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To be, or not to be, that is the question. (William Shakespeare, Hamlet)

Endoplasmic reticulum aminopeptidases 1 and 2 (ERAP1 and ERAP2, respectively) play a
role in trimming peptides that are too long to be bound and presented by class I HLA
(HLA-I) molecules to CD8+ T cells. They may also affect the HLA-I-presented peptide
repertoire by overtrimming potential epitopes. Both enzymes may also be released from
the cell to cleave cytokine receptors and regulate blood pressure. Both enzymes are
polymorphic, which affects their expression, specificity, and activity, resulting in their role in
diseases associated with HLA-I. In this brief review, we concentrate on ERAP2, less
investigated because of its lack in laboratory mice and 25% of humans, as well as a lower
polymorphism. ERAP2 was found to be associated with several diseases and to influence
ERAP1 effects. It was discovered recently that the defective ERAP2 gene, not encoding
functional aminopeptidase, may nevertheless, during viral infections, produce a truncated
protein isoform of unknown function, possibly interfering with ERAP1 and full-length
ERAP2 by heterodimer formation. The disease associations of ERAP2, alone or in
combination with ERAP1, are reviewed.

Keywords: ERAP2, genetics, peptide trimming, interactions with ERAP1, polymorphism, isoforms, endoplasmic
reticulum aminopeptidase, ERAP1 interaction
1 INTRODUCTION

The human body is constantly exposed to infections with viruses, bacteria, fungi, and parasites. It is
also confronted with arising neoplastically transformed self-cells. Therefore, it needs a defense that is
provided by two branches of immunity: (i) innate, which is fast-acting but much less specific; and (ii)
adoptive, which develops slower but is antigen-specific, i.e., focused on the given pathogen without
being distracted by other, innocent structures. Both branches of immunity recognize foreign structures
using proper receptors: In innate immunity, these are pattern-recognition receptors recognizing
pathogen-associated molecular patterns, Toll-like receptors, distributed on several cell types, and killer
cell immunoglobulin-like receptors (KIRs), the latter present on natural killer (NK) cells and subsets of
T lymphocytes. KIRs recognize a lack or decrease in expression of human leukocyte antigen class I
(HLA-I) molecules on the surface of target cells, and HLA-I-bound peptides influence this interaction
(1–6). Adoptive immunity uses highly specific T-cell receptors (TCRs) that recognize antigenic
peptides (derived from foreign or neoplastic proteins) presented to them by HLA molecules. Class I
org June 2022 | Volume 13 | Article 9025671
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Kuśnierczyk ERAP2 Genetics and Disease Associations
HLAmolecules present intracellular antigens to TCRs of cytotoxic
T cells (CD8+) which kill infected or transformed cells producing
virus or tumor antigens, respectively. Both virus-infected cells and
tumor cells frequently have decreased expression of cell surface
HLA-I molecules to escape T-cell killing (7). Thus, both NK and T
cells may eliminate a source of infection or malignant tumor,
depending on HLA-I expression. HLA-I molecules bind their
peptide cargo (8–10 amino acid long) in endoplasmic reticulum
(ER). Peptides longer than 10 amino acids are trimmed by
endoplasmic reticulum aminopeptidases to fit the peptide-
binding groove of the HLA-I molecule. Class II HLA (HLA-II)
molecules present extracellular antigens to helper T cells (CD4+).
These then secrete cytokines and stimulate B lymphocytes to
produce antigen-specific antibodies, recognizing antigens on
viruses, bacteria, fungi, and parasites (8).
2 ENDOPLASMIC RETICULUM
AMINOPEPTIDASES

