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Athlete balance control ability plays an important role in different types of sports. Accurate and efficient evaluations of the balance
control abilities can significantly improve the athlete management performance. With the rapid development of the athlete
training field, intelligent and automatic evaluations have been highly demanded in the past years. -is study proposes a deep
learning-based athlete balance control ability evaluation method through processing the time-series movement pressure
measurement data. An end-to-end model structure is proposed, which directly analyzes the raw data and provides the evaluation
results, which largely facilitates practical utilization. Amulti-scale feature extraction scheme is employed, by exploring the learned
features in different scales. A residual connected neural network architecture is further proposed. By using the short-cut
connection, the deep neural network model can be more efficiently trained. Experiments on the real athlete balance control ability
tests are carried out for validations. -rough comparisons with different related methods, the results show the proposed deep
multi-scale residual connected neural network model is well suited for the athlete balance control ability evaluation problem, and
promising for actual applications in the real scenarios.

1. Introduction

Balance control ability is of great importance for athletes. A
number of sport areas with precise movement require ac-
curate and efficient evaluations of the balance control ability
for the athletes, such as freestyle skiing aerials, skating, and
so forth [1]. Good evaluations of the balance control ability
can well support the management of the athletes, including
selection, training, competition, and so on. Accurate eval-
uation of the balance control ability remains a quite chal-
lenging issue, since a large number of factors are included,
and the underlying ability cannot be well reflected. Signif-
icant expert knowledge and human labor are also highly
required for this task, which makes it difficult to be carried
out in the practical scenarios [2].

In the recent years, with the rapid development of the
sensing technologies and data analysis methods, data-driven
athlete balance control ability evaluation becomes feasible
[3]. Specifically, the movement pressure measurement
machine, such as a balance meter, can be used to collect the
athlete subtle movement when they are standing on the
machine. -e collected signal can be used to evaluate the
athlete balance control ability, since smaller movement
pressure generally indicates better balance control ability,
while larger movement pressure means the balance control
ability is at lower level [4].

With respect to the collected data, typical statistical
features can be used for balance control ability evaluation,
such as mean, root mean square, and so forth [5–7]. In
the past years, many signal processing methods have
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been proposed for better feature extraction [8–10], in-
cluding wavelet analysis, stochastic resonance techniques,
and so on. Some machine learning and statistical inference
techniques are also developed for solving the pattern
recognition problem, such as artificial neural networks
(ANN) [11], support vector machines (SVM), random
forest, fuzzy inference, and so on [12–14]. However, the
collected movement pressure data usually contain much
noise, which makes it difficult to use the conventional
features for evaluations. Furthermore, for the high-level
athletes, the difference between different levels of athlete
on balance control ability is quite small. -e typical
features cannot well reflect the difference. -erefore,
the traditional data-driven methods on athlete balance
control ability evaluation are facing great challenges at
present.

Deep neural network has been the emerging technolo-
gies of artificial intelligence in the past years [15–23], and it
has achieved great successes in many applications such as
image recognition [24–26] and speech recognition [27].
Driven by big data, deep neural network can well learn the
mapping function between the input data and the output
pattern automatically [28–30]. High prediction accuracy can
be usually obtained. In addition, deep neural network is
generally a black box tool for automatic computations,
which requires little prior knowledge on signal process or
domain expertise [31]. -erefore, it is quite promising for
solving the challenging athlete balance control ability
evaluation problem.

-e recent studies [32–35] show the time-series data
can be well processed by the deep neural network
model, and higher feature extraction efficiency and better
effects can be generally obtained using deep learning
[36, 37]. Different types of time-series data have been
successfully processed using deep learning, including
the medical data, financial data, condition monitoring
data, and so on. Miao [38] proposed a deep learning
framework for continuous blood pressure measurement
using one-channel ECG signal. Promising effects have
been obtained for processing the pressure data. An end-
to-end intelligent morphological classification method
for intracranial pressure pulse waveforms was proposed
in the studies [39], where the deep learning method was
applied for automatic feature extraction and pattern
learning.

However, the typical deep neural network model suffers
from many factors. For instance, the training efficiency is
generally weak with the deep architecture [10, 40–45].
Traditional model establishment approach basically loses
feature information in the feed-forward manner with a
single-scale feature extraction scheme. -e limitations
hinder the development of the deep neural network
methods.

