 249

Bcl-2/Bax Chronic lymphocytic leukemia ABT-199 AbbVie Approved
in 2016

–
250

XIAP/caspase-9 Relapsed or refractory multiple myeloma LCL-161 Novartis Phase II NCT01955434 251

XIAP/caspase-9 Recurrent head and neck squamous cell
carcinoma

TL32711 National Cancer Institute Phase I NCT03803774 252

XIAP/caspase-9 Solid tumors, lymphoma ASTX-660 Astex Phase I/II NCT02503423 253

XIAP/caspase-9 Solid cancers GDC-0917 Genentech Phase I NCT01226277 254

PD-1/PD-L1 Prostatic neoplasms CA-170 Astellas Phase II NCT01288911 255

Gp120/CCR5 HIV Maraviroc Pfizer Approved
in 2007

–
256

LFA-1/ICAM-1 Dry eye Lifitegrast Lifelong Vision
Foundation

Phase IV NCT03451396 257

Β-catenin/CBP Liver cirrhosis RPI-724 Komagome Hospital Phase I/II NCT03620474 258

Bromodomain/
histone

Cardiovascular diseases RVX-208 Resverlogix Phase III NCT02586155 259

Bromodomain/
histone

NUT midline carcinoma GSK525762 GSK Phase I NCT01587703 260

Peptides

MDM2/p53 Advanced solid tumors, lymphomas ALRN-6924 Aileron Phase I/II NCT02264613 261

Antibodies

CD40/CD40L Kidney transplantation Bleselumab Astellas Phase II NCT02921789 262

CD40/CD40L Multiple myeloma lucatumumab Novartis Phase I NCT00231166 263

CD40/CD40L Relapsed diffuse large B-cell lymphoma dacetuzumab Seattle Genetics Phase II NCT00435916 264

CD40/CD40L Lupus Nephritis BI655064 Boehringer Ingelheim Phase II NCT03385564 265

CD40/CD40L Advanced solid tumors ABBV-428 AbbVie Phase I NCT02955251 266

CD40/CD40L Ulcerative colitis ABBV-323 AbbVie Phase II NCT03695185 267

PD-1/PD-L1 Non-small lung cancer Keytruda Merck Sharp & Dohme Approved
in 2014

–
268

PD-1/PD-L1 Non-small lung cancer Opdivo Bristol Myers Squibb Approved
in 2014

–
269

PD-1/PD-L1 Non-small lung cancer Tecentriq Roche Approved
in 2016

–
198

PD-1/PD-L1 Merkel cell carcinoma Bavencio Merck and Pfizer Approved
in 2017

–
270

PD-1/PD-L1 Non-small lung cancer Imfinzi AstraZeneca Approved
in 2017

–
199

PD-1/PD-L1 Unresectable or metastatic melanoma JS001 Shanghai Junshi
Bioscience

Phase III NCT03430297 271

PD-1/PD-L1 Advanced/metastatic solid malignancies IBI308 Innovent Biologics Phase I/II NCT03568539 272

PD-1/PD-L1 Locally advanced or metastatic urothelial
bladder cancer

BGB-A317 BeiGene Phase II NCT04004221 273

Data collected from https://clinicaltrials.gov [last accessed 7th June, 2020]
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where alanine mutations cause a significant increase in the
binding-free energy of at 2.0 kcal/mol.32 Tryptophan, arginine, and
tyrosine are more likely to appear in hot-spots than other amino
acids.15,30 Because of the important role of these “hot-spots”
amino acids, they are often used to design PPI drugs. Therefore,
although the interface of PPIs is relatively large, small molecule
drugs only need to act on “hot-spots” to intervene in the PPIs.

Current approaches for the discovery of PPI modulators
Targeting PPIs is challenging because of its unique interface.
Compared to the binding pockets of conventional protein targets,
the interface of PPIs tends to be flat. Therefore, classic medicinal
chemistry methods are less effective for designing and identifying
PPIs modulators. Thus, it is necessary to develop more effective
approaches for screening the PPI modulators. A wide variety of
strategies have been developed to identify hits and leads of PPI
modulators in recent years.

High-throughput screening. High-throughput screening (HTS) is a
well-established method for discovering classic drug targets. It has
been used to identify compounds that target the hot-spots of PPI
interfaces.16 Because of the particularity of PPI interface, the
compound library used for screening conventional targets may
not be suitable for screening PPI modulators. It’s crucial to have a
broad compound library to have chemical diversity that may
match the PPI target. However, HTS has been proved to be useful
in the identification of molecules at the initial stage. For example,
it successfully screened out inhibitors against MDM2/p53 interac-
tion.33–35

Fragment-based drug discovery. Fragment-based drug discovery
(FBDD) aims to identify molecular fragments from fragment
libraries.36 Compared to HTS, FBDD is a better approach for PPIs
modulators designing because the PPI interface often consists of
discontinuous hot-spots. Surface plasmon resonance (SPR),
nuclear magnetic resonance (NMR), X-ray crystallography, and
mass spectroscopy (MS) can be utilized for discovery and
validation of the fragment hits.37,38 Once the fragment hits are
identified, the fragment linking, fragment optimization, and
fragment self-assembly can be used to obtain the hits.39 Because
the molecular weight of fragments is low and the contact interface
is limited, the affinity is relatively low.40 The X-ray crystallography
and NMR can provide structural information for the hits
optimization. As a result, FBDD is not suitable for the targets with
unknown structure. The examples of successful application of
FBDD in PPI modulators’ discovery include XIAP/caspase-9,41 Bcl-
2/Bax,42 and bromodomains,43 etc.

Structure-based design. Since most PPIs lack endogenous small
molecule ligands, it is challenging to rationally design the
associate PPI modulators. However, the hot-spots provide
important structural information and a basis for the rational
design of PPI modulators. At present, there are two design
strategies for structure-based design PPI modulators. The first is
based on the hot-spots structure. Through bioisosterism and de
novo design, the novel small molecule modulators can be
obtained.44 For example, during the development of VHL/HIF1α
PPI inhibitors, Hyp564 was identified as a crucial amino acid.
Through the de novo design targeting the Hyp546, the inhibitors
were obtained.45,46 The second is peptidomimetic design which
mainly rely on computer modeling and phage display to simulate
the secondary structure of the key peptides in PPIs. Furthermore,
small molecules were designed or binding peptides were
synthesized based on the stable α-helix structure formed by the
key peptides.47 The α-helix is the most common identified
secondary structure in PPIs.48 At present, many PPI modulators
have been successfully developed based on the α-helix structure,
including c-Myc/Max,49 Bcl-2/Bax,50 and MDM2/p53.51

Virtual screening. The virtual screening is based on professional
application software to screen out hits from compound libraries.
One big challenge in developing PPI modulators is to identify the
disease-related and druggable PPIs among thousand of available
ones. The virtual screening may be useful to locate the binding
sites by analyzing the protein surface. It can be classified into both
a structure-based approach and a ligand-based approach. The
ligand-based approach aims to screen compounds that satisfy the
built pharmacophore model. In contrast, the structure-based
approach relies on the structural information of the target protein.
The virtual screening was successfully applied in the development
of PPI modulators including Ubc13/Uevl,52 MDM2/p53,53 and TCF/
β-catenin.54

Mechanism of PPIs modulators
The small molecule PPIs modulators can interact not only with
protein–protein interface but also with allosteric sites55,56 (Fig. 1).
Studies showed the small molecule modulators can either bind to
the non-interaction region of the proteins which is named
allosteric inhibition or bind to the PPI interface, which is named
orthosteric inhibition. Besides PPI inhibition, some modulators can
stabilize or even enhance PPI. There are two models to explain the
stabling effects: when the modulator binds to the allosteric
regulatory site of the protein, it triggers the conformation change
of the target protein, thereby enhance the affinity of the target
protein to the other protein. In case the modulator binds to the
PPI interface, provides more contact sites for the two proteins, the

Fig. 1 Orthosteric and allosteric mechanisms for PPI inhibition and stabilization
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binding force of the two proteins gets enhanced.57 For the PPI
with hot-spots, the corresponding ligands can be designed to
directly affect PPI. In case the PPI without hot-spots, the PPI can be
indirectly regulated through the allosteric mode.58 Specifically, if
the PPI hot-spots residues gather together and form appropriate
pockets, the orthosteric modulators can be designed and
developed based on the pockets structure information to directly
influence the associate PPI. If the hot-spots can not form
appropriate binding sites, developing the allosteric modulators
will be a better choice.59 Most of the small molecules that have
been identified to modulate PPIs are inhibitors. The PPI stabiliza-
tion represents a promising modulation approach since the
combination with pre-existing complexes is more advantageous
in energy saving compared to the inhibition of complexes
formation.60–62 However, the development of PPIs stabilizers has
not received sufficient attention as compared to the development
of PPIs inhibitors.63

Three types of PPIs modulators
Up to date, the PPI modulators can be classified into three
categories (Table 2). The first category is the small molecule
modulators. Compare to the classic drug targets like enzymes or
ion channels, the PPI interface is large, flat, and lacks a suitable
size pocket which the small molecules can bind with. What is
more, the PPI interface is usually hydrophobic. Therefore, a potent
PPI modulator should cover a large surface area and make a large
number of hydrophobic contacts. Such a modulator may face
pharmacokinetic issues due to its large molecular weight and poor
solubility.8 Therefore, the small molecule modulator is more
suitable for the tight and narrow PPI interface.44 The second
category is an antibody. When targeting a large PPI interface, an
alternative other than small molecular compounds is needed to
cover the large interface. Although monoclonal antibodies
compete with PPIs, because of their large molecular weight, the
application of monoclonal antibodies is limited to the extracellular
targets. Up to date, the monoclonal antibodies have been
successfully used in clinical treatment although they may trigger
adverse reactions associated with the immune reactions. The third
category is peptides. The peptides are designed based on the
structure information of the hot-spots.64 The designed peptides
retain the key roles when they bind to proteins, thereby forming a
strong affinity with the proteins. Compared with small-molecule
PPI modulators and monoclonal antibodies, the molecular weight
of peptide is between the two. It has higher target specificity and
affinity and is a potential PPI modulator. However, the peptide is
susceptible to hydrolysis by various hydrolases in the body, which
makes its half-life short.
In this review, we summarized the latest advances in PPIs

modulators development including the small molecules, peptides,
and antibodies. Also, we summarized the up to date some PPIs
modulators in clinical trials, hoping to provide some guidance to
the design of novel drugs targeting PPIs in the future.

