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a b s t r a c t

Hidden Markov Models (HMMs) are amongst the most successful methods for predicting protein features
in biological sequence analysis. However, there are biological problems where the Markovian assumption
is not sufficient since the sequence context can provide useful information for prediction purposes.
Several extensions of HMMs have appeared in the literature in order to overcome their limitations. We
apply here a hybrid method that combines HMMs and Neural Networks (NNs), termed Hidden Neural
Networks (HNNs), for biological sequence analysis in a straightforward manner. In this framework, the
traditional HMM probability parameters are replaced by NN outputs. As a case study, we focus on the
topology prediction of for alpha-helical and beta-barrel membrane proteins. The HNNs show perfor-
mance gains compared to standard HMMs and the respective predictors outperform the top-scoring
methods in the field. The implementation of HNNs can be found in the package JUCHMME, downloadable
from http://www.compgen.org/tools/juchmme, https://github.com/pbagos/juchmme. The updated
PRED-TMBB2 and HMM-TM prediction servers can be accessed at www.compgen.org.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Hidden Markov models (HMMs) are statistical models, which
have been successfully applied to various problems in biological
sequence analysis over the years [1]. A sequence being modeled
by a standard HMM assumes a Markov process with unobserved
hidden states which, in its basic formulation, operates in an unsu-
pervised manner. However, many applications in molecular biol-
ogy, which include protein structure prediction and gene-finding,
need a supervised learning procedure such as Class Hidden Markov
Models (CHMM) [2]. In this case, a sequence of labels (y) accompa-
nies each observation sequence (x), corresponding to the different
attributes that we want to predict.
In general, the 1st order Markovian assumption with regard to
transition probabilities may not be sufficient in all cases, since
the sequence surrounding a residue (the context) can potentially
contain information that can augment the prediction performance.
To address this issue, many extensions have been proposed. These
include the higher-order HMMs (HOHMM) where a higher order
(tth) Markov chain is used for the state transition probability [3],
the partial HMMs (PHMM), where both transition and emission
probabilities are conditioned on previous observations [4] or sim-
ilar models which consider the n previous symbols of observations,
allowing thus a context dependence among residues [5,6]. In our
previous work, we demonstrated that, by simply altering the emis-
sion probabilities, we can significantly improve the performance of
existing HMM-based predictors [7]. A more general model that can
incorporate all the aforementioned models as special cases is the
Hidden Neural Network (HNN). HNN is a hybrid model combining
the CHMM framework with Neural Networks (NNs) for building a
more flexible classifier. The core idea in the HNN is to replace the
probability matrices of the CHMM by NN outputs that take as input
the observation sequence [8].
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In this work, we apply the HNN framework to the task of trans-
membrane protein topology prediction and compare against the
available predictors. The HNN implementation is freely available
through the JUCHMME library [9].
2. Methods

2.1. Hidden Markov Models

A Hidden Markov Model (HMM) is a model for representing
probability distributions over sequences of observations consisting
of transitions that linked a set of states forming a Markov chain
[10,11]. More formally, suppose an aminoacid sequence x of a pro-
tein length L denoted by x = x1, x2, . . .,xL, where each observation
symbol is produced by a given state (k) according to the emission
probability ek(xi). Based on HMM parameters, we can calculate the
total probability of the HMMmodel for a sequence x using the for-
ward (or the backward) algorithm:

P xjhð Þ ¼
X
p

P x;pjhð Þ ¼
X
p

aBp1

YL
i¼1

epiðxiÞapipiþ1
ð1Þ

Typically, the training phase of a HMM is performed by the
Baum-Welch algorithm [10–12], which is a special case of the
Expectation-Maximization (EM) algorithm for incomplete data
[13]. The algorithm estimates the transitions and emissions proba-
bilities by Maximum Likelihood (ML) from the observed transitions
and emissions using Forward and Backward algorithms. Alterna-
tive, Baldi and Chauvin proposed a gradient-descent method cap-
able of the similar task [14]. Maximization of the likelihood, in
such cases, corresponds to an unsupervised learning procedure.