Aminopeptidases are exopeptidases that hydrolyze amino acid
residues from the N-terminus of peptides or protein substrates
(9). M1 aminopeptidases (12 enzymes in humans) require Zn2+

for hydrolysis (10). Endoplasmic reticulum aminopeptidases 1
and 2 (ERAP1 and ERAP2, respectively) belong to the
oxytocinase subfamily of M1 aminopeptidases together with
insulin-responsive aminopeptidase (IRAP)1, the latter being
present in intracellular vesicles including endosomes and
engaged in cross-presentation, i.e., unconventional presentation
of extracellular antigens by HLA-I molecules, and several other
functions (11–13). These proteins are composed of four domains.
In domain I, they contain an amino acid residue interacting with
N-terminal residue of the peptidic substrate. Domain II contains
two amino acid motifs important for the enzyme’s function:
GAMEN is responsible for exopeptidase specificity by interaction
with N-terminal amino acid of the trimmed peptide; Gln181 also
contributes to the specificity. HELAH(X)18D is a zinc ligand and
is essential for the catalytic activity of the enzymes. Domain III
has a b-sandwich structure that links domains II and IV; it
rotates in relation to domain II, forming an open and closed
conformation of the molecule. Domain IV is a bowl that forms
most of the large cavity accommodating the substrate. The
enzyme is active in the closed conformation and may release
the trimmed peptide and bind a new substrate in the open
conformation (10, 14; and references therein).

ERAP1, in addition to the catalytic site, has a regulatory site
distinct from but not far from the active site. Binding of the C-
1To avoid confusion of the reader with multiple names of these enzymes
encountered in the literature, we should note that ERAP1 is also designated
adipocyte-derived leucine aminopeptidase (A-LAP), puromycin-insensitive
leucine-specific aminopeptidase (PILSAP), ER associated with antigen
presentation—this is used for mouse enzyme (ERAAP), and aminopeptidase
regulator of TNFR1 shedding (ARTS-1). ERAP2 is also referred to as leucocyte-
derived arginine aminopeptidase (L-RAP). Insulin-regulated aminopeptidase
(IRAP) is also named placental leucine aminopeptidase (PLAP) and leucyl-
cystinyl aminopeptidase (LNPEP).
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terminus of the peptide (in the open conformation) to a
regulatory site promotes a change to a closed conformation
with increased enzymatic activity. This mechanism provides
trimming peptides of 9–16 amino acids in length but not
shorter ones, which do not reach the regulatory site
(“molecular ruler” model) (15 and references therein; 16). In
spite of nearly 50% shared identity and a similar four-domain
structure, ERAP2 is different from ERAP1 by a lack of this
regulatory site binding the peptide C-terminus. This structural
feature enables ERAP2 to digest octamers and shorter peptides
but not so efficiently longer ones (15, 17; and references therein).
Therefore, the effects of ERAP1 andERAP2 on immunopeptidomes
of particular HLA-I allotypes are different (18 and references
therein). Nevertheless, using cells with different ERAP1 allotypes
of high or low activity and expressing ERAP2 or not, it was observed
that a remarkable part of immunopeptidome remains untouched by
these changes (19, 20; and references therein).

Genes for three aminopeptidases are present, in different
combinations, in vertebrates. Most mammals express ERAP1
and ERAP2 except for rodents, which are negative for ERAP2;
virtually, all mammals have IRAP (21). In humans, ERAP1 and
ERAP2 are highly (49% identity) homologous (11) but differ in
their specificity: ERAP1 preferentially trims N-terminal
hydrophobic amino acid residues, while ERAP2 prefers
positively charged residues, particularly arginine (22).

In addition to their role in the endoplasmic reticulum, both
enzymes may be released from the cell, where they may (i)
perform cleavage of cell surface receptors for many cytokines,
thus modulating immune responses (23) and (ii) regulate blood
pressure (see ERAPS in the Modulation of Cytokine-Mediated
Signaling, in the Regulation of Blood Pressure, and in Sars-Cov-2
and HIV Infection).