INHIBITORS OF PPIS
Inhibitors of MDM2/p53 interaction (small molecules, peptides)
The p53 is an important protein that regulates the cell cycle and
functions as a tumor suppressor.65 Studies showed ~50% human
cancers have alterations in the p53 gene which results in the
inactivation of p53 function or loss of p53 expression.66 The
mouse double minute 2 (MDM2) is a proto-oncogene and a key
negative regulator of p53. A negative feedback loop between
MDM2 and p53 has been uncovered as the mechanism of how
they regulate each other’s level in the cells (Fig. 2a).67 MDM2
directly binds to and forms a complex with p53, inhibiting the
transactivation of p53. Therefore, recovering the impaired the
function of p53 by disrupting the MDM2/p53 interaction offers a
potential approach for the treatment of cancer.68,69

The X-ray crystallography disclosed the details of the MDM2/
p53 interaction. The interaction between MDM2 and p53 involves
four key hydrophobic residues (Phe19, Leu22, Trp23, Leu26) in an
α-helix formed by p53 and a small but deep hydrophobic pocket
in MDM228 (Fig. 2b). An effective strategy to block their interaction
is to design a small molecule compound that mimics the “hot-
spots” residue structure of p53, which competes with p53 to bind
with MDM2, thereby preventing the inactivation of p53. The
peptide-like design, HTS, and structure-based design were
adopted as the strategies to screen the MDM2/p53 inhibitors
with good drug-like properties.70–72

The imidazoline compounds Nutlins discovered by Vassilev
et al.33 through HTS showed strong inhibitory effects against
MDM2/p53 interaction (Fig. 2c). As a group of small-molecule
inhibitors of MDM2, the Nutlins mimic the effect of p53 peptide
segment. The Nutlins bind to the deep hydrophobic pocket in
MDM2, therefore block the MDM2/p53 interaction. Studies
showed the IC50 of Nutlin-1, Nutlin-2, and Nutlin-3 on MDM2/
p53 interaction were 260, 140, and 90 nM, respectively, in vitro.33

Based on the inhibitory dose values, the Nutlin-3 was selected as
the lead compound. Roche restructured the Nutlin-3 by substitut-
ing the methyl for the 4- and 5-position hydrogen atoms of its
imidazole ring, and replaced the cyclomethoxy group at the para
position of the benzene ring with a tert-butyl group which
prevented the metabolic inactivation of the imidazole ring and the
benzene ring.73 Meanwhile, the isopropoxy group was replaced by
an ethoxy group to reduce the molecular weight, and the
hydrophilic side chain of carbonyl piperazine was replaced by a
methylsulfonyl propyl piperazine, therefore obtained the com-
pound RG7112 (Fig. 2c). The homogeneous time-resolved
fluorescence (HTRF) assay showed that the compound RG7112
(IC50= 18 nM) was optimized to be four times more sensitive than
that of Nutlin-3.73 RG7112 is the first MDM2 inhibitor entered
clinical trials for the treatment of advanced solid tumors.
Using peptides to inhibit PPIs has become a promising way to

discover active compounds. Chang et al.74 reported a class of
potent MDM2 peptide inhibitors ATSP (Table 3), among which the
IC50 value of ATSP-7041 reached 0.9 nM, and the reported Ki values

Table 2. The advantages and disadvantages of three types of PPI modulators

Small molecules Peptides Antibodies

Advantages

Penetrate cell membrane
Oral administration

Target specificity
High affinity

Strong target specificity
High efficiency

Disadvantages

Side effects (low selectivity) Short half-life
Poor oral administration
Unstable physicochemical properties
Poor solubility

Side effects (immunogenicity)
Generally act on extracellular targets (huge molecular weight)
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of the ATSP series peptides reached the nanomolar level. The key
is that the peptide mimics the key α-helical structure in the p53/
MDM2 interaction, thus binding MDM2 competitively with p53.
ATSP inhibitors showed a certain biological activity in vivo, which
may be related to the good cell membrane permeability produced
by the stable α-helix structure. The western blot analysis also
showed that the ATSP inhibitors inhibit MDM2 in cells, thereby
activating the role of tumor suppressor protein p53.74

Inhibitors of Bcl-2/Bax interaction (small molecules)
The Bcl-2 family is a key regulator of apoptosis, and it has over
twenty members. According to their role in apoptosis, the Bcl-2

family members can be divided into two categories including
the anti-apoptotic proteins and the pro-apoptotic proteins
(Fig. 3a). The anti-apoptotic proteins include Bcl-2, Bcl-w, Mcl-1,
and Bcl-A1. The pro-apoptotic proteins include Bax, Bok and
Bak, Bid, Bad, Bmf, Noxa, Puma, Hrk (among them, Bid, Bad, Bmf,
Noxa, Puma, and Hrk are BH3-only protein).75,76 Both anti-
apoptotic and pro-apoptotic members usually synergize in the
form of dimers, having the role of apoptotic switch.77,78 Pro-
apoptotic proteins such as Bax and Bad have critical roles in the
apoptosis. The functions of these pro-apoptotic proteins are
blocked when they bind to the anti-apoptotic proteins like Bcl-
2. Therefore, inhibiting the interaction between the pro- and

Table 3. Peptide inhibitors of MDM2/p53 interaction reported by Chang et al.

Name Sequence Ki (nM)

ATSP-1800 Ac-Gln-Ser-Gln-Gln-Thr-Phe-R8-Asn-Leu-Trp-Arg-Leu- Leu-S5-Gln-Asn-NH2 25.9

ATSP-3848 Ac-Leu-Thr-Phe-Glu-His-Tyr-Trp-Ala-Gln-Leu-Thr-Ser-NH2 14.6

ATSP-3900 Ac-Leu-Thr-Phe-R8-His-Tyr-Trp-Ala-Gln-Leu-S5- Ser-NH2 1.0

ATSP-4641 Ac-Leu-Thr-Phe-R8-Ala-Tyr-Trp-Ala-Gln-Leu-S5- Ser-NH2 4.9

ATSP-6935 Ac-Leu-Thr-Phe-R8-Glu-Tyr-Trp-Ala-Gln-Leu-S5- Ser-NH2 1.2

ATSP-7041 Ac-Leu-Thr-Phe-R8-Glu-Tyr-Trp-Ala-Gln-Cba-S5- Ser-Ala-Ala-NH2 0.9

ATSP-7342 Ac-Leu-Thr-Ala-R8-Glu-Tyr-Trp-Ala-Gln-Cba-S5- Ser-Ala-Ala-NH2 536

Fig. 2 The p53/MDM2 interactions and inhibitors. a The p53/MDM2 signaling pathway: MDM2 directly binds to p53 and inhibits its
transcriptional activity, causes ubiquitination and proteasomal degradation of p53, and exports p53 out of the nucleus which promotes p53
degradation. b MDM2 (surface)-p53 peptide (green) complex (PDB:1T4F). c The chemical structures of inhibitors of MDM2/p53
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anti-apoptotic proteins prevents the tumor cells from escaping
apoptosis.
The Bcl-2 family members have low homology, but they contain

at least one or four conserved Bcl-2 homology (BH) motifs, named
BH1, BH2, BH3, and BH4.76 There are two hydrophobic ɑ-helix
structures in Bcl-2 which are surrounded by six to seven
amphiphilic ɑ-helix structures, of which four amphiphilic ɑ-helix
structures form a hydrophobic BH3 “pocket” to interact with Bax
(Fig. 3b).79 Compared with the Bax/Bak homodimer, the Bcl-2/Bax
homodimer is more stable, which weakens the role of Bax/Bak in
inducing cell apoptosis and prevents cell apoptosis. Therefore, the
lead compounds should mimic the function of the pro-apoptotic

protein domain. The ideal compounds will bind to the hydro-
phobic pocket on the surface of the anti-apoptotic protein,
thereby blocking the anti-apoptotic protein to bind with the BH3
domain and result in the cancer cell apoptosis induction.80,81

Abbott researchers studied the Bcl-XL hydrophobic groove and
found that the hydrophobic groove consists of two relatively
independent small pockets.82 They used the “SAR by NMR”
approach to screen the fragments with BH3 on Bcl-XL, and
obtained compound 1 (Kd = 0.30 ± 0.03mM) and compound 2 (Kd
= 4.3 ± 1.6 mM) from the library (Fig. 3d). The researchers used a
fragment-based drug design strategy and screened the com-
pounds based on the NMR data. Based on the position and spatial