A useful approach to modeling biological protein sequences for
classifying smaller substructures, in complex biological sequence
analysis problems, is to use labeled sequences for training. When
using this approach for training, one can incorporate a sequence
of labels y (y = y1, y2, . . .,yL) for each amino acid in position i of
the sequence x. In this case, we also need the probability dk(yi = c)
of a state k having a label c. In most sequence analysis problems,
we can use a simple delta-function, since a particular state is not
expected to match more than one label. Furthermore, Krogh in
his seminal paper proposed modifications to the forward and back-
ward algorithms in order to allow training using labeled data [2].
Thus, we can now maximize the joint probability of the sequences
and the labels given the model with the summation performed
over the paths Py that agree with the labels y:

P x; yjhð Þ ¼
X
p

P x; y;pjhð Þ ¼
X
p2Py

P x;pjhð Þ ð2Þ

Since labels are used, the particular approach corresponds to su-
pervised learning. Based on labeled sequences, we can also perform
Conditional Maximum Likelihood (CML) estimation where the
model is trained in a discriminative manner. In this approach,
the probability of the labels given the sequences is maximized, P
(y|x,h) = P(x,y|h)/P(x|h) [15]. The EM algorithm cannot be used in
this setting and a gradient-descent method is more appropriate
[16]. To compute the gradients, we use the negative log-
likelihood, where we define:

‘ ¼ �log P y x; hjð Þ ¼ ‘c � ‘f ð3Þ

‘c ¼ �log P x; y hjð Þ ð4Þ

‘f ¼ �log P x hjð Þ ð5Þ
According to this approach, the above expectations c and f cor-

respond to the two forward–backward passes for each training
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sequence, once in the free-running phase (f) and once in the
clamped phase (c).
2.2. Hidden Neural Networks

Over the past decades, Neural Networks have proven extremely
useful for problems within the field of biological sequence analysis.
They have been applied to many important problems, ranging from
protein structure prediction to sequence classification and gene
identification [17]. As biological sequence analysis is essentially a
pattern recognition task, several researchers started combining
elements of HMMs and neural networks expecting more powerful
and flexible models for classification. A general framework of hid-
den neural networks was introduced by Krogh and Riis [8] and was
used initially for speech recognition. In the proposed hybrid model,
some CHMM probability parameters are replaced by neural net-
works outputs that take the observations as input. In this approach,
the model is trained by gradient-descent in a procedure where the
neural networks are updated by backpropagation and the errors
are calculated by a modified forward–backward algorithm. How-
ever, the applications of HNNs in computational biology were lim-
ited in the prediction of the disulfide bonding state of cysteines
[18] and secondary structure prediction [19]. It is important to
note that, in the original HNN formulation, the HMM and NN com-
ponents were trained in combination, whereas, in the above-
mentioned applications, the NN and HMM have been trained sep-
arately. In this respect, the current implementation follows close
the original method of Krogh and Riis.
2.2.1. HNN architecture
The HNN used here is an instance of the original HNN method

proposed by Krogh and Riis [8]. The network representation of
this hybrid system is shown in Fig. 1. The basic idea in the
HNN is that the standard probability parameters of a CHMM are
replaced by the outputs of Neural Networks assigned to each
state. For each xi, the method uses a window of context around
xi corresponding to the network input si. Defining the window
size on the left and on the right, the window can be symmetrical
or asymmetrical. We will denote si the context of observation xi.
The emission network in state k is parameterized by the weight
vector wk where accepts the observation context vector si (de-
fined above) as input and has only one output. In cases where
the context si extends beyond the boundaries of the observation
sequence, zero padding can be used to ensure a well-defined
input to the networks.

In most of NNs applications in molecular biology, the architec-
tures used are layered feed-forward architectures. In this work,
the neural network in the HNN is a feed-forward multilayer per-
ceptron network (MLP) with one hidden layer. The input layer
uses the sigmoid function with a window of K residues. The input
representations chosen to encode the sequence data could use the
sparse encoding or some other alternative coding scheme.
Another interesting encoding scheme is the PSSM that can be
generated using any alignment program like PSI-BLAST [20] or
HMMER [21]. In total, the input layer for a K-size window has
20 � K units, assuming the use of sparce encoding. For the hidden
layer, we use a variable number of units. The output layer has one
unit corresponding to the output probability. We can normalize
the output by a standard (asymmetrical) sigmoid activation func-
tion. Furthermore, we have a large degree of freedom in the selec-
tion of hidden layer output functions where a natural choice, it
appears to be a standard asymmetrical sigmoid function. Another
possible choice is a sigmoid modified function or a hyperbolic
tangent function, where h is the input to the output unit in
question.