ERAP1 is highly polymorphic. Ten allotypes with frequencies at
or above 0.4%were described in Europeans (24), andmost of them
are present also in other populations (25). The frequencies of these
allotypes are different in distinct human populations and parallel
the differences in HLA-I allele frequencies there. This may reflect
the exposure of these populations to distinct pathogens in their
environment. Interestingly, for example, homozygotes of ERAP1
allotype No. 10, of the lowest enzymatic activity, are absent or
detected in only trace amounts in African, Asian, and Amerindian
populations but are present in nearly 5% of Europeans (25).
Allotypes of ERAP1 were reproducibly reported to be associated
with those human diseases where HLA-I plays a role. These
associations were reviewed recently (14, 18, 19, 23, 24, 26) and are
out of the scope of the present article. It should be noted here that a
remarkable fraction of peptides transported to the endoplasmic
reticulum do not require any ERAP1-mediated pretreatment to be
bound by HLA-I (20). At least some of them may be trimmed by
ERAP2, and this may be a reason for the frequent coexistence of
active ERAP2 with low activity ERAP1 in a haplotype (25, 27) (see
the next section).

ERAP2 was less extensively examined because it is absent in
25% of humans and in mice, which are an important in vivo
model for immunologic studies. However, it is also polymorphic,
although to a lower extent (see the next section).
June 2022 | Volume 13 | Article 902567

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Kuśnierczyk ERAP2 Genetics and Disease Associations
3 POLYMORPHISM OF ERAP2 GENE—
APPARENT LACK OF ERAP2 PROTEIN
EXPRESSION FROM ALLOTYPE B
(RS2248374G)

ERAP2 is less polymorphic than ERAP1, and most single
nucleotide polymorphisms (SNPs) in this gene are in strong
linkage disequilibrium (LD). This leads to two main allotypes
differing in rs2248374A>G SNP, distributed at roughly equal
frequencies in human populations (allotype A, rs2248374A, and
allotype B, rs2248374G), and several minor variants of these two.
Individuals homozygotic or heterozygotic for rs2248374A
express functional ERAP2 protein, whereas rs2248374G
homozygotes produce truncated transcript undergoing
nonsense-mediated decay and therefore have no functional
ERAP2 enzyme (28). Therefore, roughly every fourth
individual in most human populations is devoid of ERAP2
activity. This, in many cases, is compensated by the presence
of highly activity ERAP1 and vice versa. For example, in ERAP2
rs2248374GG (no ERAP2) individuals, the ERAP1 allotype No. 2
homozygotes (high ERAP1 activity) are 14 times more frequent
than in rs2248374AA homozygotes. On the other hand, the
highest ERAP2 expression allotype is found more frequently in
individuals that carry an intermediate or low-activity ERAP1
allotype (25). Generally, the higher the activity of ERAP1, the less
frequently functional ERAP2 coexists with it in a haplotype and
vice versa (27). Thus, a lack of functional ERAP2 apparently
brings a need for higher activity of ERAP1. The close localization
of both ERAP genes on chromosome 5q15 (29) favors
complementing ERAP1–ERAP2 haplotypes to provide at least
one active ERAP. In addition, a rs75862629 SNP between both
genes regulates mutually their expression in such a way that the
rs75862629G allele is associated with high ERAP1 and low
ERAP2 expression, and the opposite is observed with the A
allele (30).

In most populations, the SNP rs2549782G>C,T (Lys392Asn)
is in very strong LD with rs2248374, which decides whether
functional ERAP2 is produced (28). The Asn392 variant has
about 160 times higher activity than Lys392 (31). However, due
to this strong LD, this variant is normally never produced except
for very rare recombinants, and even in an exceptional
population of Chileans, where such a recombinant is present in
2% of the population, Asn392/Asn392 homozygotes could not be
detected (28). By using Asn392-overexpressing transfectants of
the trophoblast cell line, Warthan etal. (32) found that these cells
were killed by T and NK cells, and Lospinoso etal. (33) observed
that such transfection caused downregulation of many genes
important for cell survival, which together may explain the lack
of Asn392 homozygotes in Chileans.

