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ABSTRACT
Recent large-scale RNA sequencing efforts have revealed the extensive diversity of mRNA molecules
produced from most eukaryotic coding genes, which arises from the usage of alternative, cryptic or
non-canonical splicing and intronic polyadenylation sites. The prevailing view regarding the
tremendous diversity of coding gene transcripts is that mRNA processing is a flexible and more-or-
less noisy process leading to a diversity of proteins on which natural selection can act depending on
protein-mediated cellular functions. However, this concept raises two main questions. First, do
alternative mRNA processing pathways have a role other than generating mRNA and protein
diversity? Second, is the cellular function of mRNA variants restricted to the biogenesis of functional
protein isoforms? Here, I propose that the co-transcriptional use of alternative mRNA processing
sites allows first, the resolution of co-transcriptional biophysical constraints that may otherwise
result in DNA instability, and second, increases the diversity of cellular functions of mRNAs in a
manner that is not restricted to protein synthesis.
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Introduction

Most eukaryotic coding genes produce different tran-
scripts through alternative mRNA processing path-
ways resulting from the co-transcriptional usage of
alternative or cryptic splicing and intronic polyadeny-
lation sites (i.e., alternative RNA processing sites).1,2

The flexibility of using alternative mRNA processing
sites increases mRNA and potentially protein diver-
sity. However, it is tempting to speculate that some
mRNAs are ‘error‘ or ‘junk’ and are the result of
‘noisy’ (inaccurate) biological processes when they
lack canonical mRNA characteristics and may not
give rise to proteins, are weakly expressed or rapidly
degraded, or do not seem to have cellular functions.3–6

The prevailing view is that mRNA processing is a flex-
ible and more-or-less noisy process leading to a diver-
sity of proteins on which natural selection can act
depending on the protein-mediated cellular functions.
In this view, some mRNA processing sites are posi-
tively or negatively selected during evolution depend-
ing on the cellular functions of the resulting protein
isoforms, while other mRNA processing sites would

be neutral and result in the biogenesis of tolerated
“junk” mRNAs. This view raises two main questions.
First, do alternative mRNA processing pathways have
a role other than generating mRNA and protein
diversity? Second, is the cellular function of mRNA
variants restricted to the biogenesis of functional pro-
tein isoforms?

In the first part of this manuscript, I propose
that the diversity of co-transcriptional mRNA proc-
essing pathways themselves plays an important role
in sustaining the gene expression flow and in pro-
tecting DNA from transcription-mediated damage
independently of the functions of the generated
gene products. If the act of co-transcriptional
mRNA processing is per se playing an important
role independently of the cellular function of the
resulting gene products, does this means that some
mRNA variants are merely by-products without
any cellular functions? In the second part, I pro-
pose that the cellular functions of alternatively
processed pre-mRNAs that are independent of their
capacity to give rise stable functional proteins have
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been overlooked and that mRNAs are much more
than passive intermediates of gene-to-protein infor-
mation transfer. In conclusion, it will be proposed
that the co-transcriptional use of alternative mRNA
processing sites alleviates transcription-dependent
DNA damage and reduces hazardous mutational
processes (e.g., transcriptional-mediated DNA
instability) within coding genes. Therefore, the co-
transcriptional use of alternative mRNA processing
sites reduces genetic variability and it simulta-
neously increases the functional diversity of the
RNAs produced from coding genes.

Alternative co-transcriptional mRNA processing
pathways and DNA stability

Co-transcriptional biophysical constraints and DNA
damage

The synthesis of mRNA molecules creates biophysical
constraints that can challenge the DNA and cellular
integrity. First, transcription induces negative and
positive DNA supercoilings behind and ahead, respec-
tively, of the transcribing RNA polymerase II (RNA-
PII)7 (Fig. 1A). Positive DNA supercoilings as well as
nucleosomes and DNA-binding proteins can create
physical transcription and replication roadblocks that
can lead to DNA instability (e.g., DNA breaks).7

Second, transcription can trigger the formation of
R-loops that consist of the nascent pre-mRNA re-
hybridizing to the DNA template and the displaced
single-stranded DNA.8 These R-loops are a major
source of DNA instability.8 The inherent capacity of
nascent pre-mRNA to interact with a wide array of
DNA- and chromatin-associated proteins9,10 may also
create constraints to RNAPII. For example, the inter-
action between the nascent RNA and RNAPII can
cause RNAPII pausing.11 Co-transcriptional inter-
molecular RNA-RNA interactions can also be
formed12 and RNA molecules and their associated
proteins are prone to form potentially cellular toxic
aggregates.13 Therefore, the synthesis of new mRNA
molecules can challenge the DNA and cellular integ-
rity in an RNA-dependent and -independent manner.7

While exosome-mediated co-transcriptional RNA
degradation may eliminate some RNA-mediated
physical constraints on DNA,14 it will be shown below
that co-transcriptional mRNA processing contributes
to sustain the gene expression flow and to maintain
genomic stability.