In this study, a novel deep multi-scale residual con-
nected neural network model is proposed to address the
athlete balance control ability evaluation problem, as well
as the remaining problems of deep neural networks. -e
main novelties and contributions of this study are listed as
follows:

(i) A new multi-scale feature extraction scheme is
proposed, which consists of automatic feature
learning in different scales.-e integration of multi-
scale features further enhances the information
fusion performance and leads to better results.

(ii) A deep residual connected module is proposed,
which introduces short-cut connection between
different convolutional layers in the deep neural
network model. In this way, the training efficiency
can be largely enhanced.

(iii) -e athlete balance control ability evaluation
problem is investigated, and an intelligent method is
proposed to achieve automatic feature extraction
and evaluation. -is has been seldomly studied in
the current literature, and this study provides new
insight in this task.

(iv) Experiments on the real athlete under-feet move-
ment pressure measurement data are used for
validations of the proposed method. -e results
show that the proposed method can achieve high
evaluation accuracy, and promising for applications
in the real scenarios.

-is study starts with the description of the preliminaries
in Section 2. -e proposed deep multi-scale residual con-
nected method is presented in Section 3. Experiments are
carried out for validations of the proposed method, and the
results are shown in Section 4. We close the study with
conclusions in Section 5.

2. Preliminaries

In this section, the preliminaries that are used in this study
are presented, including the convolutional neural network,
pooling, and softmax function. -e concerned problem in
this study can be formulated as learning a mapping function,
which projects the raw collected athlete time-series data to
the corresponding balance control ability level. -e rela-
tionship is complex, and the traditional methods cannot well
address this problem.-erefore, we propose a deep learning-
based approach for modeling the highly nonlinear
relationship.

2.1. Convolutional Neural Network. Convolutional neural
networks (CNNs) have been one of the most popular neural
network structures in the current literature.-e effectiveness
of CNNs has been widely validated in many application
scenarios, such as the image classification tasks, speech
recognition problems, and video processing tasks [46]. -e
variable and complicated signals can be automatically
processed using CNNs, and high-level features can be ef-
fectively extracted. In the recent years, many researches have
been carried out using CNNs and achieved significant
successes [43, 47].

-e most representative features of CNNs are the local
receptive fields and shared parameters in signal processing.
-e data shift of the input data can be efficiently filtered out
during feature extraction, and the spatial sub-sampling
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algorithm can well extract the most remarkable features
from the collected data. In this study, CNNs are used as the
main framework for the data-driven intelligent feature ex-
traction of the signal.

To be specific, the convolutional layers are placed to
convolve different filters with respect to the raw data, and
high-level features can be obtained accordingly. In most
cases, the pooling operations are used after the convolutional
operations, which can further extract the most significant
features for the following processing. Meanwhile, the feature
dimension can be also well reduced, which benefits the
processing costs.

In this study, the data are a sequence of the time-series
collections. -erefore, the 1-dimensional (1D) CNN is
mostly adopted for the data processing, and that will be
presented in the following. Let x � [x1, x2, . . . , xN] denote
the input data, where N represents the dimension of the
input data sample. -e convolutional computation can be
defined using the filter kernel w, w ∈ RFL , where FL rep-
resents the size of the filter kernel, defining the dimension of
the local receptive field. -e concatenation vector xi: i+FL−1
can be defined as

xi: i+FL−1 � xi ⊕ xi+1 ⊕ · · · ⊕xi+FL−1, (1)

where the item xi: i+FL−1 is defined as the window with FL

sequential data points starting from the i-th data point. -e
operation ⊕ is for concatenating the concerned data into a
larger information entity. At last, the convolution compu-
tation can be expressed as

ki � η wTxi: i+FL−1 + m . (2)

In this equation, m and η denote the bias vector and the
neural network activation function, respectively. -e feature
map output ki is known as the obtained features with respect
to the filter kernel. -rough applying the filter kernel from
the first data point to the end on the input data sample, the
learned feature representation can be calculated as

kj � k
1
j , k

2
j , . . . , k

N−FL+1
j . (3)

-e expressions above represent the learned features. In
the actual applications of the CNNs, a number of con-
volutional kernels can be used in one layer to obtain richer
information from the raw data.