Fig. 1. Network representations of a Hidden Neural Network (HΝΝ). In this model, the standard probability parameters are replaced by the outputs of neural networks (a
symmetrical window size 5 of context around xi) assigned to each state.
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2.2.2. Weight initialization
Contrary to the emission distributions in the CHMM, it is not

possible to initialize the emission network weights in the HNN
by the efficient Baum-Welch re-estimation algorithm. Instead of
just using a set of emission networks initialized by random
weights, another initialization method was tested based on inter-
preting the emission network outputs. A reasonable initialization
is therefore performed if we train each emission network sepa-
rately to classify the sequences into each of the different classes.
We adjust the weights of the NN by the RPROP algorithm [22] after
the training phase. RPROP is a first order optimization algorithm
for supervised learning, acts independently on each weight and
adjusts it whenever there is a sign change of the partial derivative
of the total error function. Basically, as long as the NN is not con-
verging, the weights change values in a higher rate with ed < 1 Eq.
(6a, 7a), while the weights change slowly with ea > 1 when the sign
change of the partial derivative of the total error function is small
Eq. (6b, 7b). Thus, each weight adjusts the opposite way of the par-
tial derivative of the error function that corresponds to this weight
and aims at the reduction of the total error.

For every label of the CHMMwe create and train a NN. The error
function used for the training of the NN is Root Mean Square Error
(RMSE) or Cross Entropy (CE), with CE achieving faster and better
training in classification problems [23]. Then, the weights of these
networks are used to initialize the HNN, which is trained with CML
and Gradient Descent.

Dw ¼ w t � 1ð Þed; @E t�1ð Þ
@w

@E tð Þ
@w < 0

w t � 1ð Þea; @E t�1ð Þ
@w

@E tð Þ
@w > 0

(
ðaÞðbÞ ð6Þ

w tð Þ ¼ w t � 1ð Þ þ Dw;
@E tð Þ
@w < 0

w t � 1ð Þ � Dw;
@E tð Þ
@w > 0

ðaÞðbÞ
(

ð7Þ
2.2.3. Training and decoding the HNN
One of the main ideas in the HNN approach is to train the model

in a supervised manner, by a joint optimization of parameters. Just
like the CHMM, the HNN is not possible to be trained using the EM
algorithm and thus, a gradient-descent method is proposed.

Similar to Eqs. (1) and (2), for the CHMM with regards to a gen-
eral weight wk in the emission network assigned to state k, we
therefore define:

P xjhð Þ ¼
X
p

P x;pjhð Þ ¼
X
p

aBp1

YL
i¼1

epiðsi;wpiÞapipiþ1
ð8Þ
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P x; yjhð Þ ¼
X
p2Py

P x;pjhð Þ ¼
X
p2Py

aBp1

YL
i¼1

epiðsi;wpiÞapipiþ1
ð9Þ

More formally, the CHMM emission probability ek(xi) of obser-
vation xi in state k is replaced by the output of an emission network
ek(si;wk) specific to state k. This emission network is parameterized
by the weight vector wk where accepts the observation context
vector si as input and has only one output. The probability of the
labelling is then computed by Eq. (2). Both Eq. (4) and Eq. (5) can
be computed by a straightforward extension of the forward algo-
rithm [8].

By using the forward–backward algorithm [24] we can calculate
the derivative of logP(y|x,h) resulting in a backpropagation training
of the neural networks using the error signal. In this case, a for-
ward–backward pass is needed for each sequence x. The gradients
can be computed by using the standard backpropagation algorithm
on the NNs in the HNN, where the error for each input xi is

ek xið Þ ¼ ‘c � ‘f
si;wkð Þ ð10Þ

where si;wk is the weighted input to the output of the emission net-
work assigned to state k. The total probability can be calculated
using the forward, or backward, algorithm by replacing, those
parameters that are estimated by neural networks. Since we need
both the f and c counts, we have to run two forward–backward
passes for each training sequence, once in the free-running phase
(f) and once in the clamped phase (c). Furthermore, we have incor-
porated some standard techniques applied to the backpropagation
such as weight decay and momentum [25]. In this application we
used, instead of the standard gradient-descent, an algorithm pre-
sented initially for CHMMs that resembles closely the RPROP algo-
rithm [26]. This approach allows easier and faster convergence in all
cases.