Other SNPs in ERAP2 are also in very strong LD in humans
(34). Therefore, two allotypes prevail in human populations:
allotype A (with rs2248374A), a functional enzyme, and allotype
B (with rs2234874G), not expressed in normal conditions (see
ERAP2 Isoforms).

The lack of functional ERAP2 in roughly every forth human
individual is not exceptional in nature. Most rodents do not even
Frontiers in Immunology | www.frontiersin.org 3
possess the ERAP2 gene. Other mammals generally possess both
ERAP1 and ERAP2 genes. Interestingly, multiple different
combinations of ERAP1 and ERAP2 (and also IRAP) appear in
other vertebrates; for example, about 60% of bony fish species
possess ERAP2, but only 2% have the ERAP1 gene (21).
4 ASSOCIATIONS OF RS2248374A>G
WITH HUMAN DISEASE

Similarly to ERAP1, ERAP2 polymorphisms also have an impact
on the immunopeptidome, albeit with different results than the
former, as stated in Endoplasmic Reticulum Aminopeptidases.
Therefore, the lack of active ERAP2 enzyme in allotype B
homozygotes results in changes in the immunopeptidome, as it
was shown for HLA-B*27, associated with ankylosing spondylitis
(35). However, the association of ERAP2 with this disease
appears independent of the presence of HLA-B*27, in contrast
to the ERAP1 association in epistasis with HLA-B*27 (36), which
may speak to other functions of ERAP2 in addition to epitope
production (see ERAPS in the Modulation of Cytokine-Mediated
Signaling, in the Regulation Of Blood Pressure, and in Sars-Cov-2
and HIV Infection). Among other conditions where associations
of ERAP2 presence versus absence were observed, we may also
list psoriasis, Crohn’s disease, hypertension, and birdshot
chorioretinopathy (14, 17, 37). Similar associations were also
described in gynecological diseases: preeclampsia (31, 38–40)
and recurrent implantation failure after in vitro fertilization (41).

Interestingly, addition of recombinant full-length ERAP2
protein to cultures of peripheral blood mononuclear cells
(from both allotype A and allotype B donors) infected with
HIV-1 reduced viral replication by activation of cytotoxic CD8+
T cells (42). Moreover, even in CD8+ T-cell depleted peripheral
blood mononuclear cell cultures, viral replication was reduced
due to the activation of monocytes by ERAP2 (43).
5 ERAP2 ISOFORMS

Both ERAPs appear in several protein isoforms. Two ERAP1
isoforms resulting from alternative splicing, 19 exons (19E)- and
20 exons (20E)-containing transcript variants were described,
whose expression is inversely dependent on the rs7063 SNP
genotype (44). As ERAP1 is not the subject of this review, we will
not go further here in this direction.

Although ERAP2 rs2248374GG individuals, as stated above,
do not produce active aminopeptidase, it was recently found that
during influenza infection, a truncated protein devoid of
enzymatic activity was detected in these individuals. It has
been named isoform 3 (Iso3) in opposition to Iso1, the normal
functional ERAP2 present in rs2248374A-possessing individuals,
and Iso2 and Iso4, truncated transcripts from rs2248374G
undergoing nonsense-mediated decay and therefore giving no
protein products (45) (Table 1). Later, Iso3 expression was
confirmed also for other viral infections (HIV, human
cytomegalovirus, SARS-CoV-2). Iso3 is apparently also present
June 2022 | Volume 13 | Article 902567
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in bacterial infections, as it was also induced in vitro by
lipopolysaccharide (46).