2.2. Pooling. In the typical neural networks, after the
convolutional layer, a pooling layer is usually used for
further feature extraction with respect to the learned fea-
ture maps. -ere are mainly two reasons for the utilization
of pooling operations. First, the most significant features
can be usually extracted by using the simple pooling
functions, which provides an easy way for efficient learning.
Second, the dimension of the feature maps can be largely
reduced, which can help increase the processing efficiency.
In this study, the max-pooling function is used, which has
been popularly adopted in the literature for the related
classification problems. Let p denote the size of the pooling
opeartion. With respect to the extracted feature maps from

the convolutional layers, the pooled features can be
expressed as

qj � q
1
j , q

2
j , . . . , q

s
j ,

q
z
j � max k

(z−1)p+1
j , k

(z−1)p+2
j , . . . , k

zp
j ,

(4)

where qj represents the obtained features from the pooling
operation on the j-th feature map that has the size of s.

2.3. Softmax Function. Softmax function is a popular
function in the data-driven neural network-based classifi-
cation tasks. It is usually adopted at the end layer of the deep
neural network. -e values of the neurons can be trans-
formed to the predicting probabilities by using the softmax
function [25]. Specifically, after multiple combinations of
convolutional and pooling layers in the deep neural network,
the final extracted features are the input of the softmax
function. Let x(i) denote the training samples, and r(i) denote
the corresponding class labels of the training samples.
i � 1, 2, . . . , Ntr, where Ntr represents the training data
sample number. We also have x(i) ∈ RN×1 and
r(i) ∈ 1, 2, . . . , B{ }, where B represents the total number of
concerned classes in the problem. With respect to the input
data sample x(i), the softmax function can well predict the
class probability p(r(i) � j|x(i)), j � 1, 2, . . . , B for different
class labels. -e calculated probabilities of the data samples
for each class can be computed based on the hypothesis
function
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(5)

where λ � [λ1, λ2, . . . , λB]T represents the function coeffi-
cients. It can be noted that the softmax function classifier
guarantees that the output values are all positive and the sum
of them is one. -erefore, the softmax function is able to
transform the outputs of the deep neural network to be the
predicted probabilities for different concerned classes.

3. Proposed Deep Multi-Scale Residual
Connected Model

In this study, a novel deep learning-based multi-scale re-
sidual connected model is proposed for time-series data
processing and athlete performance evaluation. In this
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section, the proposed method is illustrated in detail, which
consists of residual connection, multi-scale feature extrac-
tion, and end-to-end relationship model.

3.1. Residual Connection. In the traditional deep neural
network, the back-propagation optimization method is
usually used for model parameter updates. However, as the
model architecture is typically deep with multiple layers, the
optimization efficiency is not satisfactory in most cases due
to the gradient vanishing problem, which makes the deep
neural network difficult to achieve the optimal performance.
-erefore in this study, a residual connected neural network
scheme is proposed, which is illustrated in Figure 1. -e
residual connected module generally consists of three main
characteristics.

(i) A short-cut connection is used, which makes the
information of the data can propagate through
different layers, and directly into the subsequent
layers in the network.

(ii) With the residual connected module, deep neural
network architecture can be adopted, since the
gradient vanishing problem can be largely solved.

(iii) -e residual connected module is a relatively in-
dependent module with respect to the deep neural
network structure, which can be readily added and
removed from the existing architecture. Limited
additional costs will be introduced for using the
residual connected module.

Specifically, the residual connected module can be de-
fined as

c � R x, vi (  + x, (6)

where x and c denote the input data and output data for the
layer, respectively. -e function R represents the residual
connected operation. For example, R � v2η(vT

1 x) can be
used for a simple structure with the weights vi. -e practical
implementation of the residual connected operation is re-
alized by the short-cut and element-wise sum. -e non-

linear activation function can be used either before the sum
or after the sum.

