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ABSTRACT
The prediction of fracture risk in osteoporotic patients has been a topic of interest for decades, and models have been developed for
the accurate prediction of fracture, including the fracture risk assessment tool (FRAX). As machine-learning methodologies have
recently emerged as a potential model for medical prediction tools, we aimed to develop a novel fracture prediction model using
machine-learning methods in a prospective community-based cohort. In this study, 2227 participants (1257 females) with a baseline
bonemineral density (BMD) and trabecular bone score were enrolled from the Ansung cohort. The primary endpoint was the fragility
fractures reported by patients or confirmed by X-rays. We used 3 different models: CatBoost, support vector machine (SVM), and
logistic regression. During amean 7.5-year follow-up (range, 2.5 to 10 years), fragility fractures occurred in 537 (25.6%) of participants.
In predicting total fragility fractures, the area under the curve (AUC) values of the CatBoost, SVM, and logistic regression models were
0.688, 0.500, and 0.614, respectively. The AUC value of CatBoost was significantly better than that of FRAX (0.663; p < 0.001), whereas
the the SVM and logistic regression models were not. Compared with the conventional models such as SVM and logistic regression,
the CatBoost model had the best performance in predicting total fragility fractures (p < 0.001). According to feature importance in
the CatBoost model, the top predicting factors (listed in order) were total hip, lumbar spine, and femur neck BMD, subjective arthral-
gia score, serum creatinine, and homocysteine. The latter three factors were listed higher than conventional predictors such as age or
previous fracture history. In summary, we hereby report the development of a prediction model for fragility fractures using a
machine-learning method, CatBoost, which outperforms the FRAX model as well as two conventional machine-learning models.
The model was also able to propose novel high-ranking predictors. © 2020 The Authors. JBMR Plus published by Wiley Periodicals,
Inc. on behalf of American Society for Bone and Mineral Research.
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Introduction

Fragility fracture has become a major socioeconomic issue in
an aging society. The incidence of osteoporosis has been

reported to be 12.9% in men and 24.0% in women over 50 years
of age, and the frequency of osteoporotic fractures is continu-
ously increasing by an annual average of 15.2% in Korea.(1) Fragil-
ity fracture and its socioeconomic costs also increase along with
the incidence of osteoporosis,(1) which makes the prediction and
prevention of particular importance currently.

Although bone mineral density (BMD) is a good predictor of
fracture risk, many fractures occur in patients with osteopenia.(2)

To improve fracture prediction, the fracture risk assessment tool
(FRAX; The University of Sheffield, Sheffield, UK) was developed
as a fracture risk assessment tool using clinical factors in addition
to BMD.(3) As FRAX is an excellent prediction tool, it is increas-
ingly used to guide treatment decisions, and has been inte-
grated into many clinical practice guidelines.(4)

Recently, machine-learning methodologies have emerged in
medical prediction models, especially in cardiovascular dis-
ease.(5,6) In a similar way, this new approach might improve the
performance of current fracture prediction models by including
all possible variables such as the BMD of all sites as well as trabec-
ular bone score (TBS) data. Also, the new model could suggest
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novel factors that could influence the fracture by calculating all
variables through a deep learning network. Although there are
a few studies in osteoporosis and fracture prediction using
machine learning,(7–9) a fracture-prediction machine-learning
model with a longitudinal, large-sized cohort study including
BMD and TBS has not been developed.

There are various machine-learning techniques such as sup-
port vector machine (SVM), and gradient boosting models like
XGboost and CatBoost (for “categorical boosting”). Gradient
boosting is a powerful machine-learning technique typically
used in developing decision trees, which could be done without
extensive data training like other machine-learning techniques.
Among the gradient boosting techniques, CatBoost is the most
recently developed model with excellent performance, which
can handle categorical features without preprocessing to lower
the chances of overfitting to make more generalized models.(10)

In our study, we aimed to develop a predictionmodel of fragil-
ity fractures and discover novel risk factors using a machine-
learning method in a large-sized longitudinal community-based
cohort study.

Materials and Methods

Study population

This study was based on data obtained from the Ansung cohort
study, which is an ongoing prospective study that began in 2001
and is supported by the National Genome Research Institute of
the Korea Centers for Disease Control and Prevention (Cheongju,
Korea). The study is part of the Korean Genome Epidemiology
Study (KoGES), a large community-based epidemiological survey
that consists of a population-based sample of Korean men and
women aged 40 to 69 years old. Participants were residents of
Ansung who had lived in the survey area for at least 6 months
before enrollment. Detailed information on the selection criteria
and sampling plan for the cohort study has been published previ-
ously.(11,12) The study protocol was approved by the Korea Centers
for Disease Control and Prevention Institutional Review Board. The
study was carried out following the World Medical Association
Declaration of Helsinki — Ethical Principles for Medical Research.
Consent was obtained from each patient after a full explanation
of the purpose and nature of all procedures.