Fig. 3 The Bcl-2/Bax interactions and inhibitors. a The Bcl-2 family can be classified into two categories: the anti-apoptosis proteins and pro-
apoptosis proteins. The pro-apoptosis proteins can be divided into multi-BH proteins and BH3-only proteins. b The crystal structure of Bcl-2 in
complex with Bax BH3 peptide (PDB:2XA0). c The binding modes of ABT-199 binds to Bcl-2 (PDB:6GL8). d The chemical structures of inhibitors
of Bcl-2/Bax
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orientation data obtained from the complexes of the Bcl-XL
hydrophobic groove-binding pockets with the compound 1 and
compound 2, the researchers modified the compound 2’s
structure by adding a linking group thereby constructed a highly
active new lead compound 3 (IC50= 36 nM). However, the
compound 3 exhibited poor water solubility but high affinity to
human serum albumin (HSA). In subsequent structural optimiza-
tion, the researchers reduced the compound’s affinity to HAS
through substituting polar groups at specific sites. It was found
that introducing 2-dimethylaminoethyl substituent at the second
ligand of compound 3 and substituting piperazine at the first
ligand improved its affinity to Bcl-2 protein, and thus compound
ABT-737 was obtained (Fig. 3d). The ABT-737 binds to Bcl-XL (Ki <
0.5 nM) and Bcl-2 (Ki < 1 nM), and its IC50 value reaches 35 nM in
10% of human serum. The ABT-737 is not only widely used in the
biological studies associated with apoptosis, but also in preclinical
studies in lymphoma, small cell lung cancer and chronic
lymphoblastic leukemia.83,84

However, the poor oral absorption of ABT-737 significantly
limits its clinical application. The ABT-263 (Navitoclax) (Fig. 3d) is
the second generation of Bcl-2 anti-apoptotic protein inhibitor
based on the structure of ABT-737.85,86 It can bind with Bcl-2 (Ki <
1 nM), Bcl-XL (Ki < 0.5 nM), Bcl-w (Ki < 1 nM), and MCL-1 (Ki =
550 nM). The preclinical studies showed that ABT-263 alone
effectively inhibited the small cell lung cancer xenograft tumors
growth in mice model. Besides, the ABT-263 also showed synergic
effects in inhibiting the solid tumors and blood tumors in
combination with other antineoplastic agents.86 However, studies
also showed the ABT-263 could temporarily decrease the platelet
count.87

The ABT-199 (Venetoclax) (Fig. 3d) is the first small molecule PPI
inhibitor approved for marketing. It is a Bcl-2 selective inhibitor
based on the structure design of lead compound ABT-263.88 It was
approved to be marketed in 2016 for the treatment of chronic
lymphoblastic leukemia.89 By studying the complex structure of
Bcl-2 protein and small molecule acyl sulfonamide compounds, it
was found that the introduction of indole group was beneficial to

enhance the binding of drugs to P4 pockets through hydrophobic
interaction and resulted in the formation of electrostatic interac-
tion with aspartic acid residues specific to Bcl-2 protein88 (Fig. 3c).
The researchers from the Abbvie introduced indole group and
azaindole group into the ABT-263 skeleton structure and studied
the structure–activity relationship. The studies showed that the
ABT-199 had good activity on Bcl-2-dependent hematological
cancers.88 The ABT-199 showed a high affinity for Bcl-2 (Ki <
0.01 nM) and a weak affinity for Bcl-XL (Ki = 48 nM). It showed an
excellent inhibitory effect on the acute lymphoblastic leukemia
cells with high expression of Bcl-2 (EC50= 8 nM). Compared with
the second-generation drug ABT-263, the ABT-199 significantly
reduced the damage to the platelets in both in vitro and in vivo
studies.

Inhibitors of XIAP/caspase-9 interaction (small molecules)
Inhibitors of apoptosis proteins (IAPs) are an important class of
endogenous anti-apoptotic proteins.90 They bind to the caspase
or other pro-apoptotic proteins, results in the inhibition of the pro-
apoptotic proteins functions and promotes their degradation,
thereby regulates the apoptosis.91,92 The IAPs has eight family
members: XIAP, c-IAP1, c-IAP2, ML-IAP/Livin, ILP2, NAIP, Bruce/
Apollon, and surviving.93 The caspase, a cysteine-containing
aspartate proteolytic enzyme, is the main implementer of
apoptosis, which induces apoptosis through two pathways. One
of which is the death receptor pathway (extrinsic pathway) that
mediated through caspase-8. The other one is the mitochondrial
pathway (intrinsic pathway), which mediated via cytochrome C/
caspase-9 (Fig. 4a).94 The BIR3 domain of the XIAP binds to and
inhibits pro-apoptotic caspase-9, thus suspends the apoptosis.95

Interestingly, the endogenous protein inhibitor of the
XIAP–caspase-9 interaction exists in the form of Smac (second
mitochondria-derived activator of caspase). When the Smac
released from the mitochondria, its N-terminal amino acids,
alanine–valine–proline–isoleucine (AVPI) bind to the BIR3 domain
of XIAP, which makes the XIAP lose the ability to combine with
caspase, so as to promote apoptosis.96,97

Fig. 4 The XIAP/caspase-9 interactions and inhibitors. a The apoptotic pathway. There are two apoptotic pathways: extrinsic and intrinsic. The
extrinsic pathway (also known as death receptor) involves the binding of a death receptor ligand to a member of the death receptor family.
Active caspase-8 cleaves and activates the executioner caspase-3 and caspase-7, leading to the cell death. The intrinsic pathway (also known
as mitochondrial) is mediated by caspase-9. After the mitochondrial membrane is stimulated by apoptosis, it releases cytochrome c and Smac
proteins into the cytoplasm. Smac is a pro-apoptotic protein. Cytochrome c combines with Apaf-1 to form a polymer, and promotes pro-
caspase-9 to form apoptotic bodies, and then activate caspase-9. The activated caspase-9 can activate other caspases, such as caspase-3, so as
to induce apoptosis. b The chemical structures of inhibitors of XIAP/caspas-9
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The four amino groups of the AVPI at the N terminus of the
Smac protein have a very important role in the binding of XIAP to
caspase-9, which competes with the caspase-9 protein for binding
to XIAP.98,99 Therefore, the interaction between XIAP and caspase-
9 can be inhibited by the Smac protein mimetics that exhibit the
similar affinity to XIAP.100 The crystal structure of Smac and XIAP-
BIR3 domain revealed that the Val of P2 position and the Ile of P4
position in the Smac formed three hydrogen bonds with the
Gly306 and the Thr308 of XIAP-BIR3 domain.99 The 3-position Pro
ring bind with the hydrophobic region formed by the Trp323 and
Tyr324 of XIAP-BIR3 domain through van der Waals force.
Moreover, the Pro ring is essential for maintaining the conforma-
tion of AVPI peptide chain, so proline is relatively stable and
usually not replaced by other amino acids. Flygare et al.101

discovered the first Smac simulator GDC-0152 through a
combination of peptide-like design strategies and high-
throughput screening (Fig. 4b). The GDC-0152 binds to XIAP-BIR
domain with high affinity by mimicking the structure of the Smac
AVPI peptide. Another Smac mimetic GDC-0917 (CUDC-427) (Fig.
4b) has entered phase І clinical trials for the safety evaluation of
patients with advanced solid tumors and lymphomas.102 Novartis
LCL-161 (Fig. 4b), which is currently progressing rapidly, has
entered phase II clinical trials for triple negative breast cancer.103

Inhibitors of Hsp90/Cdc37 interaction (small molecules)
The heat shock protein 90 (Hsp90) is a widely existed, highly
conserved molecular chaperone that was discovered in 1962. It is
also one of the most abundant proteins in cells. Studies showed
the expression of Hsp90 in tumor cells is two to ten times higher

than that of normal cells, which indicates it has a very important
role in tumor cell growth and survival.104 Studies also showed the
Hsp90 participates in the maturation of protein kinases and
transcription factors such as Her2, VEGF, mutant p53, CDK4, HIF-
1ɑ, Raf -1, Akt, etc. which regulate the cancer cell’s growth and
apoptosis signaling pathways.105,106 Hsp90 stabilizes the confor-
mation of the client proteins mentioned above and prevents them
from ubiquitination-mediated degradation, thereby stabilizes
them to stay in the active form and promotes the tumor growth
and metastasis (Fig. 5a).107 Therefore, inhibiting the interaction
between the Hsp90 and its client proteins may promote the
degradation of the client proteins, and thus results in the
inhibition of the tumor growth.108–110

The previous studies also showed that the Hsp90 is a
homodimer and each monomer is formed by three highly
conserved domains including a N-terminal ATP-binding domain,
a middle domain, and a C-terminal dimerization domain.111 The N-
terminal domain is an ATP/ADP-binding site that hydrolyzes the
ATP in the ATP-binding pocket. The ATP/ADP-binding site acts as a
conformational transformation region, regulates the assembly of
the Hsp90 involved multi-molecular chaperone complexes.112 The
middle domains serve as both nuclear localization sequences and
the target protein-binding sites. The middle domains distinguish
the different substrate proteins and regulate the activity of specific
substrates of molecular chaperones.113 The C-terminal domain is a
self-dimerization site of Hsp90, which enhances the interaction of
two Hsp90 N-terminal domains.114 The current Hsp90 inhibitors
can be classified into three categories: the N-terminal ATP pocket
inhibitors, the C-terminal nucleotide site inhibitors, the Hsp90 and