3.2. Multi-Scale Feature Extraction. In this study, a multi-
scale feature extraction scheme is proposed to better learn
the new features from the raw collected data. Specifically, the
filter size in the convolutional operation plays an important
role in the automatic feature learning process. Large filter
size indicates that the learned features are more general and
global with respect to the input data. Correspondingly,
smaller filter size means the model pays more attention on
the local features. In the current literature, there is no general
consensus of the optimal selection of the filter size.
-erefore, in this study, we propose to use multiple filter size
for the feature extraction, in order to both take advantage of
the global and local features from the input data.

In the deep neural network structure, three data and
feature streaming approaches are proposed as shown in
Figure 2. In each approach, a certain size of the convolutional
filter is utilized.-e common range of the filter sizes is covered
in this study, and they are set as 3, 10, and 20, respectively.

In this way, a single scale of the high-level features is
obtained in each approach. After data processing with
multiple residual connected blocks, the learned features are
concatenated, and further connected with a fully connected
layer for information aggregation. -erefore, the final fea-
tures are in multiple scales and hold richer information from
the raw data.

3.3. Deep Neural Network Structure. In this study, a deep
convolutional neural network structure is used, with the
residual modules and the multi-scale feature extraction
method. In the proposed framework, the raw measured data
are directly used as the input of the deep neural network,
which means no prior expertise on the signal processing is
required, which largely facilitates the practical utilization of
the proposed method in the real scenarios.

Specifically, the neural network architecture is shown in
Figure 2. -e proposed model consists of multiple residual
connected blocks. Each residual connected block typically
has two convolutional layers with multiple filters of different
sizes. -e feature extraction scheme in three scales is gen-
erally considered. Correspondingly, three sizes of the con-
volutional operation are adopted in different feature
extraction modules.

After feature extraction of two residual blocks in each
module, the learned high-level features of different mod-
ules are concatenated for information fusion. Afterward,
one fully-connected layer with 128 neurons are used, as
well as the final fully-connected layer. Each neuron in the
last fully-connected layer represents the predicted confi-
dence value for each class. -e softmax function at the end
of the structure interprets the confidence values into the
probabilities.

In the practical implementations, zero-padding opera-
tion in the convolutional layers is adopted to keep the feature
map dimension unchanged.-e max-pooling is also utilized
in the deep model for accelerating the training process and
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Figure 1: -e proposed residual connected scheme in the deep
neural network framework.
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obtaining the significant features. -roughout the deep
neural network, the leaky rectified linear unit (Leaky ReLU)
activation function is adopted after the layers, which are
generally stable with respect to the gradient vanishing or
gradient diffusion problems and can lead to better perfor-
mance. -e popular cross-entropy loss function is utilized
for optimization of the neural network model [48]. -e
back-propagation algorithm is applied for the specific
changes of the model coefficients in each optimization it-
eration. -e widely used Adam optimization method is
employed for model training.

3.4. General Implementation. Figure 3 shows the flowchart
of the proposed deep multi-scale residual connected model.
First, the measured time series raw data are prepared into
multiple samples. Specifically, in this study, the movement
pressure data in two directions are used, i.e., x and y di-
rections. -erefore, the raw data have two dimensions. -e
sample dimension in one direction can be defined as Nin,
and we can prepare the samples accordingly with dimension
[2, Nin]. -e raw data can be directly used as the model
inputs, and no prior knowledge on signal processing is
needed, which shows that the applicability of the proposed
method in the real scenarios is strong.

Next, with respect to the specific dataset information, the
proposed deep multi-scale residual connected neural net-
work architecture is established, and the detailed configu-
rations are determined, including the number of neurons in
the hidden layers, number of convolutional filters, and so on.
In order to start the model training process, the data samples
are fed into the network. -rough multiple layers of feature
extraction, high-level representations are obtained, which
are used for the final classification. Back-propagation al-
gorithm is used for the updates of the model parameters.

Afterward, when the model training process is finished,
the testing samples are fed into the deep neural network to
test the model performance with respect to the unseen data.

4. Experimental Study

4.1.Dataset andTaskDescription. In this study, a real athlete
balance control ability evaluation dataset is used for the

validation of the proposed method. Specifically, multiple
freestyle skiing aerials athletes of different balance control
levels are asked to stand still on a balance meter under feet.
-e area of the balance meter is 65 cm× 40 cm, and the
balance meter can collect the movement pressure data in the
anteroposterior and mediolateral directions.