A total of 5018 participants completed a baseline examination
in 2001 and were surveyed biennially. The BMD measurement
began at the fourth wave (2007 to 2008). At the time of the
fourth wave of the cohort, 3224 participants remained in the sur-
vey. For this analysis, we excluded 997 participants whose dual-
energy X-ray absorptiometry (DXA) data were unavailable at
the fourth wave. For the final analysis, 2227 participants were
eligible.

Fragility fractures

Fragility fractures were defined as fractures that resulted from no
identifiable trauma or aminimal trauma such as a fall from a stand-
ing height or less, which included both the self-report by patients
and morphometric fractures confirmed by X-rays. For the patient-
reported clinical fractures, face-to-face or telephone interviews
were used to inquire about fractures. For the morphometric frac-
ture confirmed by X-rays, anterior, middle, and posterior vertebral
heights weremeasured using themethod described by Eastell and
colleagues.(13) Anterior to posterior, middle to posterior, and poste-
rior to posterior above and below ratios were calculated. The

vertebral fracture was defined if any of the abovementioned
ratios were more than 3 standard deviations (SDs) below the nor-
mal mean for the vertebral level, as described in our previous
report.(14)

Health questionnaires and measurements parameters

Interviews obtained data on lifestyle and sociodemographic factors
including age, sex, previous medical history, drinking and smoking
status, physical activity, andmenopausal age and status at the base-
line. Participants with diabetes were defined as those who
answered to have diabetes or those who have reached the thresh-
olds for fasting plasma glucose ≥126 mg/dL or HbA1c ≥6.5%.(15)

Ever smokers were defined as those who had smoked >five packs
of cigarettes during their lifetime. Usual drinkers were defined as
those who consumed >5 g of ethanol/day.

Physical activity (PA)wasdeterminedby askingparticipants how
often they exercised each week using the Korean version of the
International Physical Activity Questionnaire (IPAQ). Based on the
Ainsworth and colleagues’ compendium,(16) an average metabolic
equivalent (MET) scorewasderived for each typeof activity. The fol-
lowing valueswere thenused for the analysis of IPAQdata:walking,
3.3 METs; moderate PA, 4.0 METs; vigorous PA, 8.0 METs. A total PA
(MET-hours/week) was defined as the sum of the weekly METs for
walking, moderate PA, and vigorous PA.

The arthralgia score was screened for any subjective arthritic
pain with the 0 to 10 numeric rating scale, by which participants
rate their current pain intensity from 0 (“no pain”) to 10 (“worst
possible pain”) at the time of the interview. Height and body
weight were measured based on standard methods by trained
staff using a scale and a wall-mounted extensometer with partic-
ipants wearing lightweight clothes. BMI was calculated as the
weight divided by height squared (kg/m2).

Cognitive impairment was evaluated using the Korean mini-
mental status examination (K-MMSE), which is a 30-item ques-
tionnaire specifically developed and validated for assessing the
general cognitive function of older Korean individuals.(17) The
results are scored from 0 to 30 points, with scores of ≥23 points
indicating normal cognition, scores of 17 to 22 points indicating
mild cognitive impairment, and scores of <17 points indicating
moderate-to-severe impairment. Depressive symptoms were
assessed using the 15-item Korean geriatric depression scale
(K-GDS).(18) The results are scored from 0 to 15 points, with scores
of >10 points considered suggestive of depressive mood.

Laboratory assessments

At the baseline, the blood samples were acquired in themorning
fasting status (14 hours of fasting for all participants). Plasmawas
separated immediately by centrifuge (2000 rpm, 20 min, at 4�C),
and measurements were conducted immediately. Plasma glu-
cose level was measured using the hexokinase method (ADVIA
1650 Auto Analyzer; Bayer, Leverkusen, Germany), and the
plasma insulin level was measured using the IRMA test kit
(BioSource Europe SA, Nivelles, Belgium). Fasting total choles-
terol, high-density lipoprotein cholesterol (HDL-C), low-density
lipoprotein cholesterol (LDL-C), and triglyceride (TG) levels were
measured enzymatically using the Hitachi 747 chemistry ana-
lyzer (Hitachi, Tokyo, Japan). The HbA1c level was determined
using high-performance liquid chromatography by the Bio-Rad
Variant II HbA1c analyzer (Bio-Rad, Montreal, Quebec, Canada).
Homeostatic model assessment of insulin resistance (HOMA-IR)
was computed using the following formula:
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HOMA− IR = fasting plasma insulin μIU=mLð Þ
× fasting plasma glucose mg=dLð Þ× 0:0555=22:5:

Measurements of BMD, TBS, and calculations of FRAX

The BMD (grams/cm2) of skeletal sites (lumbar spine, femoral
neck, and total hip) and muscle mass were measured using
DXA (GE Prodigy; GE Healthcare, Chicago, IL, USA) and analyzed
(enCORE Software version 11.0; GE Healthcare) according to the
manufacturer’s guidelines at baseline. The BMD precision error
(% of the coefficient of variation [CV]) was 1.7% for the lumbar
spine, 1.8% for the femoral neck, and 1.7% for the total hip. For
the lumbar spine BMD, the L1 to L4 value was chosen for analysis.
When L1 to L4 was not suitable for analysis because of a com-
pression fracture or severe sclerotic change, L2 to L4 was used.
All TBS measurements were retrospectively performed using
TBS iNsight software, version 2.0.0.1 (Medimaps Group SA,
Geneva, Switzerland) utilizing spine DXA files from the database
to ensure that all investigators were blinded to all clinical param-
eters and outcomes. The software used the raw DXA image of
the anteroposterior spine for the same region of interest as the
BMD measurement. Instruments were calibrated using anthro-
pomorphic phantoms.

The World Health Organization’s 10-year absolute risks of hip
and osteoporotic fracture (FRAX scores) were calculated using
the University of Sheffield online Korea-specific FRAX tool
(https://www.sheffield.ac.uk/FRAX/tool.aspx?country=25). The
FRAX algorithm includes the following parameters: femoral neck
BMD T-score, lumbar TBS score, age, sex, BMI, previous history of
fracture, parental history of hip fracture, secondary osteoporosis,
current smoking status, recent use of corticosteroids, presence of
rheumatoid arthritis, and ≥ three alcoholic beverages per day.

Machine-learning techniques used

We implemented a new gradient-boosting algorithm, CatBoost,
which successfully manages categorical features and outperforms
existing state-of-the-art machine-learning algorithms on popular
publicly available data sets.(10) When developing the algorithm,
we passed on the indices of categorical features to the function.
By doing so, the algorithm can discriminate between categorical

variables and continuous variables, supporting more reliable and
efficient training. The latest versions in September, 2019 of the Cat-
Boost package (https://github.com/catboost/catboost) and Python
programming language were utilized for implementation.

To further evaluate the performance of the CatBoost model,
the logistic regression and SVM models were tested in compari-
son. Logistic regression is a widely used model in a variety of
fields, including medical research. SVM is a machine-learning
algorithm that is preferred in many studies because of its ease
of use, high prediction accuracy, and robustness to overfit-
ting.(19) Both the SVM and logistic regression models come with
the Python programming language, along with the latest version
of the Scikit-learn package (https://scikit-learn.org/stable/). All
clinical variables from the cohort have been included for build-
ing both conventional and machine-learning models.

SHAP (Shapley additive explanation) values were used to evalu-
ate feature importance (https://github.com/slundberg/shap).(20,21)

The SHAP value measures how much each feature in the model
contributes, either positively or negatively, similar to coefficient
values in logistic regression.

Performance evaluation

We assessed and evaluated the performance of the prediction
models in terms of the area under the curve (AUC) score calcu-
lated by randomly selected threefold cross-validation for 1000
times. The AUCmeasures the performance of a classifier in terms
of its ability to classify positive instances correctly.(22) K-fold vali-
dation is a model validation technique that prevents the overfit-
ting of predictive models to training data.(23) In this method, the
original training data set is randomly split into a quantity of k
equal-sized exclusive subsets; of the k subsets, a single subsam-
ple is retained as the validation data, and the remaining k − 1
subsets are used as training data in each iteration, followed by
averaging the model performance results.

An iterated threefold cross-validation was performed (n = 1000)
for eachmethod (ie, CatBoost, logistic regression, SVM; eachmodel
with all variables or top-20 variables) to obtain a robust AUC score
for eachmethod and the corresponding 95%CI using the standard
error generated through the training/test data sampled without
replacement. Table 3 shows the comparison of the robust AUC
scores of each method with the AUC of FRAX scores computed
over all of the patients in the cohort (Fig. 1).

Fig. 1. Study participants and used models. SVM = support vector machine.
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Statistical analysis

In baseline characteristics, depending on the distribution, con-
tinuous parameters are presented as means with SDs, and cate-
gorical data are presented as proportions. Comparisons
between groups were analyzed by performing Student’s t test,
whereas a χ2 test was used for categorical variables. A p value
<0.05 was considered significant. Statistical analyses were per-
formed using the SPSS 24.0 statistical package (IBM, Armonk,
NY, USA) and R software (R Foundation for Statistical Computing,
Vienna, Austria; www.r-project.org).