Although any decoding algorithm can be used (i.e. Posterior-
Viterbi, Viterbi, etc.), Viterbi decoding is not expected to perform
well for discriminative methods, since the model is optimized to
maximize the probability of correct labeling [27] and the Optimal
Accuracy Posterior Decoder [28] seems to be the obvious choice.
2.2.4. General comments
Even though the HNN is a simple extension of the standard

CHMM, it is capable of building a more accurate predictor. Since
the Neural Networks in the HNN can directly use the observation
context as input they can exploit higher order correlations taking
into consideration neighboring observation vectors. Therefore, it
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is possible to assign a Neural Network to each state estimating a
score for how well the current observation matches the state given
the observation context. The advantages of combining a HMM and
a NN are that, while the NN dominates the modeling of complex
functions with many parameters, the HMM is advantageous due
to the precision of the first order algorithms it uses and the gram-
mar that imposes along the sequence. Thus, the HNN, as a whole,
incorporates the advantages of both techniques and manages to
model the data more accurately.

A significant issue to achieve the best accuracy in the case of
multi-layer networks is the choice of the optimal network size
and the optimal number of hidden units. The optimal parameters
are usually not known in advance and this is an area of active
research, as we can see from the results taking into consideration
various values of window size and network size. A potential prob-
lem in using different input contexts and different hidden units is
the computational complexity. For instance, the HNN using emis-
sion networks with 7 hidden units and a symmetric window size
7 contains 20,460 parameters for the network weights. If a model
has more hidden units and/or larger window size, then the net-
work becomes more computationally expensive. However, neural
networks, and multi-layer perceptrons in particular, are highly
parallelisable architectures and the HNN is therefore well suited
for implementation across parallelised computer architectures.

We note in passing that si can in principle be any sort of infor-
mation related to x. In biological sequence problems, for instance,
one could imagine that other information could include hydropho-
bicity, charge or other physicochemical properties. Similarly, there
is generally no assumption of independence between elements of
continuous observation vectors. The HNN method presented here
is implemented in the JUCHMME library – an open-source CHMM
library based on Java [9]. JUCHMME is, to our knowledge, the only
publicly available implementation of HNNs. A major advantage of
JUCHMME is the ease of use and parameterization providing user
full customization through a simple and well-document configura-
tion file, without requiring programming skills.

2.3. Datasets and evaluation criteria

We measured the performance of our new approach on the
tasks of topology prediction regarding alpha-helical membrane
proteins and beta-barrel outer membrane proteins. In both cases,
we also measured the ability of the predictor to discriminate from
other classes of proteins. To ensure a fair comparison, each predic-
tion method that we tested against was trained using both the
standard CHMM approach and the HNN approach described here.
For alpha-helical membrane proteins we used the HMM-TM pre-
dictor [29], which we re-trained on a dataset of 308 membrane
proteins with known structure and transmembrane topology that
were used during the development of TOPCONS2 [30]. We applied
a homology reduction threshold of 30% on these proteins that
resulted in 284 sequences in the set. For testing HMM-TM in the
task of discriminating between alpha-helical and non-alpha-
helical membrane proteins, we also used a negative dataset that
contains 3597 sequences (from the TOPCONS2 method). For
beta-barrels, we used the PRED-TMBB2 predictor [31] with and
without homologs (MSA), trained on a non-redundant dataset of
49 beta barrel proteins with known structure and transmembrane
topology (positive set) and a negative set which contains 1009
sequences (obtained from PRED-TMBB2). Since many of the pro-
teins in our training set were also present in the sets used to train
other tools, we decided to perform another benchmark using the
59 proteins used for training BetAware-Deep dataset [32]. Out of
the 59 proteins, 26 were already present in PRED-TMBB2’s training
set, whereas, for the remaining 33, we used the 2nd algorithm of
Hobohm et al. [33] to remove sequences having more than 30%
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sequence similarity in a BLAST [20] alignment in a length of more
than 80 residues in comparison with training sets of other tools.
This procedure resulted in 7 outer membrane proteins that consti-
tute our final blind test set.