-ree levels in balance control of freestyle skiing aerials
athletes are considered, which are denoted as high-level (H),
medium-level (M), and normal people (N), respectively.
Each level includes two athletes, who are represented by
numbers of #1 and #2, respectively. -e athletes are required

Athlete Movement
pressure

measurement
data

Input
sample 5 Conv. 205 Conv. 20 5 Conv. 20 5 Conv. 20 5 Conv. 20

5 Conv. 10

FC
128

FC
class no.

5 Conv. 105 Conv. 105 Conv. 105 Conv. 10

5 Conv. 3 5 Conv. 3 5 Conv. 3 5 Conv. 3 5 Conv. 3

dropout

so�max

ConcatenationMax
pooling

Max
pooling

Max
pooling

Figure 2: Architecture of the proposed deep multi-scale residual connected neural network model.

Data measurement
device

Data collection

Sample preparation

Training data Testing data

Model initialization

Model training

Model testing

Maximum epoch?

Yes

No

Figure 3: -e flowchart of the proposed method in athlete balance
control ability evaluation.

Computational Intelligence and Neuroscience 5



to keep balance at their best when they are standing on the
balance meter. -eir upper bodies are supposed to be sta-
tionary, and the noise of the environment is kept at the
minimum level. -e athletes use two of their feet for standing
with their eyes closed to focus on the data measurement. -e
movement pressure data sampling frequency is 100Hz. Ta-
ble 1 presents the information of the dataset used in this study,
and Figure 4 shows the scenario of the experiment.

In this study, different athlete balance control ability
prediction tasks are considered in order to fully examine the
performance of the proposed method. Specifically, with
respect to the dataset, four tasks are implemented, where
different training and testing data are used. -e tasks are
demonstrated in Table 2. Different athletes in each levels are
used for validation, which cover a wide range of the ex-
perimental settings and provide fair evaluations of the
performance of the proposed method.

4.2. Model Establishment. In this study, mini-batch data
samples are used to implement the stochastic gradient descent
(SGD) optimization method for updating the deep neural
network parameters. In each epoch of the training process, the
training data samples are divided into different mini-batches
in a random manner. Eight samples are included in each
mini-batch with the corresponding label information.

Afterward, the deep neural network parameters are
updated with the popular cross-entropy loss function with
respect to each mini-batch. It is worth noting that the di-
mension of the data samples plays an important role in the
model performance. Larger dimension indicates more

information is included in each sample. However, higher
computational burden usually exists. -erefore, this is
generally a trade-off in the practical applications.

-e deep neural network model architecture is shown in
Figure 2. -e model performance can be affected by some key
factors, such as the convolutional filter size and number.-ose
will be further investigated in the following sections in this
study. Specifically, for the experiments, the parameters used in
the proposed method are listed in Table 3, which are selected
based on the performances on the validation data in this case.

4.3. Compared Approaches. -e proposed deep multi-scale
residual connected neural network model offers a new
perspective for big data-driven intelligent athlete balance
control performance evaluation. In this study, similar
methods in the existing literature are also implemented for
comparisons, in order to examine the effectiveness and
superiority of the proposed methodology. Specifically, the
following approaches are considered, which cover a wide
range of popular techniques for data-driven studies.

4.3.1. NN. -e basic neural network (NN) model is firstly
considered, which follows a typical pattern for neuron con-
nections [23]. Specifically, a multi-layer perceptron structure
is used, which includes one hidden layer with 1000 neurons.
Similar configurations are used as the proposed method, such
as the Leaky ReLU activation function and dropout operation.

4.3.2. DNN. -e deep neural network (DNN) is an exten-
sion of the basic neural network structure [49].-ree hidden
layers are considered in the DNN method in this study,
which consists of 1000, 1000, and 500 neurons, respectively.
Similarly, the Leaky ReLU activation function is also
employed, as well as the dropout technique.

Table 1: Information of the athlete movement pressure measurement dataset used in this study.
Athlete level No. of athletes Code names Sampling frequency
H (High-level athlete) 2 H#1, H#2 100Hz
M (Medium-level athlete) 2 M#1, M#2 100Hz
N (Normal people) 2 N#1, N#2 100Hz

Athlete

Athlete

Balance meter

Figure 4: -e scenarios of the freestyle skiing aerials athlete
movement pressure data collection experiments.