It has been suggested that, as ERAP2/Iso3 possesses a domain
required for homo- and heterodimer formation, it may possibly
interfere with ERAP1 and ERAP2/Iso1 function in virus-infected
cells (45, 46). It is not known yet whether such interactions
positively or negatively affect antiviral immune responses.
6 ERAP2 INTERACTIONS WITH ERAP1

ERAP1 and ERAP2 may act separately, but about 30% of their
molecules form heterodimers that may digest substrates faster than
individual ERAPs (47, 48). Computational molecular dynamics
calculations, based on experimentally determined homo-
dimerization interfaces observed in crystal structures of ERAP2
or homologous enzymes, suggested the most likely ERAP1/ERAP2
heterodimerization topology. It involves the exon 10 loop (49),
previously implicated in interactions between ERAP1 and the
disulfide-bond shuffling chaperone ERp44. This latter interaction
was postulated to be responsible for retaining ERAP1 (not
possessing the ER retention signal) in the ER (50). The ERAP1/
ERAP2 heterodimers produce fewer different peptide sequences
than each of them separately, although in larger amounts; they
leave only peptides resistant to degradation by each of them (51).
Thus, on one hand, ERAPs produce, from longer precursors,
peptides which may be bound and presented by HLA-I
molecules; on the other hand, they may overtrim peptides,
preventing them from being presented. Therefore, ERAP1 and
ERAP2 may complement each other in epitope production or, on
the contrary, mutually destroy peptides produced by each of them.
Some peptides, sensitive to ERAP1-mediated overtrimming, may
be protected from it if bound by ERAP2, particularly in the context
of an ERAP1 allotype with low activity (27).
7 ASSOCIATIONS OF ERAP1–ERAP2
HAPLOTYPES WITH HUMAN DISEASE

As stated above, a simultaneous activity of ERAP1 and ERAP2
(and their heterodimer) may result in a different immunopeptide
repertoire than that of each enzyme alone. It is not surprising,
then, that ERAP1–ERAP2 haplotypes were described as being
Frontiers in Immunology | www.frontiersin.org 4
associated with several human diseases stronger than each
gene separately.

Ankylosing spondylitis is strongly associated withHLA-B*27—
90% of patients are positive (52–54), versus less than 10% in the
healthy Europeans, e.g., in Poles (55). Nevertheless, only a small
fraction of HLA-B*27-positive individuals get the disease. Several
groups of researchers examined the role of ERAP1 and ERAP2 as
ankylosing spondylitis risk factors in addition to HLA-B*27
(reviewed by 17, 18, 26, 56–58). The role of ERAPs in shaping
the HLA-B*27:05 peptide repertoire was examined by the Lopez
de Castro group: both highly active ERAP1 allotype and the
presence of ERAP2 affected the HLA-B*27 immunopeptidome,
but their effects were distinct, suggesting that they act here as
separate, independent entities (17, 19, 35). The same haplotype
(highly active ERAP1 and the presence of ERAP2) was described
as a risk factor, while ERAP1 with low activity and a lack of
functional ERAP2 were protective (19, 24, 35). Interestingly, while
ERAP1 was associated with ankylosing spondylitis only in HLA-
B*27-positive individuals, ERAP2 was associated with this disease
independently from HLA-B*27 (17, 18, 26, 56–58), which may
suggest it participates in another activity in addition to peptide
trimming (see the next section). Moreover, we observed that the
same SNP combination in ERAP1 was associated with risk or
protection from AS or not, depending on the absence or presence
of ERAP2 (59).