Results

Clinical characteristics

There were 2227 participants included in the analysis. The mean
follow-up duration was 7.5 years (range, 2 to 10 years). The

average age was 61.2 � 8.7 years old, 1257 (56.4%) of partici-
pants were female, which was the more prevalent sex in patients
with fractures (p = 0.008). Patients with fractures also had later
menarche (p < 0.001), experienced more previous fractures
(p < 0.001), and were more commonly diagnosed with osteopo-
rosis and osteoarthritis (p < 0.001 and p < 0.003, respectively)
than those without fractures. Moreover, patients with fractures
had higher arthralgic pain scores, lower cognitive function
scores, and higher geriatric depression scores than thosewithout
fractures. BMD for lumbar, femur neck, and total hip, and lumbar
TBS score were significantly lower in those with fractures than in
those without (0.956 � 0.192, 1.030 � 0.184 g/cm2 for lumbar
BMD; 0.793 � 0.139, 0.858 � 0.142 g/cm2 in femur neck BMD;
0.850 � 0.148, 0.924 � 0.151 g/cm2 in total hip BMD;
1.357 � 0.097, 1.392 � 0.094 in TBS, respectively, all p < 0.001).
FRAX scores with and without BMD and FRAX score with TBS
score were all higher in those with fractures than in those with-
out fractures (FRAX score with TBS for major fracture 5.5 � 3.6,

Table 1. Clinical Characteristics of Participants

Total (n = 2227) Without fracture (n = 1690) With fracture (n = 537) p

Age, years 61.2 � 8.7 60.4 � 8.7 63.7 � 8.2 <0.001
Female 1257 (56.4) 927 (54.9%) 330 (61.5%) 0.008
BMI, kg/m2 24.4 � 3.3 24.4 � 3.2 24.3 � 3.3 0.551
Menarche, years 16.1 � 1.9 16.0 � 1.8 16.4 � 1.9 <0.001
Menopause, years 46.5 � 10.7 46.0 � 10.9 47.8 � 10.0 0.203
Ever smoker 746 (33.6%) 580 (34.4%) 166 (31.0%) 0.166
Ever drinker 349 (16.9%) 266 (17.1%) 83 (16.0%) 0.603
History of previous fracture 206 (9.3%) 120 (7.1%) 86 (16.0%) <0.001
Diabetes 284 (12.8%) 220 (13.0%) 64 (12.0%) 0.564
Hypertension 934 (1.8%) 593 (35.2%) 210 (39.3%) 0.188
Osteoporosis 514 (23.1%) 338 (20.0%) 176 (32.9%) <0.001
Arthritis 866 (39.8%) 968 (58.4%) 341 (66.0%) 0.003
Arthralgia, score 1.6 � 3.1 1.4 � 2.1 2.1 � 5.0 0.001
K-MMSE, score 23.2 � 6.2 23.6 � 6.0 22.2 � 6.5 0.001
K-GDS, score 4.3 � 4.0 4.0 � 3.9 5.1 � 4.2 <0.001
Hba1c, % 5.9 � 1.0 5.9 � 1.0 5.8 � 1.0 0.774
Creatinine, mg/dL 0.9 � 0.2 0.9 � 0.2 0.9 � 0.2 0.007
ALT, mg/dL 24.9 � 16.6 25.0 � 16.7 24.7 � 16.3 0.652
AST, mg/dL 27.2 � 13.3 27.1 � 12.6 27.7 � 15.1 0.348
CRP, mg/dL 1.8 � 5.2 1.7 � 5.0 1.9 � 5.7 0.510
Homocysteine, μmol/L 12.1 � 5.0 12.1 � 5.1 12.2 � 4.6 0.579
TSH, μIU/mL 1.7 � 1.7 1.7 � 1.8 1.6 � 1.4 0.146
HOMA-β cell 106.0 � 82.6 105.4 � 87.8 107.8 � 63.6 0.496
Lumbar BMD, g/cm2 1.007 � 0.194 1.030 � 0.184 0.956 � 0.192 <0.001
Femur neck BMD, g/cm2 0.834 � 0.146 0.858 � 0.142 0.793 � 0.139 <0.001
Total hip BMD, g/cm2 0.899 � 0.154 0.924 � 0.151 0.850 � 0.148 <0.001
Lumbar TBS, score 1.406 � 0.112 1.392 � 0.094 1.357 � 0.097 <0.001
Follow-up duration, years 7.5 � 1.6 7.7 � 1.3 6.9 � 2.3 <0.001
Mortality 128 (5.7%) 105 (6.2%) 23 (4.3%) 0.117
FRAX (major, without BMD), % 5.2 � 3.1 4.9 � 2.8 6.1 � 3.6 <0.001
FRAX (hip, without BMD), % 1.6 � 1.6 1.4 � 1.5 2.0 � 1.8 <0.001
FRAX (major, with BMD), % 4.5 � 2.9 4.2 � 2.7 5.5 � 3.4 <0.001
FRAX (hip, with BMD), % 1.1 � 1.7 0.9 � 1.5 1.5 � 2.0 <0.001
FRAX (major, with TBS), % 4.4 � 2.9 4.0 � 2.6 5.5 � 3.6 <0.001
FRAX (hip, with TBS), % 0.9 � 1.5 0.8 � 1.2 1.5 � 1.9 <0.001