Table 2: Information of different athlete balance control ability
evaluation tasks used in this study.
Task name Concerned No. of training No. of testing

Athletes Samples Samples
T1 H#1, M#1, N#1 1200 600
T2 H#2, M#2, N#2 1200 600
T3 H#1, M#2, N#1 1200 600
T4 H#2, M#1, N#2 1200 600

Table 3: Parameters of the proposed method used in this study.
Parameter Value Parameter Value
Batch size 8 Sample dimension 200 ∗ 2
Epoch number 100 Convolutional filter size 3, 10, 20
Learning rate 1∗ 10− 4
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4.3.3. DSCNN. -e deep single-scale convolutional neural
network (DSCNN) method is implemented [50], which
share the similar architecture with the proposed method,
except for the multi-scale feature extraction scheme. Spe-
cifically, only one data processing approach is considered in
the network. Correspondingly, one convolutional filter size
is employed for the feature extraction. No feature concat-
enation is used at the fully-connected layers. -e other
settings are similar with the proposed method.

4.3.4. WORes. -e WORes method represents the deep
multi-scale convolutional neural network architecture,
which does not have the residual connected schemes [40].
Specifically, the short cut connections between the con-
volutional layers are removed from the proposed method.
-is approach is a comparison to show the benefits of the
proposed residual connected scheme.

With respect to all the compared methods in this study,
the cross-entropy loss function is used for classification of
the athlete balance control performance. -e Adam opti-
mization method is adopted for the model updates with the
mini-batch data sample selections. -e same learning rate is
used as the proposed method.

5. Experimental Results and
Performance Analysis

In this section, the experimental results of the proposed
method on different athlete balance control ability evalua-
tion tasks are presented, as well as the results of different
compared methods. Ablation studies are also extensively

carried out to evaluate the influence of different key pa-
rameters of the proposed method on the model perfor-
mance. In order to provide fair results and comparisons,
each experiment is implemented for three times, and average
results are presented.

Figure 5 shows the general experimental results using
different methods in different tasks. It can be observed that
in general, the neural network-based methods are able to
achieve good evaluation results, and the testing accuracies
are high. -e testing accuracies of the basic NN method are
not competitive in different tasks, and less than 80% ac-
curacies are obtained. -is indicates that the shallow net-
work structure cannot well capture the underlying pattern of
the massive data. -e DNN method achieves significantly
higher testing accuracies in different tasks, and the accu-
racies are basically higher than 90%. -e results show that
the deep architecture can well learn the highly nonlinear
relationship between the movement pressure measurement
data and the athlete balance control ability. -e DSCNN and
WORes methods are quite competitive in this problem, and
the testing accuracies in different cases are mostly higher
than 95%. However, the optimal performance is generally
achieved by the proposed deep multi-scale residual con-
nected model. Close to 100% testing accuracies in different
tasks can be obtained. Noticeable improvements can be
observed compared with the DSCNN and WORes methods.
-is implies that the proposed multi-scale feature learning
scheme and residual connected structure can well enhance
the learning performance of the deep neural network ar-
chitecture, and they are well suited for the athlete balance
control ability evaluation problem by processing the time-
series pressure data.
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Figure 5: -e experimental results of different compared methods in different athlete balance control ability evaluation tasks.
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5.1. Effect of Convolutional Filter Number. -e number of
convolutional filters in the layers throughout the deep neural
network plays an important role in affecting the model
performance. Fewer convolutional filters are generally less
effective in learning the complicated patterns from the data,
and more convolutional filters will basically lead to better
performance with enhanced learning capacity. However, the
overfitting issue may occur since larger model architecture
and more parameters are included. In this section, this issue
is investigated, and the effects of the convolutional filter
number on the model performance are presented in Fig-
ure 6. -e tasks T1 and T2 are used for investigation.

It can be observed that in general, the influence of
the convolutional filter number on the testing accuracies is
not quite significant when the number is not very small.
When only one convolutional filter is used, remarkably low
testing accuracies are obtained, which are lower than 90%.
However, when more convolutional filters are applied, the
testing accuracies are generally stable and higher than 95%.
When 20 convolutional filters are employed, slight perfor-
mance drops are observed. Nonetheless, this does not have
noticeable influence on the general model performance.