Fig. 5 The Hsp90/Cdc37 interactions and inhibitors. a Co-chaperone regulation of client protein activation. In the chaperone cycle of Hsp90,
the open state Hsp90 firstly combined with HOP through its C terminal. Subsequently, it recruits Hsp40, Hsp70, client protein, and Cdc37 to
form a mature complex. After ATP hydrolysis, ADP and mature client protein are released. Hsp90 is converted into an open state and enters
the next ATP cycle. b The complex structure DCZ3112 and the N-terminal domain of Hsp90 modeled by molecular docking based on the
crystal structure of Hsp90–Cdc37 complex (PDB:2K5B). c The chemical structures of inhibitors of Hsp90/Cdc37
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chaperone complexes inhibitors. One critical function of Hsp90 is
to regulate its client proteins to utilize ATP. The inhibition of such
crucial function affects many normal proteins, results in high
toxicity.115 Hsp90 inhibitor SNX-5422 developed by Pfizer
terminated clinical phase 1 trial in 2011 due to ocular toxicity.116

Therefore, researchers believe that targeting Hsp90 and its
molecular chaperones is a new direction for the cancer treatment
study.117,118

Among the numerous molecular chaperones of Hsp90, the
value of cell division cycle protein 37 (Cdc37) has attracted much
attention.110 Many protein kinases (such as EGFR, CDK, Akt) rely on
Cdc37 to aggregate onto Hsp90, thus completing the correct
folding of the complex’s spatial conformation.110,119 Therefore,
inhibiting the interaction of Hsp90 and Cdc37 may deactivates the
kinase client proteins, thereby inhibiting the proliferation and
growth of tumor cells. In addition, the PPI targeting Hsp90/
Cdc37 specifically targets the kinase client protein of Hsp90,
thereby improving selectivity and avoiding a series of adverse
reactions.
In 2004, the researchers resolved the first crystal structure of

Hsp90N-Cdc37M which provided a solid structural basis for the
design of Hsp90/Cdc37 interaction inhibitors.120 The NMR analysis
of the Hsp90N–Cdc37M complex indicated the hydrophobic
interaction is the major interaction force between the two
proteins.121 The key amino acids of the interface include
Met164, Trp193, Ala204, Leu205 of Cdc37M and Ala117, Ala121,
Ala124, Ala126, Met130, Phe134 of Hsp90N. The Leu205, the
leucine residue of Cdc37, is very important for the formation of
Hsp90N–Cdc37M complex. Experiments show that the mutation of
Leu205 resulted in the loss or decrease of the binding ability
between Hsp90N and Cdc37M.
In 2018, Xie et al.107 first reported the small molecule inhibitor

DCZ3112 inhibits the interaction of Hsp90/Cdc37 (Fig. 5c). The
DCZ3112 directly binds to the N-terminal domain of Hsp90,
inhibits the Hsp90/Cdc37 interaction without affecting the ATPase
activity of Hsp90 (Fig. 5b). The DCZ3112 mainly inhibits the
proliferation of HER2-positive breast cancer cells and its IC50 value
of SK-BR-3 and BT-474 cells was 7.9 and 4.6 μM, respectively.
Experiments in SK-BR-3 and BT-474 cells showed that DCZ3112
downregulated the number of Hsp90 client proteins HER2, Akt,
RAF-1, CDK4, and CDK6 in a concentration-dependent manner.
The in vitro experiments results showed the DCZ3112 has a
synergistic effect in inhibiting cell proliferation, inducing G1 arrest,
inducing apoptosis, and reducing phosphorylation of Akt and
Erk.107

Inhibitors of c-Myc/Max interaction (small molecules)
The c-Myc is a transcription regulator encoded by the proto-
oncogene Myc. It is a highly conserved protein with helix
structure. It has a critical role in promoting tumorigenesis,
maintaining the growth, proliferation and differentiation of tumor
cells, angiogenesis and apoptosis.122–124 Aberrant expression of c-
Myc has been confirmed in most malignant tumors.125 As a result,
c-Myc has become a research hot spot. The c-Myc has a bHLH-ZIP
domain, its function depends on the formation of Myc–Max
dimer.126 The Myc–Max dimer recognize the CACGTG in E-box
sequence on their target DNA and bind to it to activate or
enhance the transcription of the regulated genes.126 Therefore,
inhibiting the PPI between the c-Myc and Max may inhibit the
activation or transcription of oncogenes, indicating an antitumor
effect.127,128

Castell et al.129 used the cell-based bimolecular fluorescence
complementation (BiFC) to screen small molecules that interfere
with c-Myc/Max interaction. Three compounds with good
potential were identified from a library of 1990 compounds:
MYCMI-6, MYCMI-11 and MYCMI-14 (Fig. 6). MYCMI-6 showed a
strong inhibitory effect on c-Myc/Max interaction in both in vitro
and cell-based experiments. The surface plasmon resonance (SPR)

results showed that MYCMI-6 blocks the c-Myc-driven transcrip-
tion and MYCMI-6 selectively binds to the bHLH-ZIP domain of c-
Myc (Kd = 1.6 ± 0.5 μM). The above results indicate that the
MYCMI-6 inhibits the growth of cancer cells in a c-Myc-dependent
manner (IC50= 0.5 μM) and has no effect on normal cells. Also,
studies showed MYCMI-6 induces apoptosis, inhibits the prolifera-
tion of tumor cells and reduce the microvessel density in the mice
xenograft tumors. The validation experiments based on microscale
thermophoresis (MST) and SPR showed that MYCMI-6 binds to the
bHLH-ZIP domain of c-Myc (Kd = 4.3 μM) and Max (Kd = 3.8 μM),
respectively, thus inhibit the interaction between c-Myc/Max
proteins.
Chauhan et al.130 discovery that the compound 10074-G5

inhibits the formation of heterodimers between c-Myc/Max
(Fig. 6). The nitro and furan rings of 10074-G5 interact with
Arg366, Arg367, and Arg372 in the HLH domain, therefore, inhibit
the formation of heterodimers between c-Myc and Max.128 The
optimization of compound 10074-G5 led to the discovery of
compound JY-3-094 (Fig. 6).131 The electrophoretic mobility shift
assays (EMSAs) showed the formation of heterodimers between
JY-3-094 and c-Myc/Max was five times more active than the
10074-G5 (IC50= 33 μM vs 146 μM). However, unlike 10074-G5,
the JY-3-094 does not inhibit the proliferation of human
promyelocytic leukemia (HL60) or Daudi Burkitt lymphoma cell
lines because the charged carboxylic acids groups in the molecule
impeded the cell entry. By esterifying the carboxylic acid in the JY-
3-094 into a series of ester prodrugs, the lower IC50 values were
reached in both HL60 and Daudi Burkitt lymphoma cell lines.
However, the activity of ester prodrugs is always limited by the
activity of carboxylic acid metabolites, so the structural optimiza-
tion of JY-3-094 continuous. Studies showed the phenyl ring
adjacent to aniline in 10074-G5 enhanced the inhibitory effects.
The introduction of phenyl ring into the JY-3-094 led to the
formation of 3JC48-3, with an IC50 value of 34.8 μM for c-Myc/Max
protein inhibitory activity (Fig. 6). Further studies showed that
3JC48-3 inhibits the tumor cell proliferation by inducing cell arrest
in the G0/G1 phase. Such a significant increase of c-Myc/Max
protein inhibitory effect may be the interaction between phenyl
ring with the Phe375/lle381 and Arg378 in the c-Myc/Max.130

Inhibitors of KRAS/PDEδ interaction (small molecules)
Oncogenic RAS is an important antitumor target, and are mutated
in about 20–30% of human cancers.132 The RAS family has three
members: HRAS, KRAS, and NRAS. The KRAS protein is often
mutated in various cancers. Specially, the KRAS mutation has been
observed in a large proportion of pancreatic cancers.133 The RAS
mutations lead the cells on the hyperactive state for unlimited
proliferation. As a molecular switcher, RAS activates the

Fig. 6 The chemical structures of inhibitors of c-Myc/Max
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downstream signaling pathways such as MAPK and PI3K-Akt
through binding to GTP, thus regulating the growth, proliferation,
differentiation, and apoptosis of the cells. If the RAS proteins are
continuously activated, it can bind to the downstream effector
proteins and transmit signals to the downstream proteins, causing
aberrant cell proliferation or tumorigenesis.134 Therefore, RAS
proteins can be developed as an important target for the cancer
treatment. At present, there are mainly two strategies to inhibiting
KRAS. The first strategy is directly targeting the signal pathway of
KRAS protein. The second strategy is inhibiting the KRAS
membrane association which impairs the localization of KRAS
and the signal transduction of tumor proliferation. To carry out its
signal transduction function, the RAS proteins need to be
recruited to the inner side of the plasma membrane after
expression.135 In the process of KRAS relocating to the cell
membrane, PDEδ promotes the KRAS protein recruit to the Golgi
apparatus135,136 (Fig. 7a). Therefore, through interfering with the
interaction between PDEδ and KRAS, the localization of KRAS on
the plasma membrane can be inhibited and the signal transduc-
tion of carcinogenic RAS can be blocked.137 However, some

studies showed that the degree of dependence of KRAS on PDEδ
is not yet clear. For example, PDEδ knockout mice are fertile,138

whereas the knockout of KRAS in mice is embryonic lethal,139

indicating KRAS is functional in the absence of PDEδ. Although the
relationship between KRAS and PDEδ is vague, blocking KRAS
membrane association is a good direction to inhibit the KRAS
activity.140

There are many small molecule compounds that inhibit the
interaction between PDEδ and KRAS.137,141–146 In 2018, Chen
et al.147 discovered the novel KRAS/PDEδ inhibitors through
fragment-based drug design. By applying molecular docking, they
found the compound 4 and compound 5 exhibited inhibitory
effects on PDEδ and KRAS interaction when the two molecules
exist in a specific way (Fig. 7b). The molecular docking model
showed that the distance between the benzene ring of the
compound 5 and the nitrogen atom of the amide of the
compound 4 was 5.3 Å; the distance between the benzene ring
of the compound 4 and the nitrogen atom of the imidazole of the
compound 5 was 5.0 Å. The above distances are both suitable for
using an ether linker to connect the two methylene groups.