Continuous variables are expressed as mean � SD, or median [interquartile range], and categorical variables as numbers (percentages). Comparisons
between groups were analyzed by performing Student’s t test, whereas a χ2 test was used for categorical variables.
ALT = alanine aminotransferase; AST = aspartate aminotransferase; CRP = C-reactive protein; FRAX = fracture risk assessment tool; HOMA-β = homeo-

stasis model assessment of β-cell function; K-GDS = Korean geriatric depression score tool; K-MMSE = Korean mini-mental status examination; TBS = tra-
becular bone score; TSH = thyroid-stimulating hormone (thyrotropin).
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4.0 � 2.6%; FRAX score with TBS for hip fracture 1.5 � 1.9,
0.8 � 1.2%, respectively, p < 0.001; Table 1).

During follow-up, fragility fractures occurred in 537 (25.6%) of
the participants. There were 223 clinical fractures cases reported
by patients, and 314 cases detected by X-ray readings. Of
223 clinical fractures, 54 cases were vertebral fractures (2.4%),
77 were hip fractures (3.5%), and 92 were upper extremity frac-
tures (4.1%). In addition, 128 (5.7%) participants died during
follow-up.

Top-20 predictors by outcomes

The top-20 predictors using the CatBoost model for each out-
come ordered by feature importance are listed in Table 2. Total
hip BMD was the most important predictor of fracture. Lumbar
spine and femur neck BMDwere important predictors of fracture
along with total hip BMD. Surprisingly, a subjective arthralgia
score, serum creatinine, and homocysteine levels were the next
important predictors of fracture. Aspartate aminotransferase,
lumbar TBS, fasting glucose, age, TG levels, and the K-MMSE
score, reflecting cognitive function, were also high-ranking pre-
dictors of fracture. Subsequently, C-reactive protein (CRP), BMI,
age of menarche, platelet count, income status, history of previ-
ous fracture, thyroid-stimulating hormone (TSH) level, and K-GDS

Table 2. Top-20 Features Derived From the CatBoost Model

Ranking Risk factor Feature importance

1 Total hip BMD 0.222
2 Lumbar spine BMD 0.112
3 Femur neck BMD 0.101
4 Arthralgia score 0.100
5 Creatinine 0.090
6 Homocysteine 0.086
7 AST 0.076
8 Lumbar spine TBS 0.072
9 Fasting glucose 0.068
10 Age 0.062
11 Triglyceride 0.062
12 K-MMSE 0.061
13 CRP 0.060
14 BMI 0.058
15 Menarche 0.055
16 Platelet 0.049
17 Income status 0.043
18 Previous fracture history 0.041
19 TSH 0.040
20 K-GDS 0.038

AST=Aspartate aminotransferase; CRP=C-reactiveprotein; K-GDS=Korean
geriatric depression score; K-MMSE = Koreanmini-mental status examination;
TBS= trabecularbonescore; TSH=thyroid-stimulatinghormone (thyrotropin).

Fig. 2. Impact of features on predictionmodel output. Red and blue colors represent high and low levels of each predictor. The x-axis represents the SHAP
value. A positive SHAP value means likely to have a fracture; a negative value means unlikely to have a fracture. AST = aspartate aminotransferase; TSH =
thyroid-stimulating hormone (thyrotropin); TBS = trabecular bone score; KMMSE = Korean mini-mental status examination; CRP = C-reactive protein;
K-GDS = Korean geriatric depression score; SHAP = Shapley additive explanations.
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scores were determined in the machine-learning algorithms to
be high-ranking predictors.

As illustrated in Fig. 2, decreased BMD and TBS were related to
an increased fracture risk with a large impact on the model. Also,
increased arthralgia score, low level of serum creatinine, mild ele-
vation of homocysteine, high fasting glucose, and age were
related to an increased fracture risk. Decreased cognitive func-
tion, income status, TSH, increased CRP, BMI, and age of menar-
che contributed to an increased fracture risk. The phenomenon
was supported in partial dependence plots as given in Fig. 3,
which demonstrate decreasing total hip BMD; lumbar spine TBS
had an increasing model contribution value to the fracture pre-
diction (Fig. 3A,B). As can be seen in Fig. 3A and B, patients of
younger age tended to have higher BMDand lower TBS. In Fig. 3C
and D, partial dependence plots show that increased arthralgia
score and mildly increased homocysteine level had an increased
model contribution value to fracture prediction.