-erefore, when the number is not too small with a rea-
sonable value, promising results can be basically achieved.

5.2.Effectof SampleNumber. In this section, the effects of the
sample number on the model performance are investigated.
-e number of training samples is also an important pa-
rameter in the data-driven methods. Generally, more
training samples lead to better performances. However,
since the data are usually expensive in different areas, it is
always preferred to achieve good performance with mini-
mum data. -e experimental results are presented in Fig-
ure 7. -e tasks T1 and T3 are focused on in this section.

It is noted that the experimental results are basically in
accordance with our understanding in the literature. When
300 training samples are used, lower testing accuracies are
obtained in different tasks, which are lower than 87%. When
more training samples are employed, the results significantly
become better and higher than 92% testing accuracies are
basically obtained. When the sample number is larger than
600, small fluctuations of the testing performance are ob-
served. However, the performances are generally stable with
respect to different sample numbers. It is also noted that 600
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Figure 6: -e influence of the number of convolutional filters on
the model performance in the tasks T1 and T2.
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Figure 7: -e influence of the sample number on the model
performance in the tasks T1 and T3.
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training samples are mostly sufficient for building the deep
neural network model for this problem, which can be
considered as theminimumnumber that themodel requires.

5.3. Visualization of Learned Representation. In this section,
the learned features by the deep neural network models are
visualized to show the effectiveness of the methods. Spe-
cifically, the high-level representations of the samples at the
last fully-connected layer are considered. -e t-SNE method
is adopted for dimension reduction of the learned high-
dimensional features. Two new dimension can be obtained
and plotted for visualizations. -e results in the tasks T1 and
T4 are shown in Figures 8 and 9 respectively.

It can be observed that using the proposed deep multi-
scale residual connected neural network method, different
classes are more separated with respect to the learned
features. Limited overlappings between different classes are
found, which validates that the proposed method can
achieve high testing accuracies for the classification tasks.
-e DNN method is less competitive in the cases. No-
ticeable overlappings between different classes are observed
in the learned feature sub-space, and some data samples are
also located outside the clusters of their own classes. -is
shows that the DNN method is less effective than the
proposed method in the tasks. It should be pointed out that
the NN method is far less effective in the case studies, and

the visualization results do not carry sufficient information
for demonstrating the effects. -e results in this section
validate the effectiveness of the proposed method in an
intuitive way, which shows that the proposed method is
quite promising for automatic athlete balance control
ability evaluation.

6. Conclusion

In this study, a deep multi-scale residual connected neural
network model for intelligent athlete balance control ability
evaluation. -e time-series pressure measurement data
under-feet are processed and analyzed. -e raw data are
directly used as the model input for automatic evaluations.
No prior knowledge on signal processing is needed, which
makes it easy for real applications. A multi-scale feature
extraction scheme is proposed, which utilize the learned
features from different types of convolutional filters. -e
information fusion of the learned features further enhances
the model training ability. -e proposed residual connected
blocks can effectively increase the model training efficiency
while keeping the training quality. -is is well suited for the
deep neural network architecture and can be readily applied
in different network structures. Experiments on the real
athlete under-feet pressure measurement data are carried
out for validations. -e results show that the proposed
method is promising for intelligent evaluations of the athlete

Proposed method

DNN method

Training data in different levels

Testing data in different levels

Figure 8: -e visualization results of the learned features by
different methods in task T1.

Proposed method

DNN method

Training data in different levels

Testing data in different levels

Figure 9: -e visualization results of the learned features by
different methods in task T4.
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balance control abilities, and offers a new perspective in
mining athlete measurement data.

-e advantage of the proposedmethod lies in the end-to-
end modeling structure, which makes the balance control
ability evaluation task more straight-forward to implement.
On the other hand, despite the promising results, it should
be pointed out that main drawback of the proposed method
lies in the structure of the neural network model, since three
network approaches are considered in the model, which is a
little complex for the data-driven model. Further research
works will be carried out on the optimization of the deep
neural network architecture while retaining the model
performance.
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