Co-transcriptional biophysical constraints trigger
co-transcriptional alternative mRNA processing
pathways

While transcription is coupled to translation in pro-
karyotic cells, transcription is coupled to mRNA proc-
essing, packaging and nuclear export in eukaryotic
cells (Box). Consequently, co-transcriptional con-
straints, that trigger RNAPII pausing, impact on sev-
eral steps of the gene expression process. For example,
biophysical constraints at gene 50-end may play an
important role in the complex interplay between
RNAPII promoter release, transcription elongation,
mRNA capping, and 50 splice site recognition of the
first intron.15 Indeed, the GC-rich 50-end of nascent
mRNAs can interact with both the complementary
DNA strand and with the RNA exit channel of RNA-
PII, which collectively could contribute to RNAPII
pausing, increasing the time window for the recruit-
ment of factors involved in 50-end RNA process-
ing11,16 (Box). In addition, biophysical constraints,
such as transcriptional roadblocks created by nucleo-
somes and chromatin compactness impact on the rec-
ognition of splice sites during transcription
elongation.17,18 One prevailing model is that impedi-
ments during transcription elongation slow down
RNAPII and this increases the time window for the
recognition of splicing sites or regulatory sequences
by RNA processing factors.18 Finally, transcription
termination and subsequent 30-end RNA processing
(i.e., cleavage and polyadenylation) are the conse-
quence of biophysical constraints resulting from tran-
scriptional roadblocks, R-loop formation and/or the
interaction between the nascent mRNA and RNA-
PII.16,19 In this context, it is interesting to note that
massive variations of the selection process of splicing
and 30-end mRNA processing sites can be induced by
inhibition of DNA topoisomerases that are involved
in resolving DNA topological constraints, suggesting a
role in DNA topological constraints on RNA process-
ing site selection.20,21

In conclusion, co-transcriptional constraints
occurring when canonic or cryptic splicing and
polyadenylation sites emerge from RNAPII impact
on the utilization of these sites. Since different
RNAPII molecules that are simultaneously produc-
ing transcripts from a given locus may encounter
different constraints from one another, different
mRNA processing sites can be selected during
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transcription, leading to the biogenesis of a diver-
sity of mRNAs from one locus. While coupling of
transcription and mRNA processing explains why
co-transcriptional constraints can trigger different

mRNA processing pathways, it will be shown
below that co-transcriptional mRNA processing
pathways can in turn resolve the initiating
constraints.

Figure 1. Co-transcriptional constraints trigger co-transcriptional mRNA processing, which resolves the constraints. (A) Transcription cre-
ates topological constraints, like positive supercoils that together with nucleosomes and DNA-associated factors (black circle) create
transcription and replication roadblocks. The nascent RNA can interact with the DNA template (R-loops), DNA- and chromatin-associated
proteins, or with other RNAs. Co-transcriptional physical constraints (yellow lightening) can induce DNA damage (e.g., DNA breaks) and
aggregates or trigger RNA degradation or RNA processing. (B) Co-transcriptional physical constraints within an intron (yellow lightening
in locus 1) can lead to DNA damage. When physical constraints occur in the vicinity of alternative or cryptic splicing sites in an intron
(grey rectangle, locus 2), these sites can be recognized by splicing factors (red circle), which resolves the constraints (e.g., by tethering
the nascent RNA on RNAPII CTD). However, the splicing factor recruitment results in the production of a splicing variant. Likewise, the
usage of alternative intronic polyadenylation sites (IpA, Locus 3) owing to the recruitment of dedicated factors (ref circle) resolves the
constraints and results in the production of a truncated gene product. (C) Co-transcriptional biophysical constraints (lightning bolt) at a
gene’s 50-end trigger RNA polymerase pausing. The recruitment of the U1 snRNP to the nascent RNA alleviates biophysical constraints
and leads to promoter clearance. In the absence of splicing factor recruitment, a proximal intronic polyadenylation site (IpA) down-
stream of the 50 splicing site of the first intron triggers co-transcriptional RNA cleavage and leads to the biogenesis of a truncated gene
product. (D) Co-transcriptional biophysical constraints (lightning bolt) trigger co-transcriptional RNA cleavage (e.g., by endoribonu-
cleases) within different kinds of RNA sequences (red dots). Co-transcriptional cleavage of the nascent RNAs tethered to RNAPII though
RNA binding proteins (red circles) prevents aggregate and R-loop formation and results in RNA degradation or the production of trun-
cated gene products or alternative splicing variants.
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Co-transcriptional use of alternative RNA processing
sites to resolve co-transcriptional biophysical
constraints