Fig. 7 The KRAS/PDEδ interactions and inhibitors. a The process of KRAS localization to the plasma membrane. b The chemical structures of
inhibitors of KRAS/PDEδ
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Therefore, the two series of compound 6 and 7 were obtained (Fig.
7b). A further optimization of the compound 6 and 7’s structure
led to the synthesis of compound 8. Compound 8 exhibited a
good affinity for PDEδ (Kd = 38 ± 17 nM) (Fig. 7b). The molecular
docking data showed the cyclopropyl group in compound 8 forms
a hydrophobic interaction with the amino residues Ile129, Val145,
and Leu147 in the PDEδ. Compound 8 also exhibited inhibitory
effects in Capan-1 cells (IC50= 8.8 ± 2.4 μM). The RAS family
regulates MAPK and PI3K-Akt-mTOR signaling pathways, and
studies showed that the compound 5 downregulates the
phosphorylation levels of Akt and Erk. In sum, compound 8
induces apoptosis in Capan-1 cells.

Inhibitors of CD40/CD40L interaction (small molecules)
T cells have an important role in the immune system. Their
activation requires not only the direct stimulation of foreign
antigens, but also the co-stimulus signal transmitted by the
interaction of surface molecules.148 The CD40/CD40L pathway is
one of the most important co-stimulating pathways in T-cell
activation. Because of its critical role in the T-cell activation, the
aberrant CD40/CD40L pathway is responsible for various patho-
logical conditions. CD40 is a membrane surface molecule has a
key role in B-cell development and activation. It is a surface
antigen associated with T cells and B cells function.149 CD40L, a T-
cell–B-cell-activating molecule, is widely expressed in the acti-
vated T cells, especially CD4+T cells.150

The CD40 and CD40L are a pair of complementary protein
molecules. The CD40 is a member of the tumor necrosis factor
receptor superfamily and its ligand CD40L (also known as CD154)
belongs to the tumor necrosis factor family.151 Both CD40 and CD40L

are mainly expressed by T and B cells. As a pair of the membrane
proteins, CD40/CD40L participates in various vital physiological
processes including B-cell activation, proliferation, differentiation,
antibody production, apoptosis, T-cell activation, cytokine production,
humoral immunity, cellular immunity, and inflammatory response152

(Fig. 8a). The abnormal expression of CD40/CD40L is closely related to
the occurrence and development of inflammatory reaction, auto-
immune diseases and immunodeficiency diseases.152–155 Therefore,
blocking the interaction between CD40 and CD40L may has great
potential to treat the associated diseases.
Multiple antibodies that block the interaction of CD40 and

CD40L have been tested in preclinical or clinical trials, including:
bleselumab, lucatumumab, and dacetuzumab, etc.156 Dacetuzu-
mab is a IgG1 humanized anti-CD40 monoclonal antibody. In the
absence of IL-4 and CD40L, dacetuzumab activates the B cells’
proliferation but inhibits the highly differentiated B cells’
proliferation. Besides, dacetuzumab transmits apoptosis signals
through caspase-3, mediates antibody-dependent cell-mediated
cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis
(ADCP) effects.157 However, most of these antibodies’ trails were
terminated due to the severe thrombolysis side effect.158–160

Previous studies demonstrated the thrombolytic side effect may
be a feature of antibody treatment.158 What is more, recent
studies discovered that the antibody aggregation induced by the
mAb Fc domain is also associated with thrombolysis side effect.161

Therefore, to avoid the thrombolysis severe side effect, alternative
approaches like using small molecule compounds to block the
interaction between CD40 and CD40L need to be developed.
Buchwald’s group reported small molecular organic dyes that
blocked the interaction between CD40 and CD40L.162,163 Based on

Fig. 8 The CD40/CD40L interactions and inhibitors. a CD40/CD40L signal transduction and cellular response. After interacting with CD40L,
CD40 recruits and interacts with tumor necrosis factor receptor-associated factor (TRAF) proteins. The activation of CD40-CD40L axis results in
cellular events. b The chemical structures of inhibitors of CD40/CD40L
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these organic dye compounds, they synthesized a series of small
molecule compounds that block the interaction between CD40
and CD40L.164 Among them, the IC50 of DRI-C21041, DRI-C21045,
and DRI-C25441 were 0.31, 0.17, and 0.36 μM, respectively (Fig.
8b). These compounds also showed inhibitory effects on CD40L-
induced B-cell activation, proliferation, and the activation of NF-κB.
In addition, they also inhibit the immune response induced by
alloantigen.

Inhibitors of Skp2/Skp1 interaction (small molecules)
Ubiquitin-protein degradation system (UPS) is composed of more
than 1000 proteins. As the main pathway of protein degradation
in cells, UPS has a key role in cell cycle regulation, intracellular
signal transduction, gene transcription, metabolic regulation,
immune surveillance and other basic cell life processes. The
aberrant UPS system is responsible for the occurrence of various
diseases.165,166 UPS consists of ubiquitin-activating enzyme 1 (E1),
ubiquitin-conjugating enzyme 2 (E2), ubiquitin-protein ligase 3
(E3) and proteasome.167 At present, the E3 has been studied most.
Skp1-Cullin 1-F-box (SCF) ubiquitin ligase containing F-box protein
is one of the most important ubiquitin ligases and has attracted
wide attention.168 SCF is a multi-subunit structure consisting of
four parts: Cull, Skp1, Rbx1 and F-box169 (Fig. 9a). As a member of
the F-box protein family, S phase kinase-associated protein 2
(Skp2) and Skp1, Cull, and Rbxl constitute E3 ligase, which is
involved in the process of catalyzing the transformation of cells
from G1 to S phase.170 The overexpression of Skp2 is extremely
common in human cancer cells, and Skp2 overexpression
promotes cancer invasion and metastasis.171 The interaction
between Skp2 and Skp1 is the precondition of the completeness
of Skp2–SCF complex and the key to exerting its E3 ligase activity.

Therefore, blocking the interaction between Skp2 and Skp1
prevents the formation of Skp2–SCF complex and thus may
inhibit the occurrence and development of tumors.
The crystal structure of the Skp2–SCF complex shows that Skp2

interacts directly with Skp1 through its F-box domain and
indirectly binds to Cul1 and Rbx1.172 Along with the Skp2–Skp1
interface, Chan et al. also reported that Skp2 has 19 “hot-spots”
amino acids in contact with Skp1. They classified these key
Skp2–Skp1-binding sites into two pocket regions.173 The first
region (pocket 1) is near the N terminal of Skp2 and is in the F-box
motif which including the amino acid residues of Trp97, Phe109,
Glu116, Lys119, and Trp127. The second region (pocket 2) is close
to the C terminal of Skp2, formed by a Leu-rich repeat sequence
with some residues from the F-box domain (Fig. 9b). Inhibitors
bind to one or both of these pockets prevent the formation of
Skp2–Skp1 complex.
Chan et al.173 identified seven compounds that could inhibit the

formation of Skp2–Skp1 complex through HTS. Among which,
SZL-P1-41 exhibits strong inhibition effects to the Skp2–Skp1
complex formation (Fig. 9c). The molecular docking model shows
the SZL-P1-41 binds to pocket 1 rather than pocket 2, which
suggests the pocket 1 in the F-box sequence of Skp2 may have a
leading role in the Skp2–Skp1 interaction173 (Fig. 9b). The docking
model also suggests that the benzothiazole structure of SZL-P1-41
interacts with the Trp97 residue on Skp2 through an aromatic
stack and a polar contact; The flavone groups of SZL-P1-41
interact with the Asp98 and Trp127 of Skp2 via hydrogen bonding
or hydrophobic interaction; The ethyl group on phenol ring
extends into Skp1 region; The piperidine interacts with both
Asp98 and Trp127. Both in vitro and in vivo experiments results
showed the Skp2 inhibitors could inhibit the Skp2-mediated P27

Fig. 9 The Skp2/Skp1 interactions and inhibitors. a The composition of Skp2–SCF complex. Cullin 1 (Cul1) forms the backbones of ubiquitin
ligase complexes. Cul1 is activated by covalent conjugation with NEDD8. The SCF complex consists of the invariable components Rbx1 (RING-
finger protein), Cul1 (scaffold protein), and Skp1 (adaptor protein) as well as a variable F-box-protein component, which is responsible for
substrate recognition. Skp2 is a member of the F-box protein and is a substrate recognition subunit of the SCF complex. Skp2 can specifically
recognize the substrate and mediate its ubiquitination degradation. b The potential-binding pockets on the interface of Skp2–Skp1 complex
(PDB:1FQV). c The chemical structures of inhibitors of Skp2/Skp1
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ubiquitination. The in vivo experiments data also showed the SZL-
P1-41 could effectively inhibit the growth of tumors. In addition,
the Skp2 inhibitors not only inhibit the formation of Skp2–Skp1
complex, but also reduce the Skp2 E3 ligase activity. The higher
doses of SZL-P1-41 also reduces the Skp2 protein expression.