Psoriasis, a relatively common skin disease, is associated with
HLA-C*06:02, although some 30% of patients do not possess this
allele (19, 26). A genome-wide association study of psoriasis
identified eight previously unreported regions of the genome,
among them ERAP1 (60). Although originally the ERAP1
association (ERAP2 was not examined there) with psoriasis
was claimed to be independent of HLA-C*06:02 (61), we
recently observed different associations of ERAP1–ERAP2
haplotypes, depending on the presence versus absence of the
HLA-C*06:02 gene: namely, low activity ERAP1 together with
ERAP2 was protective in HLA-C*06:02-positive individuals but
associated with disease risk in HLA-C*06:02-negatives. The same
ERAP1 without ERAP2 had no effect in HLA-C*06:02-positive
patients but was protective in HLA-C*06:02-negative patients.
Another ERAP1 allotype, with high activity, was protective in
both HLA-C*06:02-positive and HLA-C*06:02-negative patients
if accompanied by the presence of ERAP2, but brought risk in
HLA-C*06:02-positive patients and had no effect in HLA-
C*06:02-negative patients when ERAP2 was absent (62). This
suggests different trimming requirements of HLA-I molecules
associated with psoriasis in HLA-C*06:02-positive and HLA-
C*06:02-negative patients, respectively. Three different
autoantigens have already been implicated in psoriasis:
cathelicidin LL37, an antimicrobial peptide (63); ADAMTSL5,
a melanocyte-derived autoantigen (64); and keratin 17,
homologous to streptococcal M-proteins (65). All three are
overexpressed in psoriatic skin. LL37 was recognized by CD8+
T cells in the context of HLA-C*06:02 or HLA-A*11, depending
on the HLA background of the patient (63). ADAMTSL5
was HLA-C*06:02-presented (64). Keratin 17 induced stronger
CD8+ T-cell responses in HLA-C*06:02-positive patients than in
TABLE 1 | ERAP2 isoforms (45, 46).

ERAP2
rs2248374
allele

Isoform Function

A Iso1 Normal transcript giving functional protein
G Iso2 Truncated transcript undergoing nonsense-mediated

decay
G Iso3 Truncated transcript, induced by viral infection, giving

truncated protein devoid of enzymatic activity
G Iso4 Truncated transcript undergoing nonsense-mediated

decay
June 2022 | Volume 13 | Article 902567
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HLA-C*06:02-negative ones (65). Therefore, psoriatogenic
autoantigens are generally presented more effectively by HLA-
C*06:02 than by other HLA-I allotypes, but the latter may also
play a role in this disease, as is obviously the case in HLA-
C*06:02-negative individuals. A contribution of other
psoriatogenic antigens in HLA-C*06:02-negative cases cannot
be excluded.

Another skin disease, atopic dermatitis, as an allergic disease, is
mainly associated with HLA class II alleles (66). However, HLA-I
alleles may play a role in disease outcome (67), and indeed, we
found KIR2DS1 (a receptor of NK cells recognizing HLA-C) was
associated with protection against atopic dermatitis (68). We also
found an association of rs26618 in ERAP1, a SNP affecting enzyme
activity, with this disease (69). Although ERAP2 presence/absence
had no effect on disease susceptibility, homozygosity for the ERAP2
presence (i.e., rs2248374A/A) together with rs26618C/C resulted in
a higher risk of atopic dermatitis than rs26618 alone (70).

A rare disease, birdshot chorioretinopathy, manifesting as
small light-colored fundus spots on the retina, scattered in a
pattern like birdshot from a shotgun, is a condition most strongly
associated with HLA-I, namely with HLA-A*29 (virtually all
patients are HLA-A*29-positive). It affects mostly Europeans or
patients of European descent. Although HLA-A*29 is not
infrequent in some non-European populations, birdshot
chorioretinopathy is much less frequent there. The ERAP1
rs2287987 or ERAP2 rs10044354 SNPs are present in 90% of
patients, and the rs2287987-rs10044354 haplotype is in 50% (and
twice less frequent in controls). This haplotype is less common in
non-Europeans, which may explain why the disease is afflicting
mostly people of European descent (27). Both ERAP1 and
ERAP2 polymorphisms have an influence on the HLA-A*29-
bound immunopeptidome (19), providing an explanation for
their association with birdshot chorioretinopathy.

Also, in nonsmall cell lung cancer some ERAP1 allotypes were
associated with cancer risk, protection, or without effect,
depending on the presence versus absence of ERAP2 (ERAP2
separately was without effect). Interestingly, these effects were
frequently different in smokers and never smokers (71).