There is now compelling evidence of a widespread role
in genome stability for mRNA processing factors
involved in splicing, 30-end mRNA processing, mRNA
packaging and/or export.8,22–27 For example, inactiva-
tion of splicing or depletion of human splicing factors
like SRSF1, induces R-loop formation, DNA rear-
rangements and genome instability.28,29 Depletion of
core splicing factors like the SNRPA1 (U2 snRNP)
and DDX23 (PRP28 from the U5 snRNP) or over-
expression of mutated U2AF1 also triggers R-loop for-
mation and genome instability.30–32 R-loops can
equally be induced by drug-mediated inhibition of
splicing and displacement from DNA of the assembled
co-transcriptional spliceosome from lesion-arrested
RNAPII.31–33 Similar observations were made in
yeast.34,35

The protective effects on DNA of splicing factors
may result from their ability to coat the nascent
RNAs, to tether the nascent RNAs to RNAPII, and/or
by reducing the complementarity between intron-
containing DNA and nascent RNA after
splicing.8,24–27,36,37 RNA biding protein-mediated
RNA folding may also play an important role as
nascent RNA folding mitigates transcription associ-
ated-mutagenesis.38 In this context, it is interesting to
underline that an increasing number of RNA helicases
that can contribute to RNA folding and modify or
resolve RNA-DNA and RNA-protein interactions
play a major role in driving nascent RNAs toward dif-
ferent RNA metabolism pathways as well as in geno-
mic stability.32,39-41 The splicing process may also
obviate potentially genotoxic co-transcriptional bio-
physical constraints by cleaving the nascent RNA, as
the splicing process involves two consecutive RNA
cleavages, followed by a ligation step.42 The first RNA
cleavage occurs when the 50 donor splicing site attacks
the intronic branch site. Remarkably, large-scale
sequencing approaches have recently indicated that
usage of alternative branch-point sites within a given
intron is more widespread than previously though.43,44

The same is true for recursive splicing, which allows
the removal of large introns by iterative used of 50

splice sites in intron. Recursive splicing can be viewed
as the removal of “virtual” zero-length exons.43–45

This means that the use of different splicing sites can

give rise to the same final gene product. Collectively,
these observations support a model in which splicing-
mediated cleavage of nascent RNAs does not necessar-
ily affect the nature of the gene products and could
“just” be a way to make the nascent RNAs going
through RNA processing pathways.

Based on these observations, an interesting possibil-
ity is that potentially genotoxic co-transcriptional con-
straints can trigger the use of alternative or cryptic
splicing sites and branch-points embedded within a
given intron during transcription, which in turn, solve
the co-transcriptional constraints occurring during
the transcription of this intron. In other words, co-
transcriptional usage of alternative splicing sites could
protect DNA from transcription- and RNA-mediated
genotoxicity. As depicted on Fig. 1B, intronic co-tran-
scriptional constraints may result in DNA damage in
the absence of mRNA processing sites (locus 1), while
their presence and use may prevent DNA damage and
lead to the biogenesis of the same or an alternative
transcript (locus 2).