Inhibitors of Keap1/Nrf2 interaction (small molecules, peptides)
The Keap1–Nrf2-ARE signaling pathway is the most important
antioxidant stress pathway, which is associated with a variety of
oxidative stress-related diseases including cancer, Alzheimer’s
disease, Parkinson’s disease, diabetes, and arthritis.174 Under
physiological conditions, the Keap1 targets the Nrf2 to initiate
the ubiquitin-dependent degradation of protein media. When
cells under electrophilic or oxidative stress, the Nrf2 escapes the
Keap1-mediated degradation and enters the nucleus, where it
mediates the activation of the antioxidant and cytoprotective
genes175,176 (Fig. 10a). Therefore, the Nrf2 signaling pathway
activators should have therapeutic effect in oxidative stress-
induced diseases. Up to date, most of the “Nrf2 activators” are
inhibitors of Keap1/Nrf2 interaction which covalently bind with
the sulfhydryl groups on the cysteine in Keap1 through oxidation
or alkylation. The covalent adduct changes the Keap1 conforma-
tion that prevents the Nrf2 interact with Keap1.177 However, the
covalent binding is irreversible. As a result, the long term
application of the Keap1/Nrf2 inhibitors results in the accumula-
tion of the active Nrf2, which may trigger other problems like
cancer178 Therefore, finding non-covalent small molecules that
directly interfere with the Keap–Nrf2 interaction, dissociating the
two and exerting antioxidant defense effects has become a new
therapeutic strategy.179

In 2006, Hannink’s group analyzed the structure of a complex
between the Kelch domain of Keap1 and Nrf2-derrived peptide,
thus revealed the binding interface between Nrf2 and Keap1, and

determined the key residues of Keap1, including Arg380, Arg415,
Arg483, Ser363, Ser508, Ser555, and Ser602, which laid the
foundation for the design of Keap1/Nrf2 interaction inhibitors.180

The study of the Keap1/Nrf2 inhibitors begins with the
investigation of the polypeptides that inhibits the Keap1/Nrf2
interaction. Up to date, a number of the inhibitive polypeptides
have been reported181–184 (Table 4). Hu et al.185 developed a series
of fluorescent probes to verify when the peptide chain length is 9
amino acids it has the best activity to inhibit the Keap1/Nrf2
interaction. The peptide inhibitor P1 designed based on the
fluorescent probes has a moderate inhibitory activity (IC50=
3480 ± 920 nM), and its activity increases with the elongation of
the polypeptide chain (7–16 amino acids). For instance, the
hexadecapeptide P2 (IC50= 163 ± 11 nM) exhibits the highest
activity.181 The acetylation of the N terminus of such a peptide
neutralizes the positively charged group at the N terminus, which
also greatly changes its electrical property. The nonapeptide P3
was obtained via the modifications as above-mentioned and
exhibits great activity (IC50= 194 ± 49 nM).186 Subsequently, the
structure–activity relationship study demonstrated that the
heptapeptide also shows activity, such as heptapeptide P4 (IC50
= 8230 ± 262 nM) and P5 (IC50= 558 ± 53 nM), which exhibits
moderate inhibitory activity. The follow-up work focused on
acetylation and C18 fatty acid stearic heptapeptide. The com-
pound P6 showed excellent Keap1 inhibitory activity (IC50= 22 ±
3 nM).182 However, the peptide inhibitor has large molecular
weight and poor ability to penetrate the cell membrane. There-
fore, it is of great significance to find a class of small size peptide
inhibitors with strong membrane permeability. Steel et al.
designed and synthesized a number of highly permeable
membrane peptides. Among them, the compound P7 induces
the expression of heme oxygenase-1 (HO-1) in cells, and inhibits
the proinflammatory cytokine-TNF’s expression.187

Fig. 10 The Keap1/Nrf2 interactions and interactions. a The Keap1–Nrf2-ARE pathway. Under basal conditions, Nrf2 binds to Keap1 and is
degraded by proteasomes. Under oxidative stress, Nrf2 escapes the degradation mediated by Keap1 and transfers to nucleus, binding
with ARE and Maf protein to initiate the transcription of antioxidative and cytoprotective genes. b The chemical structures of inhibitors of
Keap1/Nrf2
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Most of the high binding peptides have poor cell permeability.
Subsequently, the high binding peptides’ activity is not ideal.
Therefore, screening the small molecule inhibitors have become a
hot spot in the study of Keap1/Nrf2 interaction inhibition.188–195

The mile stone of the small molecule inhibitors study is the
development of benzothiazepine heterocyclic Keap1–Nrf2 small
molecule inhibitors made by GSK through fragment-based drug
design.189 After screening 330 fragments via X-ray crystallography,
the compounds 9–11 (Fig. 10b) were identified which interact with
Arg483, Tyr525, and Ser602, respectively. The binding of the
compounds to the amino acids as mentioned above simulating
the binding of Nrf2 peptide segment with Keap1, but the binding
activity of these three compounds was low (Kd > 1mM). To
improve the compounds’ Keap1-binding activity, various structural
modifications were made. Among which, the introduction of
methanesulfonamide on the benzene ring of compound 12 sig-
nificantly increased the compound’s Keap1-binding activity by 20
times (IC50= 61 μM). When compound 13 was completely
introduced, its IC50 strikingly reached 0.27 μM. A series of
structural optimizations were performed using compound 13
(Fig. 10b) as the lead: when methyl group is substituted for the
chlorine atom on the benzene ring, it can release its potential
binding to the sulfonamide center; Introducing an electron-
donating group methoxy group at the 7-position of benzotriazole
can improve hydrogen bonding and enhance surface bonding;
The conversion of benzenesulfonamide ring to seven membered
benzothiazide heterocycle can make more space occupied by
sulfonamide and benzotriazole sites, and the activity of compound
14 (Fig. 10b) is significantly increased (IC50= 0.015 μM). These
compounds can induce the expression of Nrf2 downstream target
protein NQ01 in BEAS-2B cells, and reduce the lung inflammation
induced by ozone in animal experiments.

Inhibitors of PD-1/PD-L1 interaction (small molecules, peptides,
antibodies)
Studies indicate that the PD-1/PD-L1 signaling pathway has critical
role in tumor immune escape and tumor development.196 PD-1
(also known as CD279) is an immunosuppressive receptor belongs
to the CD28 superfamily of T-cell regulatory receptors and its
natural ligand is PD-L1. Under physiological conditions, PD-1 is
mainly expressed in activated immune cells, which promotes the
maturation of T lymphocytes, regulates unnecessary or excessive
immune response through negative regulation, and maintains
immune tolerance. The over activation of PD-1/PD-L1 signaling
pathway negatively regulates the function of T cells, which cancels
the immune system surveillance function and promotes the
escape of tumor cells.197 Therefore, blocking the interaction of PD-
1 and PD-L1 maintain the T cells immune function may be a
potential strategy for tumor treatment (Fig. 11a). The PD-1/PD-
L1 signaling pathway inhibitors include monoclonal antibodies,
peptides, and small molecule inhibitors.
Up to date, there are five monoclonal antibody drugs

Pembrolizumab (Keytruda), Opdivo (Nivolumab), Tecentriq (Ate-
zolizumab), Bavencio (Avelumab), and Imfinzi (Durvalumab) have

been approved as PD-1/PD-L1 signal pathway inhibitors for the
treatment of melanoma, non-small cell lung cancer and other
diseases198–202 (Table 5). Pembrolizumab is the first PD-1 inhibitor
approved by the FDA for the treatment of advanced or
unresectable melanoma, which does not respond to other
drugs.203 Pembrolizumab is a highly selective humanized IgG4-κ
anti-PD-1 monoclonal antibody, which activates tumor infiltrating
lymphocytes (TIL). The combination of PD-1 highly expressed in
TIL and PD-L1 expressed in tumor cells is an important factor for
tumor immune escape. Pembrolizumab binds to PD-1 on the
surface of TIL and inhibits its interaction with PD-L1/2 to activate
TIL. Although immunotherapy against PD-1/PD-L1 has been
applied in clinic, the use of monoclonal antibodies may affect
the proliferation and activation of T cells, thereby trigger severe
immune-related adverse reactions, including tissues damage,
weaken the function of Fc-immune effect (killing immune cells),
etc.204,205