Performance of the model

Compared with conventional models such as logistic regression
and SVM, the CatBoost machine-learning model had the best
performance in predicting fractures (Table 3). The AUC of the

CatBoost model was significantly higher than those of the logis-
tic regression model and the SVM model in total fracture predic-
tion, vertebral fracture prediction, and hip fracture prediction
(p < 0.001 for all).

The CatBoost model with the top-20 variables showed a simi-
lar performance in total fracture prediction and a more reduced
performance in vertebral and hip fracture prediction than the
model with all variables. Logistic regression with the top-20 vari-
ables showed more reduced performance in total and vertebral
fracture prediction, but better performance in hip fracture pre-
diction than the model with all variables. The SVM model with
the top-20 variables showed better performances in total frac-
ture and vertebral fracture prediction than the model with all
variables. Among the three models with the top-20 variables,
the CatBoost model with the top-20 variables showed the best
performance with an AUC of 0.688 compared with the logistic
regression model (AUC of 0.565) or the SVM model (AUC of
0.542) with the top-20 variables (Table 3).

As the CatBoost model had the best performance, the perfor-
mance of the CatBoost model was compared with the FRAX
score model (Table 4). For the total fracture category, the AUC
of the CatBoost machine-learning model was 0.687, which was
significantly better than the FRAX score with TBS data (0.663,

Fig. 3. Impact on predictionmodel output of (A) total hip BMD, (B) lumbar spine BMD, (C) subjective arthralgia score, and (D) homocysteine level. Red and
blue colors represent old and young age. The y-axis represents the SHAP value. A positive SHAP value means likely to have a fracture; a negative value
means unlikely to have a fracture. SHAP = Shapley additive explanations.

JBMR Plus (WOA)n 6 of 9 KONG ET AL.



p < 0.001). For the hip fracture category, the AUC of the CatBoost
model was 0.656, which was also significantly higher than the
FRAX score with TBS data (0.549, p < 0.001). Comparing the
SVM and logistic regression model with FRAX (major fracture
with TBS, AUC 0.663), both the logistic regression model (AUC
0.614) and SVM model (AUC 0.500) had significantly lower AUC
values (p < 0.001 for both; Tables 3 and 4).

Discussion

This is the first study to develop and evaluate a fracture predic-
tion model with the CatBoost machine-learningmethod in a lon-
gitudinal community-based cohort study. The prediction model
suggested the top-20 risk factors of the fracture including well-
known factors such as total hip, lumbar, and femur neck BMD;
TBS; body weight; age of menarche; age; and history of previous
fractures, as well as lesser-known novel factors such as arthralgia
subjective score, homocysteine, CRP, TG levels, K-GDS score,
homeostasis model assessment of β-cell function (HOMA-β),
and income status. The performance of the CatBoost model
was better in predicting total fracture and hip fracture than the
FRAX score, and better than conventional models such as logistic
regression and the SVM model. Also, the CatBoost model con-
structed with only the top-20 variables showed similar perfor-
mance as the model with all variables.

Our study has clinical importance in developing a fracture pre-
diction model with machine learning in a large-sized longitudi-
nal cohort. There are few machine-learning studies in
predicting osteoporotic fracture.(7,9,24) In one study, which

includes QCT and BMD data, a gradient boosting machine-
learning model was developed to predict fracture in 332 partici-
pants. The performance of the study improved significantly after
applying a gradient boosting machine method (AUC of each var-
iable: 0.61, AUC of gradient boosting model: 0.81).(7) Although
the study had a small number of patients, a strength of the study
is that it includes bone BMD and QCT data to improve the model
performance with sufficient follow-up duration. However, as the
top risk features were well-known variables such as BMD, the
study could not suggest novel clinical features from the model.
Also, the study did not compare the AUCwith a conventional risk
predictionmodel such as FRAX. Recently, another study reported
a machine-learning model that predicts quantitative ultrasound
speed of sound using genome-wide association data.(9) How-
ever, the model has limitations in predicting fracture without
BMD. This study could be clinicallymeaningful in that it is the first
study to develop a machine-learning model for predicting frac-
ture using a large-sized prospective cohort with BMD and
TBS data.