Because of the coupling between splicing and 30-
end RNA processing, splicing inhibition may also dis-
turb the removal of the nascent RNA from chromatin
(see Box). In this context, it has been shown that
impairing mRNA 30-end processing and/or transcrip-
tion termination trigger R-loop-mediated genome
instability.46–50 Along the same line, alteration of fac-
tors involved in the coupling between transcription
and mRNA export or between mRNA processing,
packaging and export also results in R-loop-mediated
genome instability. This has been shown for several
components of the THO, TREX and TREX-2 com-
plexes that couple transcription and mRNA export
and those mutations affect transcription elongation,
mRNA export and induce R-loop formation and tran-
scription-associated hyper-recombination.34,51–55 The
DNA instability that is mediated by depletion of the
factors that couple transcription and mRNA export
may result from defects in mRNA packaging,
increases of the time residency of the neo-synthetized
RNA in the vicinity of the DNA template, or increases
in the nuclear mRNA half-life.8,24–27 Interestingly,
alteration of factors involved in nuclear RNA decay
also induces R-loop formation and DNA instability.56–
58 Based on these observations, the many alternative
intronic cryptic polyadenylation sites that have been
uncovered through massive RNA sequencing1

could contribute to solve potentially genotoxic
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co-transcriptional constraints in the same way as
alternative splicing sites (Fig. 1B, “locus 3”). In this
context, it is important to highlight the discovery of
the strong interplay between the spliceosomal U1
snRNP that recognizes 50 splice sites and the selection
of intronic polyadenylation sites within first
introns.59–61 Since the binding of the U1 snRNP on
the nascent RNA has been shown to inhibit the usage
of downstream intronic polyadenylation site, an inter-
esting possibility is that the presence of polyadenyla-
tion sites in the first introns may overcome promoter-
proximal constraints by removing the cleaved nascent
transcript from chromatin in the case that the U1
snRNP has not been recruited on a nascent pre-
mRNA59–61 (Fig. 1C). Supporting this possibility, UV-
induced DNA damage has been observed to decrease
the level of U1 snRNA and lead to the activation of
intronic alternative cleavage and polyadenylation sites
at gene 50-ends.62 It would be interesting to look
whether co-transcriptional RNA cleavage could occur
through a diversity of processes mediated by different
kind of endoribonucleases or ribozymes and could
actually be a widespread mechanism protecting DNA
from damage by triggering either RNA degradation,
polyadenylation or splicing1,14,37,63 (Fig. 1D).

In conclusion, since co-transcriptional mRNA
processing and packaging protect DNA from tran-
scription- and RNA-mediated DNA damages and
allows the neo-synthetized transcript to dissociate
from chromatin, the use of cryptic RNA processing
sites may play a major role in DNA homeostasis. The
co-transcriptional use of alternative mRNA processing
sites would be a “safeguard” mechanism ensuring
genomic stability by i) being triggered by potentially
genotoxic co-transcriptional biophysical constraints
and ii) allowing the resolution of these constraints.
Indeed, the co-transcriptional use of alternative or
cryptic RNA-processing sites that result from co-tran-
scriptional constraints would in turn ensure the
dynamic movement of RNAPII and processing, pack-
aging and chromatin release of the neo-synthetized
RNA molecule, which collectively would decrease the
probability of aggregate formation and/or spurious
interaction between the nascent RNA and the DNA or
DNA-associated proteins. It is also interesting to note
that many proteins involved in mRNA processing are
directly involved in DNA repair.64 Therefore, RNA
processing sites emerging from RNAPII could con-
tribute to DNA stability by locally recruiting mRNA

processing factors, preventing RNA-mediated toxic
effects and by contributing to DNA repair. If the co-
transcriptional use of alternative mRNA processing
sites alleviates transcription-dependent DNA damage,
this means that the diversity of mRNAs generated by
a genome may not be the results of inaccurate or
error-prone biological processes but could rather
reflects molecular mechanisms that protect DNA
from damage. This model certainly does not exclude
the possibly that cellular context-dependent regulatory
processes preferentially direct nascent RNAs through
one specific processing pathway and lead to the bio-
genesis of functional protein isoforms.

If the act of co-transcriptional mRNA processing
per se has a role in maintaining genomic stability inde-
pendently of the function of the generated gene prod-
uct, does this mean that some mRNA variants
generated by alternative processing pathways are
merely “by-products” with no cellular function? The
following section will address this question by chal-
lenging the notion of by-products and by reviewing
examples from the literature of mRNAs with non-con-
ventional functions (i.e., independent of the produc-
tion of stable proteins).