We preserved the HMM architectures as per their original pub-
lications and used a strict 10-fold cross-validation procedure dur-
ing the evaluation. Training stops when the minimum of the
error on the held-back data is achieved during training. The emis-
sion networks are initialized separately by RPROP. This speeds up
training of the HNN considerably and the models are less prone
to get stuck in local minima. Thus, the performance on the cross-
validation set reaches a maximum within less than 50 epochs for
all tested models. Regarding transmembrane proteins, we evalu-
ated the performance based on (i) the number of correctly pre-
dicted residues in a two-state mode (Q2 metric), (ii) the segment
overlap (SOV), (iii) the number of correctly predicted topologies
and (iv) the number of proteins with correctly predicted number
of strands. Regarding the discrimination performance, we mea-
sured the specificity (i.e. how many non-TMBBs are correctly iden-
tified as such in a dataset with verified non-TMBBs) the sensitivity
(i.e. the proportion of TMBBs positively identified in the datasets of
known TMBBs) and the Matthews Correlation Coefficient (MCC), a
metric of overall efficiency of a prediction algorithm.
2.4. Multiple sequence alignments

Evolutionary information that originates from Multiple
Sequence Alignments (MSAs) have been widely used in bioinfor-
matics in order to obtain a gain in prediction accuracy. In the case
of PRED-TMBB2 (beta-barrels) the parameters presented in the
original paper are used [31] and in the case of HMM-TM (alpha-
helical membrane proteins) [29] the jackhmmer search [34] is per-
formed against the nr50 database with an e-value cutoff of 10�5.
We only included hits with an at least 75% coverage of the length
of the query sequence.
3. Results

The choice of the optimal network size, such as the optimal
number of hidden units and the window size, is key for multi-
layer networks. Based on the measures of accuracy described
above, the optimal parameters were identified with cross-
validation. Taking into consideration the number of correctly pre-
dicted topologies, the best neural network prediction for beta bar-
rel outer membrane proteins was obtained for neural networks
that have a window size of 7 and 11 hidden neurons. Regarding
alpha helical membrane proteins, beta-barrels, the optimal param-
eters were the window size 19 and 7 hidden neurons. These figures
correlate well with the minimum length of the respective trans-
membrane regions (Fig. 2). Although there is little difference in
accuracy for the different input contexts, the symmetric input con-
text of one (left and right) frame seems to be slightly better than
any of the other context sizes and orientations.

We present the benchmark results from the 10-fold cross-
validation procedure on the transmembrane protein topology pre-
diction in Fig. 3. It is evident that the HNN method can substan-
tially boost the classification accuracy. More specifically,
regarding beta-barrels, compared to the original PRED-TMBB2
method (2016), the increase in SOV is 8.7% and 12.7% using MSAs,
the increase in correctly predicted topologies reaches 26.6% and
36.8% using MSAs and the increase in correctly predicted residues
reaches 4.5% and 5.3% using MSAs. The benchmark results on the
comparison against the other predictors shows that PRED-TMBB2
using HNN with the incorporation of MSAs predicts the correct
topology for 40 out of 49 (81.6%) proteins (Table 1). Similar results



Fig. 2. SOV as a function of window size and number of hidden neurons. A. Beta-
barrel outer membrane proteins. B. Alpha-helical membrane proteins.
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were obtained in the blind test (Table 2). The HNN shows an
improvement over HMM and the new predictor is among the
top-rated ones (the reader should keep in mind that BetAware-
Deep used these proteins for training). Thus, the method outper-
forms the majority of the currently available methods used for
topology prediction of OMPs with the only possible exception the
predictions for the correct topology given by BetAware-Deep,
which reports a slightly higher value. We need to stress here that
BetAware-Deep, is based on deep neural network architecture,
and thus it is much slower regarding execution time. The per pro-
tein average execution time for the PRED-TMBB2 server was 48 s
while the BetAware-Deep server took 94 s in the prediction phase,
using the 49 sequences and it is not available for batch submission.
Moreover, the updated method of PRED-TMBB2, shows an
improved performance in discrimination where HMM slightly out-
performs HNN. Using six metrics (the length of the sequence, log-
odds score, log-probability, reliability score, the number of trans-
membrane regions, transmembrane/sequence length ratio), and
applying a logistic regression classifier, the method achieves a
98.02% sensitivity on the positive set that includes 1009 OMPs
derived from the OMPdb database [35,36], and 99.06% specificity
on the negative set of the 7571 non-OMPs originating from the
set of Wimley. The overall MCC value is 0.96. These results com-
pare favorably to the currently available predictors (Table 3),
which include single-sequence- and the multiple-sequence-based
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methods, with the sole exception of HHomp, which, like
BetAware-Deep, is very slow.