The CatBoost model was used as a machine-learning tech-
nique in this study. The CatBoost model is amodification of a gra-
dient boosting method, a machine-learning technique that
provides superb performance in many tasks. CatBoost, as the
name suggests, entails statistical techniques to learn categorical
features, which have substantially different characteristics to
numerical features. Furthermore, it prevents overfitting by using
unbiased estimates for the gradients.(10) The CatBoost algorithm
was chosen as the data set comprises many categorical variables
(eg, sex, smoking status, income level), and to ensure the gener-
alizability of the model by minimizing overfitting.

Table 3. Performance in AUC of Machine-Learning Models

Total fracture Vertebral fracture Hip fracture

CatBoost model with all variables 0.688b,c (0.687–0.688) 0.684b,c (0.683–0.684) 0.656b,c (0.655–0.656)
CatBoost model with top-20 variables 0.688d,e (0.687–0.688) 0.656a,d,e (0.655–0.656) 0.653a,d,e (0.653–0.653)

Logistic regression model with all variables 0.614 (0.612–0.616) 0.663 (0.661–0.664) 0.606 (0.598–0.614)
Logistic regression model with top-20 variables 0.565a (0.562–0.567) 0.628a (0.627–0.630) 0.622a (0.615–0.630)

SVM model with all variables 0.500 (0.500–0.501) 0.502 (0.501–0.502) 0.502 (0.502–0.502)
SVM model with top-20 variables 0.542a (0.540–0.544) 0.563a (0.561–0.565) 0.503 (0.497–0.510)

Evaluation of the performance of the prediction models were done in area under the curve (AUC) score with randomly selected threefold
cross-validation for 1000 times.
SVM = support vector machine.
aRefers to p < 0.001 of model with top-20 variables compared with model with all variables.
bRefers to p < 0.001 of CatBoost model compared with the logistic regression model.
cRefers to p < 0.001 of CatBoost model compared with the SVM model.
dRefers to p < 0.001 of CatBoost model with top-20 variables compared with the logistic regression model with top-20 variables.
eRefers to p < 0.001 of CatBoost model with top-20 variables compared with the SVM model with the top-20 variables.

Table 4. Performance in AUC of Machine Learning and FRAX Score

Total fracture pa Hip fracture pa

Machine-learning model (CatBoost) 0.688 (0.687–0.688) 0.656 (0.655–0.656)
FRAX (major, without BMD), % 0.638 <0.001 - -
FRAX (major, with BMD), % 0.660 <0.001 - -
FRAX (major, with TBS), % 0.663 <0.001 - -
FRAX (hip, without BMD), % - - 0.528 <0.001
FRAX (hip, with BMD), % - - 0.545 <0.001
FRAX (hip, with TBS), % - - 0.549 <0.001

AUC = area under the curve; FRAX = fracture risk assessment tool; TBS = trabecular bone score.
aFRAX scores compared with the machine-learning model.
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Notably, the study suggested novel high-ranked factors in
fracture prediction. First, the subjective arthralgia score was
ranked as the fourthmost essential feature in the fracture predic-
tion model, which was higher than the lumbar TBS score. Also,
patients who have had fractures showed a significantly higher
subjective arthralgia score than those who did not. The associa-
tions of arthralgia with fracture have not been well-studied, but
there has been speculation that there are links between pain
neuropeptides and the pathological process of osteoporosis
and bone remodeling.(25) A recent study reported that partici-
pantswith chronic arthralgiawere likely to bediagnosedwith spi-
nal osteoporosis with a relative risk ratio of 4.12.(26) Previous
studies have shown that the treatment of osteoporosis alleviated
arthralgia in patients with osteoporosis, as well as reduced bone
resorption and improved BMD.(27–29) This is hard to validate in
this study because our cohort did not include bone turnover
markers; further investigation is needed to clarify the issue. It
could also be possible that the participants with arthralgia are
more likely to fall because of the pain itself.(30) As expected, par-
ticipantswith osteoarthritis complainedofmore severe arthralgia
than those without osteoarthritis (arthralgia score 2.92 � 2.76 in
patients with arthritis [n = 173], 1.43 � 3.05 in patients without
arthritis, p < 0.001). The osteoarthritis may also predispose the
sarcopenia and risk of falls,(31) whereas it may not be in the top
variables for predicting fracture because of the collinearity with
the arthralgia score. The degree of the arthralgia may have a pre-
dictive value for fracture aswell for this study, and it couldbeused
as an early marker for increased bone resorption and fractures.