Non-conventional roles of pre-mRNAs, introns
and mRNAs

Noncoding-related functions of RNAs produced
from coding genes

Increasing evidence indicates that transcriptional
products can feedback on transcription and chromatin
regulation (Fig. 2A). Indeed, pre-mRNAs, mRNA
processing “by-products”, intronic circular RNAs, and
the so-called ‘extra-coding’ RNAs have been shown to
be involved in chromatin and transcription regulation
in cis.10,65–67 The structured 30-UTR of the HIC
mRNA interacts with and activates the P-TEFb tran-
scription elongation factor complex by displacing the
7SK noncoding RNA from it.68 Some mRNA process-
ing by-products, like the intronic lariat-derived sno-
lncRNAs may also play a role in RNA processing
regulation.69

Mature coding-gene transcripts produced from
alternative processing pathways can also have nuclear
non-coding functions. For example, the ASCC3 cod-
ing gene produces a long coding mRNA and a short
non-coding mRNA that plays a role in transcription
recovery after UV-induced DNA damage.70 Likewise,
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splicing variants produced from two coding genes,
namely SRAP and LXR-b, act as non-coding RNA
transcriptional co-activators.71,72 An mRNA contain-
ing trinucleotide repeats produced from the FMR1

gene has been shown to form an RNA:dsDNA triplex
and repress the promoter it originates from.73

Some mRNAs also play regulatory noncoding func-
tions in the cytoplasm (Fig. 2B). In one example, an
alternative mRNA produced from the UBE3 coding
gene acts as a noncoding competing endogenous RNA
(ceRNA) that titrates miR-134, which impacts the
miR-134-dependent neuronal regulatory circuit.74,75

While it has been shown that Natural Antisense Tran-
scripts (NATs) bind to and regulate the expression
level of the corresponding sense coding gene products,
recent reports indicate that mRNA-mRNA interac-
tions also regulate gene expression level. For example,
the 50 UTR of the Insulin Receptor Substrate 1 (IRS1)
mRNA can interact with the retinoblastoma (Rb)
mRNA and repress its translation.76 In yeast, interac-
tions between the 30-UTRs of different mRNAs can
result in mRNA degradation through what is known
as the ‘no-go’ decay pathway.77 Since a number of
mRNA-mRNA pairs have recently been identified,78 it
can be anticipated that mRNA-mRNA interaction has
an important general role in gene expression
regulation.

mRNA molecules can also achieve noncoding func-
tions through mRNA-protein interactions. For exam-
ple, p53 mRNA interacts with and regulates the
nuclear trafficking and protein activity of the MDM2
protein.79 Several mRNAs regulate the activity of the
RNA-activated protein kinase, PKR, which plays a
role in translation regulation.80 Coding RNAs are
known to interact with numerous RNA-binding pro-
teins (e.g. hnRNPs) and this was presumed to be in
order just to package and process the RNA. However
the functions of RNA:protein interactions may be
multi-faced as a surprisingly large number of proteins
that are not related to known RNA-binding proteins
have also been recently found to interact with
mRNAs.81 Some of these mRNA-interacting proteins
play a role in cellular metabolism, cytoskeleton organi-
zation or signaling pathways.81 Although these uncon-
ventional mRNA-binding proteins may play a role in
mRNA metabolism, mRNAs may actually also regu-
late the RNA-binding proteins’ enzymatic activity or
cellular function.81,82 Alternatively, these mRNA-pro-
tein interactions may play a role in the co-transla-
tional assembly of specific complexes. For example, a
long 30 UTR of the CD47 mRNA has been shown to
interact with the SET protein. SET then binds to the

Figure 2. Non-conventional functions of mRNAs. (A) By-products
or products of alternative processing pathways (mRNA A’) play a
role in the regulation (red arrow) of the loci from which they orig-
inate. (B) mRNAs resulting from alternative RNA processing path-
ways (mRNA A’) can regulate the metabolism of the mRNA
originating from the same gene (mRNA A) or those of a different
gene (mRNA B) by acting as miRNA sponges or through mRNA-
mRNA interaction. (C) Coding genes can give rise to “productive”
translatable mRNAs or to “non-productive” mRNAs that are
more-or-less rapidly degraded for example by the NMD pathway.
The protein resulting from the productive processing pathway
can cause feedback inhibition by stimulating the unproductive
processing pathway (red arrow). Alternative mRNA processing
pathways may also lead to the production of proteins that are
co-translationally degraded.
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neo-synthetized CD47 protein and aids its transloca-
tion to the plasma membrane.83