Regarding alpha-helical TM proteins, we observe an increase in
SOV of 1% and 3.2% using MSAs, an increase in the correctly pre-
dicted topologies of 2.4% and 10.2% using MSAs and an increase
in the fraction of correctly predicted residues of 1.8% and 3.3%
using MSAs. The benchmark results on the comparison against
the other predictors shows that HMM-TM using HNN with the
incorporation of MSAs predicts the correct topology for 245 out
of 284 (86.3%) proteins (Table 4) in a 10-fold cross-validation
manner.

Regarding discrimination, using seven metrics (the sequence
length, log-odds scores, max probability, decoder score, reliability
score, number of transmembrane regions, transmembrane/se-
quence length ratio), and applying a logistic regression classifier,
we reach a 97.54% sensitivity and 98.70% specificity (overall MCC
value of 0.92) (Table 5).
4. Discussion

Using standard HMMs, it is difficult to learn and represent long-
range dependencies. The integration of a higher-order Markov
chain can potentially improve the model’s performance but may
come at the cost of increased computational complexity and higher
number of freely estimated parameters. Therefore, it has been sug-
gested by several authors that hybrids of HMMs and NNs may have
better performance in biological sequence analysis problems. The
motivation of using NNs lies in the fact that they can use as input
the observation context and thereby exploit higher-order correla-
tions between neighboring observations that can be used to
improve the prediction performance. Thus, long-range dependen-
cies can in theory better be learned and represented by HNNs than
by standard HMMs. In this paper, we used the HNN approach
based on Krogh’s model [8] in which all parameters are trained dis-
criminatively at the same time by maximizing the probability of
correct classification.

The Neural Network part of our HNN was a simple multilayer
perceptron with one hidden layer. In future extensions, the use
of more sophisticated architectures could be pursuit, such as an
extension to Deep Neural Networks (DNNs). Recurrent neural net-
works (RNNs) and Convolutional deep neural networks (CNNs)
could also be investigated, even though such approaches would
require additional modifications to the HMM algorithms. Finally,
the use of a pre-trained protein language model [49,50] and fine-
tune this model on the task of membrane protein topology predic-
tion should be investigated. At least in principle, this approach
should work better than HNNs because it would be able to leverage
information present in the entire protein sequence, rather than a
limited context si, when predicting properties of individual amino
acids.

We tested our method on the topic of topology prediction of
alpha helical and beta barrel membrane proteins with encouraging
results. Having chosen the strategy for initializing and training the
HNN with simple emission networks, we turned towards finding
the optimal architecture of these networks. We evaluated two of
our previously developed methods by varying the number of hid-
den neurons as well as the window size. Results show significant
improvement in classification when the HNN is used and the pro-
posed method performs always better compared to a similar HMM.
We also showed that the incorporation of Multiple Sequence Align-
ments (MSAs) can be valuable in prediction accuracy. The HNN
alone has a good performance but the prediction method in terms
of the topology prediction can be further improved with the incor-
poration of MSAs. This improvement is important as we are inves-
tigating top-scoring prediction methods, and we show that the



Fig. 3. Results from the 10-fold cross validation on transmembrane protein topology prediction. A. Beta-barrel outer membrane proteins. B. Alpha-helical membrane
proteins.

Table 1
Benchmark results on beta-barrel outer membrane proteins topology predictions.

Method Q2 Correct Top SOV

PRED-TMBB2HNN (this study) 0.914 40 0.946
PRED-TMBB2 (2016) 0.880 38 0.900
BetAware-Deep 0.806 45 0.884
BOCTOPUS2 0.900 38 0.945
PROFtmb 0.803 29 0.832
PRED-TMBB 0.798 16 0.681

PRED-TMBB2HNN results are reported based on a cross-validation test using
HNN + MSA method. BetAware-Deep [32], BOCTOPUS2 [37], PROFtmb [38], PRED-
TMBB [39], results were obtained using standalone versions which contain in their
training set several of the proteins used in the evaluation and thus their
performance is likely to be overestimated. HMM-B2TMR [40] could not complete
the prediction and TMBETAPRED-RBF [41] server was not available at the time of
the test.

Table 2
Benchmark results on beta-barrel outer membrane proteins topology predictions.