Compared with monoclonal antibodies, the peptides and small
molecule drugs do not have the limitations of monoclonal
antibodies as mentioned above.206 Chang et al.207 developed
the first hydrolysis-resistant D-peptide antagonists to target the
PD-1/PD-L1 pathway by using the mirror-image phage display
(Table 6). The optimized compound DPPA-1 binds to PD-L1 at an
affinity of 0.51 μM in vitro. The cellular level blockade assay data
and tumor-bearing mice experiments results all indicate that the
DPPA-1 disrupts the PD-1/PD-L1 interaction under in vivo condi-
tion.207 Aurigene developed a small peptide AUNP-12, which is an
anti-PD-1 targeted immunotherapy for cancer (the structure of the
compound has not been disclosed).208 The AUNP-12 inhibits the
binding of PD-1 and PD-L1 under in vitro conditions (IC50=
0.72 nM), but the time of drug metabolism was short. The animal
trials data demonstrated the AUNP-12 has good anti-PD-L1
activity and effectively inhibits the growth and metastasis of
tumor cells.
Because the structure of PD-1 and PD-L1 proteins are not

available, the development of small molecule PD-1/PD-L1 inhibi-
tors lags far behind the development of antibody drugs. By
analyzing the PD-1/PD-L1 complex structure, Zak et al.209 reported
that there are three main binding pockets in the contact interface
between PD-1 and PD-L1, which provide a rational basis for drug
development. With the success of PD-1 monoclonal antibodies and
macromolecular biomedical drugs, Bristol Myers Squibb (BMS)
conducted an in-depth investigation of small molecule inhibitors of
the PD-1/PD-L1 pathway. In 2015, the company disclosed its first
patent on a biphenyl immunomodulator. The homogeneous time-
resolved fluorescence (HTRF) test results demonstrated that these
compounds blocked the interaction between PD-1 and PD-L1.
Surprisingly, some of the compounds even reached nanomolar
activity. The IC50 of representative compounds 15 and 16 (Fig. 11b)
were 18 and 22 nM, respectively.210 In the same year, in another
patent disclosed by BMS, additional structural modifications have
been made which include the benzene ring in part A of the
compound was replaced by 1,4-benzodioxane, and m-
cyanobenzene was introduced into the benzene ring of part C
through an ether bond. The structural optimization as above-
mentioned significantly improved the compound’s PD-1/PD-L1
inhibition activity that their IC50 values reached 0.6–10 nM range.
Specifically, the IC50 of representative compounds 17 and 18 (Fig.
11b) were 2.25 and 1.4 nM, respectively.211 To improve the
compound’s inhibition activity further, the researchers continued
to optimize the structures of this class of compounds. The
additional structural modifications include introducing different
hydrophilic groups into a part of the hydrophobic biphenyls
through a carbon chain, which improved the compounds’ activity
further. The representative compounds 19 and 20’s IC50 values
were 0.48 and 0.88 nM (Fig. 11b), respectively.212 In 2018, BMS
disclosed new compounds with symmetric structures. Compare to
other compounds, the new compounds replaced the original

Table 4. Some peptide inhibitors of Keap1/Nrf2 interaction

Name Sequence IC50 (nM)

P1 H-LDEETGEFL-OH 3480 ± 920

P2 H-AFFAQLQLDEETGEFL-OH 163 ± 11

P3 Ac-LDEETGEFL-OH 194 ± 49

P4 Ac-NAETGEF-OH 8230 ± 262

P5 Ac-DAETGEW-OH 558 ± 53

P6 St-DPETGEL-OH 22 ± 3

P7 YGRKKRRQRRRLQLDEETGEFLPIQ 24
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groups on the left side with new groups that have the same or
similar structures as the ones on the right side based on the
original structure, thus forming a compound characterized by
“central symmetry”. The activity of this type of compounds is
generally less than 1 nM, and the representative compound 21’s
IC50 values (Fig. 11b) reaches 0.04 nM.213

STABILIZERS OF PPIS
Stabilizers of 14-3-3/H+-ATPase (small molecules)
The tyrosine 3-monooxygenase/tryptophan 5-monooxygenase
activator protein family (14-3-3 protein) has an important role in
PPIs. It is a highly conserved ubiquitous protein family encoded by
multiple genes in most organisms.214 There are at least seven
highly conserved subtypes of 14-3-3 proteins encoded by
different genes in mammals. The 14-3-3 proteins bind to various
ligand proteins including kinases, phosphatases, and transmem-
brane receptors.215 The 14-3-3 proteins regulate more than 500
endogenous molecules’ activity through binding to them.216 Since

these endogenous molecules have critical roles in the cell
metabolism process, cell cycle modulation, apoptosis, cell
differentiation, transcription, signal transduction, and other vital
biological events, the intervene of these molecules’ activities may
yield severe consequences in the cells.217,218 Specifically, the 14-3-
3 proteins also named as “bridge protein” of protein–protein
interactions as they bind with transcription factors to form
complexes that regulate the expression of associated genes.
Due to the important function of 14-3-3 proteins in cells, they
have critical roles in various diseases including the nervous system
diseases, arthritis, malignant tumors, and infectious diseases
etc.218–220

All 14-3-3 proteins have similar tertiary structures and the
structure can be divided into three parts: N terminal, conservative
core region, and C terminal. Each monomer consists of 9 helium
spirals (ɑA~ɑI) located between the N terminal and the C terminal
that arranged from an anti-parallel to an L-shaped structure
separated by a short loop.221 Under certain conditions, the 14-3-3
proteins can aggregate together in the form of stable

Fig. 11 The PD-1/PD-L1 interactions and inhibitors. a PD-1/PD-L1 signaling pathway. PD-1/PD-L1 interaction causes the phosphorylation of
ITIMs and ITSMs in the intracellular domain of PD-1, and then recruits SHP2 to suppress PI3K/Akt, Ras/MAPK/ERK signaling pathway, leading to
T-cell exhaustion. b The chemical structures of inhibitors of PD-1/PD-L1

Table 5. Antibody agents targeting PD-1/PD-L1 approved by FDA

Name Diseases Developer

Keytruda Melanoma, non-small cell
lung cancer

Merck Sharp & Dohme

Opdivo Melanoma, head and neck cancer Bristol Myers Squibb

Tecentriq Non-small cell lung cancer,
bladder cancer

Roche

Bavencio Merkel cell carcinoma Merck and Pfizer

Imfinzi Urothelial carcinoma AstraZeneca

Table 6. Peptide inhibitors of PD-1/PD-L1 interaction reported by
Chang et al.

Name Sequence Kd (μM)

DPPA-1 NYSKPTDRQYHF 0.51
DPPA-2 KHAHHTHNLRLP 1.13
DPPA-3 AAKMDGHLHGGQ No binding
DPPA-4 TLYQRPSTNLER 22.0
DPPA-5 RHTNDYSQFYPK No binding
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homologous/heterodimers that can bind with two ligands
simultaneously.222 The dimer formation is a necessary regulatory
step for its binding to the ligand protein. The dimer interface
consists of αA from one monomer with the combination of and αC
and αD from another monomer forming highly conserved
facultative grooves. The grooves contain both polar and nonpolar
amino acid residues and also contain an intense negative charge.
The nonpolar amino acid residues in all subtypes of 14-3-3
proteins mainly distribute along the inner grooves, while the polar
amino acid residues are located on the outer surface of the
grooves. Such a unique distribution of nonpolar-polar amino acid
residues makes the grooves identify the target proteins with
common characteristics.
Fusicoccin A, a natural product, is the first reported stabilizer to

regulate the interaction between the 14-3-3 protein and its ligand
(Fig. 12). Fusicoccin A is a diterpenoid glycoside with a 5-8-5 ring
that binds to 14-3-3 receptors. Fusicoccin A stabilizes the complex
formed by 14-3-3 protein and plasma membrane ATPase (PMA).223

The crystal structure studies showed that the 14-3-3 dimer forms a
complex structure with 52 amino acids at the C terminal of
H+-ATPase, and Fusicoccin A fills the gap between the
protein–protein interface of the complex.223 The hydrophobic 5-
8-5 ring is inserted into the binding channel of the 14-3-3 protein.
The bottom of the hydrophobic cavity contains Val153, Phe126,
and Met130. The methyl or methoxy substituent is an important
condition for contacting the hydrophobic bottom. The 5-8-5 ring
has extensive hydrophobic interactions with Pro174, Ile174,
Gly178, Leu225, Ile226, and Ile956 of H+-ATPase proteins. In
addition, many water-mediated polar interactions were formed
between Fusicoccin A and 14-3-3 proteins.
Richter et al.224 reported that the pyrrolidone derivatives could

stabilize the interaction between 14-3-3 and PMA. Among these,
the compound 22 exhibited the highest activity (Fig. 12). The
crystal structure of the pyrazole derivatives and 14-3-3/PMA
complex showed that the rigid pyrazole part penetrated into the
protein–protein interaction interface deeply, therefore enlarged
the interface with PMA. Compared with the natural product
Fusicoccin A (EC50= 498 ± 65 nM), the activity of compound 22
was better (EC50= 33 ± 4 μM). Furthermore, compound 22 showed
a good selectivity and has no effect on 14-3-3/C-Raf or 14-3-3/p53
interactions.