There are also numerous examples of mRNAs, in
various species, that play a structural role in cytoskele-
ton organization. For example, the Oskar mRNA
serves as a scaffold for the assembly of cytoplasmic
complexes in Xenopus oocytes.84 Increasing evidence
indicates that mRNAs play a driving role in establish-
ing membrane-less subcellular compartments, includ-
ing granules and droplet organelles.85,86 These
compartments are not only involved in mRNA metab-
olism (e.g., mRNA storage and decay) but they are
also hubs for several signaling pathways, and they
may create an intracellular molecular environment
conducive to specific biological processes.85

Several observations support the possibility that
some mRNAs give rise to functional mRNA-derived
small RNAs. First, an increasing number of endoribo-
nucleases have been recently characterized87 and the
recent discovery of cytoplasmic capping and polyade-
nylation activities raises the possibility that mRNAs
cleaved by endoribonucleases can be re-processed in
the cytoplasm.88,89 Supporting this notion, all mature
noncoding RNAs (e.g., tRNA, rRNAs, miRNAs, snoR-
NAs) can be further cleaved to generate functional
derived RNAs.90 In addition, mRNA fragments, corre-
sponding in particular to 30 UTRs, have been identi-
fied.90,91 Finally, the production of functional small
RNAs from cleaved mRNAs is well established in pro-
karyotes92 and it has been recently shown in yeast that
an mRNA-derived noncoding RNA regulates the ribo-
some.93 The frontier between noncoding and coding
RNAs is less clear-cut that previously thought since
some lncRNAs contain productive small ORFs.94

Role of alternative mRNA processing pathways in
mRNA and protein homeostasis

Gene expression level is partly regulated by alternative
RNA processing pathways that can lead to the biogenesis
of more or less unstable and unproductive mRNAs. Two
mechanisms, namely intron retention and nonsense
mediated decay (NMD), play major roles in protein
homeostasis by allowing a switch from the biogenesis of
“productive” (i.e., translated) to “unproductive”
mRNAs.95,96 For example, a large number of splicing
regulators regulate the splicing of their own gene by
modulating intron retention or the inclusion of exons
containing pre-mature stop codons. The result of this

auto-regulatory mechanism is usually that splicing fac-
tors limit their own concentration by causing their own
alternative mRNAs to be degraded by NMD96 (Fig. 2C).
Alternative mRNA processing pathways can also adapt
the production rate of specific proteins. For example, a
recent class of ‘detained introns’ has been shown to
remain un-excised during transcription, unlike most
introns.97 Instead, the regulated nuclear post-transcrip-
tional removal of these detained introns is triggered by
cellular stresses.97 The regulation of intron removal may
actually play a more widespread role in protein homeo-
stasis under various physiological conditions than previ-
ously anticipated.98 Although this is still a matter of
debate, cytoplasmic splicing may also play a role in regu-
lated post-transcriptional intron removal.99

There is also debate around what proportion of
coding genes’ transcript variants is translated.100–103

While ribosome profiling at the RNA levels suggests
that many coding mRNA variants are translated,
proteomic analyses have revealed so far that coding
genes may give rise to mostly one major principal pro-
tein isoform, as the other predicted alternative protein
isoforms were not detected across a large number of
analyzed samples.100 Even though technical issues
(e.g., coverage currently achieved by transcriptome
and proteome technologies) may explain the discrep-
ancy between conclusions drawn from proteomic and
transcriptomic analyses, another possible explanation
is that some mRNA splicing variants do give rise to
stable proteins. Some protein isoforms could be highly
unstable or might mis-fold and therefore could be co-
translationally degraded. Supporting this possibility,
many alternative exons code for intrinsically disor-
dered regions that are aggregate prone and that can
mis-fold.104–106 Isoform-specific co-translational pro-
tein degradation could work together with the NMD
pathway to maintain protein homeostasis (Fig. 2C).

To summarize, deciphering what fraction of the
mRNAs that are generated through alternative mRNA
processing pathways is biologically relevant and how
much is just “noise”, junk or functionless cannot rely
only on the potential production of functional pro-
teins. The capacity of mRNAs to give rise to proteins
may be just one of their many cellular functions.