Hyperhomocysteinemia was also a highly ranked predictive
factor for osteoporosis in this study. Mildly elevated plasma level
of homocysteine is a common condition, and it is reported to be
associated with an increased risk of fractures.(32,33) In this study, it
is notable that homocysteine is highly ranked, higher than con-
ventional risk factors such as age, body weight, and lumbar TBS
score. Homocysteinemia is known to be related to the distur-
bance of collagen linking of the bone by reacting with aldehyde
to form a stable thiazide ring in the collagen-linking process.(34)

In patients with homocystinuria, which implicates a high circulat-
ing level of homocysteine, a lower amount of collagen-linking
was found than in normal participants.(35) However, it was also
reported that a low estradiol level was associated with high
homocysteine levels.(36) Also, low serum creatinine as a high
ranked predictive factor implies that serum creatinine could be
used as an indicator of low muscle mass to predict fracture. As
serum creatinine more strongly correlates with lean mass than
with total body weight,(37) low serum creatinine in elderly
patients could represent low muscle mass. It could be an easily
accessible method in clinical practice to reflect muscle mass,
especially in an older population.

In this study, the machine-learning model showed a similar or
better performance than the FRAX method for fracture predic-
tion. FRAX is awidely accepted, excellent tool not just to calculate
the 10-year risk of fracture, but it also includes parameters that
can be reversed with treatment. Therefore, improving the model
with amachine-learningmethod is clinicallymeaningful. The per-
formance of the FRAX model in the study was similar to previous
reports.(38,39) Nevertheless, the performance of the machine-
learning model, especially in predicting hip fracture, was signifi-
cantly better than that of FRAX, but not in predicting vertebral
fractures. It could be because the onset of a hip fracture is rela-
tively accurate, whereas the onset of a vertebral fracture is less
accurate because of the nature of the fracture. Although we tried
to overcome this limitation by finding vertebral fractures in

X-rays, there is the possibility that the onset time of the vertebral
fracturemight not be punctual. Therefore, themodel ismore suit-
able for the prediction of total fractures or hip fractures in partic-
ular than for the prediction of vertebral fractures. Also, FRAXmay
not be a fair model for the comparison because of the various
follow-up periods in the study, considering that the FRAXwas ini-
tially designed to predict a 10-year risk. Therefore, the interpreta-
tion of the performances could be somewhat different as the
FRAX might be underestimated because of the design of the
cohort, but still have excellent performance. It could imply that
the machine-learning model may have its main strength in find-
ing novel prediction markers with acceptable performance.

Furthermore, models with the top-20 variables showed a non-
inferior performance. This result could be because the few main
variables led to the performance of the model, whereas the
remaining variables did not have substantial roles because of
the collinearity. The phenomenon can also be seen in other stud-
ies. In one recent study predicting cardiovascular events using
machine learning, a model with top-20 variables was also used
and showed excellent performance compared with amodel with
all variables.(5) In addition, as the top variables mostly contrib-
uted to themodel, it was shown that amodel with only nine vari-
ables (forwardly selected) had better performance than a model
with all variables. Besides, the model with few variables makes it
more practical in the clinical field to validate in other cohorts.

This study has some strengths. First, this is the first study to
evaluate a fracture prediction model using machine learning in
a large prospective cohort, including BMD. The cohort has its
strengths in that the population of the cohort is homogenous,
prospectively followed-up with BMD, TBS, and thorough anthro-
pometric measures. Also, the model suggested novel high-
ranking factors in fracture prediction, which could be considered
in clinical research and practice. Developing and validating a
simplified model with the top-20 factors is also a strength of this
study, which makes the model practical and suggests the possi-
bility of use in clinical practice.

The studyhas some limitations. The study suggestednovel predic-
tors included in the top-20models, which are not commonmeasure-
ments in standard clinical practice. Therefore, it may not be easy to
apply themodel in a real-world setting. Also, the study lacks the data
of bone turnover markers and hormone data such as estrogen and
testosterone. Because these data are nowbeingmeasured in a single
cohort, future studies could be improved by including bone turnover
markersandhormonedata.Also,becauseof the inclusionofmorpho-
metric fracture events, old baseline age of this study, and the charac-
teristics of the rural farmland community, the incidence of a fragility
fracture was higher than the national medical claim data in Korean
people older than 50.(40–42) As the model was not based on a time-
dependent analysis, it is a limitation that themodel couldnot suggest
the predicted time to the fracture. Further studieswith survival analy-
sis will be needed. In addition, the study was analyzed in a homoge-
nous group, which requires further validation in other ethnicities.

This study is the first study of a fracture prediction model with
the CatBoost machine-learning method in a longitudinal
community-based cohort. In predicting total fractures and hip frac-
tures, the performance of the CatBoost model was better than
using the FRAX score. The prediction model suggested novel pre-
dictors such as an arthralgia subjective score and homocysteine
levels with conventional predictors in fracture prediction. There-
fore, this study is clinically meaningful in suggesting a model with
acceptable performance and in proposing a ranking of predictors
with a novel methodology. Further validation studies in various
groups and large cohorts are needed to improve the model.
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