Method Q2 Correct Top SOV

PRED-TMBB2HNN (this study) 0.863 6 0.860
PRED-TMBB2HMM 0.835 5 0.752
BetAware-Deep 0.903 6 0.879
BOCTOPUS2 0.870 6 0.920
PROFtmb 0.865 2 0.616
PRED-TMBB 0.774 1 0.598

Results are reported based on a non-redundant testing set of 7 beta barrel proteins
from the 59 proteins used for training BetAware-Deep. For PRED-TMBB2HNN,
PRED-TMBB2, PRED-TMBB, PROFtmb and BOCTOPUS2 these results correspond to a
blind test. For BetAeare-Deep the results overestimate the performance since these
proteins were included in the training set.
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updated versions of PRED-TMBB2 and HMM-TM outperform the
currently available methods. Thus, their performance is likely to
be overestimated compared to the methods presented here.
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Finally, we have shown that in single-sequence mode the methods
developed here can be used efficiently for the identification of
membrane proteins, and thus they can be valuable in order to scan
entire proteomes. The updated versions of PRED-TMBB2 and



Table 3
Benchmark results on beta-barrel outer membrane proteins discrimination.

Method MSA Sensitivity Specificity MCC

PRED-TMBB2HNN (this study) N 98.02 99.06 0.96
PRED-TMBB2 (2016) N 91.87 99.14 0.92
BetAware-Deep N 98.12 97.53 0.91
BOMP N 75.22 98.18 0.77
F-W b-Barrel Analyzer N 97.62 90.97 0.72
PSORTb 3.0 N 59.66 98.89 0.70
TMBETADISC-RBF N 88.90 92.22 0.69
SOSUIgramN N 65.11 95.25 0.60
PRED-TMBB (v1) N 69.38 92.27 0.56
TMBHunt N 76.11 89.54 0.55
HHomp Y 97.73 99.95 0.98
BOCTOPUS2 Y 98.12 98.81 0.93
PROFtmb Y 98.12 84.97 0.62
BOMP-MSA Y 78.20 98.18 0.79
SSEA-OMP Y 96.04 88.57 0.66

PRED-TMBB2 results are reported based on a cross-validation test.

Table 4
Benchmark results on alpha-helical membrane proteins topology predictions.

Method MSA Q2 Correct Top SOV

HMM-TMv2HNN (this study) Y 0.901 245 (86.3%) 0.945
HMM-TMv2 (this study) Y 0.898 242 (85.2%) 0.940
TOPCONS Y 0.889 236 (83.1%) 0.924
PolyPhobius Y 0.884 219 (77.1%) 0.917
OCTOPUS Y 0.881 220 (77.5%) 0.914
SPOCTOPUS Y 0.881 217 (76.4%) 0.917
SCAMPI Y 0.874 227 (79.9%) 0.911
HMM-TM (HNN) N 0.886 223 (78.5%) 0.923
HMM-TM (HMM) N 0.868 216 (76.1%) 0.913
TOPCONS-single N 0.879 222 (78.2%) 0.920
TMHMM N 0.867 197 (69.4%) 0.909
Phobius N 0.870 194 (68.3%) 0.903
SCAMPI-single N 0.857 164 (57.7%) 0.866
Philius N 0.875 213 (75.0%) 0.919

HMM-TM results are reported based on a cross-validation test while TOPCONS [30], Philius [42], OCTOPUS [43], SPOCTOPUS [44], PolyPhobius [28], Phobius [45], TOPCONS-
single [46], TMHMM [47], SCAMPI2 [48] results were obtained using standalone versions.

Table 5
Benchmark results on alpha-helical membrane proteins discrimination.

Method MSA Sensitivity Specificity MCC

TOPCONS Y 97.18 98.57 0.91
PolyPhobius Y 98.06 95.09 0.81
OCTOPUS Y 97.18 98.09 0.89
SPOCTOPUS Y 99.65 83.83 0.55
SCAMPI Y 97.89 97.75 0.88
HMM-TMv2HNN (this study) N 97.54 98.70 0.92
TOPCONS-single N 99.65 94.60 0.78
TMHMM N 98.84 97.51 0.90
Phobius N 98.60 95.42 0.80
SCAMPI-single N 95.07 97.34 0.84
Philius N 98.94 97.37 0.87

HMM-TM results are reported based on a cross-validation test. In this test HMM and HNN had similar performance.
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HMM-TM are available at www.compgen.org. The HNN method
can also be used in the context of protein sorting signals, gene-
finding, prediction of functional sites in proteins and so on. We
have implemented HNNs in the JUCHMME (https://github.com/
pbagos/juchmme) library – an open-source CHMM library based
on Java, which according to our knowledge is the only available
implementation of HNNs [9].
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