Conclusion

A paradigm shift is needed in the way we think about
coding gene expression. First, the diversity of
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alternative co-transcriptional mRNA processing path-
ways is functionally important in terms of DNA
homeostasis as well as to regulate the expression of
coding genes, independently of any resulting protein
function. Second, any processed mRNA might func-
tion either by feeding back on the locus and pathway
it originates from or by participating in various cellu-
lar processes other than protein synthesis. Coding
genes are likely producing both coding mRNAs and
functional non-coding RNAs and even coding
mRNAs seem to be able to work as do non-coding
RNAs. Only by considering these complexities can we
hope to integrate the current tsunami of RNA
sequencing data into a coherent biological framework.
The terms ‘error’, ‘noise’, ‘junk’ and ‘quality control’
should be used with caution when addressing the
diversity of coding-gene products. These terms often
imply a kind of function-related hierarchy among
coding gene products and put too much emphasis on
protein-related functions. As recently proposed for
pre-mRNAs,10 mRNAs are much more than passive
intermediates used to transfer information from genes
to proteins.

In conclusion, the use of alternative mRNA
processing sites during transcription alleviates tran-
scription-dependent DNA damage and therefore
decreases the instability of transcribed protein-cod-
ing loci. The resulting mRNAs are not the results
of inaccurate biological processes but rather of
mechanisms that protect DNA from damage. Nor
are they functionless “by-products” as they can
feedback on chromatin and transcription regulation
or can be used in a diversity of cellular processes
other than to translation. Therefore, the co-tran-
scriptional use of alternative mRNA processing
sites not only increases genomic stability by reduc-
ing hazardous mutational processes (e.g., transcrip-
tional-mediated DNA instability), therefore
reducing genetic variability but it simultaneously
increases the functional diversity of the RNAs pro-
duced from coding genes.

Box: Coupling of nuclear steps of the gene
expression process

The nascent RNA emerging from RNAPII is coated by
RNA-binding proteins (RBPs) that are involved in the
mRNA processing steps (capping, splicing, and 30-end
mRNA processing), which mostly occur during

transcription.15,107,108 The proximity between the
nascent RNA and RBPs is in part mediated by the car-
boxy-terminal domain of RNAPII, and constraints
affecting RNAPII dynamics impact on the different
mRNA processing steps. For example, chromatin
compaction can affect splicing and polyadenylation
site selection.15,18 In addition, to be coupled to tran-
scription, the mRNA processing steps are coupled to
one another. Capping is coupled to splicing and 30-
end mRNA processing, and splicing is coupled to 30-
end mRNA processing.15,107 Transcription, capping,
splicing and 30-end mRNA processing are also tightly
connected to mRNA packaging and mRNP biogene-
sis.15,107–109 For example, the splicing process contrib-
utes to the recruitment of exon junction complexes on
nascent RNAs.110 Finally, co-transcriptional mRNA
processing is tightly connected to removal of the neo-
synthetized RNAs from chromatin, and both tran-
scription and mRNA processing are coupled to
subsequent mRNA export.15,107,108,110 Interestingly,
pre-mRNA, mRNA processing by-products, as well as
factors involved in RNA processing can all feedback
on chromatin, transcription initiation and elonga-
tion.10 For example, the spliceosome or splicing fac-
tors can promote transcription initiation, promoter
release or transcription elongation.111–116 An emerg-
ing picture is that the extensive network of coupling
described above provides a molecular framework
“ensuring” that the nascent and neo-synthetized
RNAs are constantly directed toward specific molecu-
lar interactions.39 This broad vision helps explain why
the presence of introns in eukaryotic genes enhances
gene expression at multiple levels (from transcription
to translation).117–119 It is important to underline that
the global enhancing effect of RNA processing (e.g.,
splicing) on gene expression, does not exclude that
recognition of RNA processing sites may create local
RNAPII pauses. For example, a local decrease in
RNAPII velocity, mediated by the splicing process in
the vicinity of exons, may be required for proper proc-
essing, which next would resume transcription elonga-
tion and improve downstream steps.107,120–122 In
general, coupling between the gene expression steps
may not only increase efficiency but also protect from
hazards. Indeed, by directing the nascent and neo-syn-
thetized RNAs toward specific molecular interactions,
these extensive inter-connections prevent the forma-
tion of RNA-dependent aggregates and potentially
toxic spurious interactions, like RNA-DNA hybrids.
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