Stabilizers of S100 pentamer (small molecules)
The S100 protein was given its name because it is well soluble in
100% saturated ammonium sulfate under neutral conditions.225

Up to date, at least 20 members of the S100 protein family have
been identified, including S100A1-A15, S100B, S100P, etc.226 The
S100 proteins mainly exist in the forms of homodimers,
heterodimers, trimers, and tetramers in the cells.227 Previous
studies have shown that the S100 proteins act as a calcium sensor,

which regulates many intracellular and extracellular activities in a
calcium-dependent manner.228 The binding of calcium ions
changes the S100 protein conformation, exposing its binding
sites to the target proteins. Therefore, various biological functions
of S100 protein can be exerted through regulating the calcium
ions under in vivo conditions.229 For example, S100 regulates
protein phosphorylation, enzyme activity, cell proliferation, cell
differentiation, inflammatory reaction induction, and protects cells
from oxidative damage.225,229 Studies showed that the high
expression of S100A4 associate with rheumatoid arthritis, kidney
fibrosis, and cardiac hypertrophy.230,231 Garrett et al.232 reported
several phenothiazines that block the activity of S100A4. One of
these compounds, trifluoroperazine inhibits the S100A4 function
through stabilizing its inactive pentamer (Fig. 13b). The complex
structure study discovered that the trifluoroperazine forms a
pentamer complex with S100A4 and the two molecules are in
contact with each other at the interface. Further analysis of the
complex structure found that trifluoroperazine binds to a
hydrophobic patch, which includes the side chains of Ile82,
Met85, and Cys86, from one protomer and Phe89 as well as Phe93
from the other (Fig. 13a). The methylated piperazine ring of
trifluoroperazine interacts with the protomer of Ser44, Phe45,
Leu46, and Gly47. In addition, the carbonyl oxygen atom of the
protomer Phe45 forms a hydrogen bond with the nitrogen atom
on the piperazine ring.

Stabilizers of influenza nucleoprotein protomers (small molecules)
Influenza virus is the pathogen causing acute infectious disease
influenza. Influenza virus nucleoprotein (NP) is its main structural
protein and the main component of nucleocapsid.233 The
ribonucleoprotein complex is composed of ribonucleoprotein
and RNA fragments of virus and three kinds of dependent RNA
polymerase PA, PB1, and PB2, which participate in the transcrip-
tion, replication, and assembly of the virus. As the main structural
protein of the virus, nucleoprotein contains many functional
domains, such as nuclear localization sequences, RNA-binding
domains, NP–NP-binding domains, and PB2-binding domains. All
these domains have vital functions that are indispensable
components of viral replication. Therefore, inhibiting the nucleo-
protein function may have antiviral effects.
Gerritz et al.234 reported a triazole compound that induces the

formation of higher-order nuclear protein oligomers, which
prevents the nuclear proteins entering the nucleus, thereby
inhibiting viral replication. Previous studies showed that the
binding sites of the triazole compound might be located in two
regions on NP: one in NPY289/N309 region and the other in
NPY52 region. Six molecules of compound 23 (Fig. 14) bridge two
NP trimers (NP_A, NP_A′, NP_A″ and NP_B, NP_B′, NP_B″) to form
a hexamer. The structure analysis on compound 10 and NP protein
complex showed that compound 10 located between the

Fig. 12 The chemical structures of stabilizers of 14-3-3
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interfaces of two trimers and stabilizes the complex.234 The other
unique structures of the triazole compounds and NP complex
include a hydrophobic pocket formed between two NP monomers
by the amino acid residues Tyr289, Phe291, Try296, Tyr52, and
Tyr313 on each monomer. The nitro moiety on the aromatic ring
of compound 23 forms a Π-Π interaction with Tyr289 on NP_A.
The piperazine moiety of compound 23 forms a hydrophobic
interaction with Tyr254 on NP_B. Further, the hydroxyl group of
the NP_B Ser forms a hydrogen bond with the carbonyl group of
compound 23.

Stabilizers of microtubules (small molecules)
The microtubule is the main component of the cytoskeleton,
which is composed by α-tubulin and β-tubulin. Microtubules have
a vital role in maintaining cell morphology, cell division, signal
transmission, and material transport.235 In the living cells,
microtubules aggregate with each other into spindles in the early
stages of cell division. The spindles pull chromosomes to move
towards the two poles into two daughter cells during mitosis,
thereby completing cell proliferation. Under physiological condi-
tions, there is a dynamic balance between the microtubule and
tubulin dimer. The microtubule stabilizers stabilize microtubules
and promote the multimerization of microtubules, thus block
the depolymerization of microtubules, and thereby destroy the
dynamic instability of tubulin. Such effect further destroys the
rapidly differentiated tumor cells during mitosis, stagnates the cell
cycle, and in turn induces the tumor cells to undergo apoptosis.236

Paclitaxel (Fig. 15) is the first approved microtubule stabilizer.
Studies showed that the Paclitaxel binds with β-tubulin, promotes
the aggregation of microtubulin, stabilizes microtubule structure,
hinders the formation of spindles, and leads to cell cycle arrest in
G2/M phase.237,238 Zampanolide (Fig. 15) is a 20-membered
macrolide isolated from the Tongan marine sponge Fasciospongia
rimosa.239 It arrests cells in mitosis and inhibits cell proliferation by
stabilizing microtubules. The structural analysis shows that
zampanolide induces the disordered curled M-loop into an

ordered spiral structure through its side chain.240 The M-loop is
composed of eight amino acid residues in the middle region of
the tubulin subunits, which maintains the interaction between the
microtubule fibrils. The change in the M-loop facilitates the lateral
contact between the microtubule fibrils and thus stabilize the
microtubules. In 1A9 cells, zampanolide exhibited a IC50 value of
14.3 ± 2.4 nM, which demonstrated itself a potential microtubule
stabilizer.241

CONCLUSION
In recent years, new PPIs modulators development has been an
attractive goal in preclinical studies.242,243 However, the design of
modulators targeting PPIs still faces tremendous challenges.
Besides the challenges mentioned previously like the difficult
PPI interfaces for the drug design, lack of ligands reference, the
ineffectiveness of the classic medicinal chemistry approaches for
PPI drug development, lack of guidance rules for the PPI
modulators development, the biggest obstacle is the lack of
high-resolution PPI proteins structures. Because the medicinal PPI
drug design is based on the high-resolution PPI protein structures,
more resources should be put into the structural biological studies
of the identified PPIs.
Inhibitors and stabilizers are two ways to modulate PPIs. Some

of these modulators have been applied in the clinic, some have
entered clinical trials, and some have lead compounds that require
further structural optimization. Although compounds such as
trifluoroperazine and zampanolide exhibit PPIs stabilizing activity,
the PPIs stabilizers’ development has not received sufficient
attention as compared to the PPIs inhibitors’ development.63 The
difficulties for the PPIs stabilizers’ development include the
insufficient understanding of PPIs mechanisms, the poor chemical
space performance of PPI stabilizers in existing small molecule
libraries, and the extreme diversity of the PPIs stabilizers’

Fig. 13 Proteins and small molecule inhibitors of S100 pentamer. a The binding modes of trifluoroperazine binds to S100 (PDB:3KO0). Due to
the clarity, only two adjacent S100A4 monomers and their contact interface are shown. b The chemical structure of a stabilizer of S100
pentamer

Fig. 14 The chemical structures of stabilizers of influenza
nucleoprotein

Fig. 15 The chemical structures of stabilizers of microtubules
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molecular structures make it difficult to establish the criteria to
guide the design of new PPIs stabilizers. Most of the identified PPI
stabilizers are natural products, only a few of them are synthesized
through the rational design method. The HTS of the natural
products that have PPI stabilization activities may be the direction
of finding the lead compounds of PPI stabilizers.
Compared with the traditional small molecule inhibitors,

peptides exhibit higher affinity and specificity, making it easier
to bind with the target proteins. However, the peptide has two
major problems when used as drugs: its instability under in vivo
conditions and their poor membrane permeability. Fortunately,
new technologies are available now to counter the two problems.
To prevent the quick degradation of the peptides after entering
the body, the chemical modifications can be applied to improve
the stability of the peptides. Regarding the peptides’ poor
membrane permeability issue, there is a class of short peptides
that have been found in recent years to have the function of
penetrating biomembrane and mediate transmembrane transduc-
tion of macromolecular substances.244 This brings significant
progress to the development of intracellular peptides.
In recent years, remarkable progress has been made in the

development of antibodies that regulate PPI, especially the
monoclonal antibodies regulate PD-1/PD-L1 interaction. However,
due to the high research cost, the instability, and potential severe
immunogenic side effects of antibodies, more and more attention
has been drawn to the peptides and small molecular inhibitors,
especially the small molecular inhibitors. Compared with anti-
bodies, the classic small molecule drugs have advantages such as
lower research costs, diverse preparations, oral administration, and
better tumor microenvironment penetration.
Decades ago, due to the limited understanding of the PPI

properties and very limited available screening techniques by
time, the modulation of PPIs has been recognized as one of the
most challenging tasks in drug discovery for a long period of time.
However, the rapid development of structural biology and the
associated methodologies have helped us to understand the PPI
properties to a level we could not imagine before. Besides, the
rapid development of various high-throughput screening
approaches also makes the quick screening of the PPI modulators
possible. As a result, great progress has been made in the
development of PPI modulators lately. In summary, opportunities
and challenges coexist in the discovery of modulators targeting
PPIs. In the future, with the emergence of new and better
approaches to reveal the structures of protein complexes and the
development of structural biology, it is believed that more PPI
small molecule modulators will be developed and enter the clinic
to benefit the patients.
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