Thus, in many clinical conditions, the effect of the combined
activities of ERAP1 and ERAP2 on susceptibility to disease and its
outcome is different from the effects of each enzyme alone.
Therefore, typing for polymorphisms of both ERAP1 and ERAP2
may have a predictive value for therapy utilizing ERAP inhibitors.
8 ERAPS IN THE MODULATION OF
CYTOKINE-MEDIATED SIGNALING,
IN THE REGULATION OF BLOOD
PRESSURE, AND IN SARS-COV-2 AND
HIV INFECTION

In addition to their role in trimming HLA-I-presented peptides
(including SARS-CoV-2 peptides) in the endoplasmic reticulum,
ERAPs also perform other functions after secretion from cells.
There, they may trim cell surface receptors, e.g., cytokine
Frontiers in Immunology | www.frontiersin.org 5
receptors such as tumor necrosis factor receptor 1, interleukin
6 receptor alpha, and interleukin 1 receptor II (72, 73) and
plasma proteins (74 and references therein). Although soluble
receptors do not transmit signals directly, they nevertheless can
affect ligand binding and activation of membrane receptors and
therefore indirectly modulate cellular signaling (75). Solubilized
receptors can affect cytokine signaling far away from their site of
origin (56 and references therein). In this way, ERAPs contribute
to the regulation of several physiological processes in addition to
antigen presentation. Among other substrates, ERAPs cleave
angiotensins engaged in keeping the balance between hyper-
and hypotension (see below).

Blood pressure is regulated by the renin-angiotensin system
using a complicated array of proteins, enzymes cleaving them,
and receptors. Briefly, angiotensinogen is cleaved by renin to
angiotensin I, which is further converted by angiotensin-
converting enzyme (ACE) to angiotensin II. This protein binds
the ACE/Ang II/Ang II receptor type 1 (AT1R), resulting in
vasoconstriction, hypertension, and inflammation. ACE2
counter-regulates this process via the cleaving of angiotensin I
to angiotensin 1–7 and angiotensin II to angiotensin 1–9, which
binds the Mas receptor, initiating vasodilation, hypotension, and
anti-inflammatory activity (76, 77). ERAPs also contribute to the
regulation of blood pressure. Both ERAPs, in addition to their
intracellular role in antigen presentation, after secretion regulate
hypertension by trimming angiotensin II to angiotensin III
(ERAP1) and angiotensin III to angiotensin IV (ERAP1 and
ERAP2) which then bind to receptors AT2R and AT4R,
respectively, stimulating vasodilation and counteracting
hypertension (29, 50, 78–80). These angiotensins consist of
eight (angiotensin II: DRVYIHPF), seven (angiotensin III:
RVYIHPF), and six (angiotensin IV: VYIHPF) amino acids
(77). These lengths seem to be too short for ERAP1 but may
still be acceptable for ERAP2. In addition, the sequence of
angiotensin II starts with an Asp-Arg dipeptide and that of
angiotensin III with Arg, which are not efficiently excised by
ERAP1 (18, 22). Therefore, their trimming by ERAP1, although
experimentally proven, is hard to explain. Perhaps it is indeed
performed, but slowly and with low efficiency. Angiotensin III
sequence starts with Arg, which is a favorable substrate for
ERAP2 (18, 22), so its conversion to angiotensin IV by this
aminopeptidase is understandable.

ERAP2/Iso3, and also ERAP1 low activity allotypes, cannot
perform these functions, thus moving equilibrium to stimulation
of AT1R which causes vasoconstriction and hypertension (81). It
is conceivable that the primary function of ERAPs (and IRAP)
was regulation of blood pressure through the renin–angiotensin
system and that epitope production by peptide trimming evolved
later, paralleling the evolution of the specific immune
system, including the major histocompatibility complex (21).
Interestingly, however, in a recent review of genetic
polymorphisms affecting the regulation of blood pressure,
Cuevas etal. (76) do not mention ERAPs at all.

During SARS-CoV-2 infection, the virus uses cell membrane
angiotensin I-converting enzyme 2 (ACE2) as a receptor to bind
to the cell; the complex of the virus with ACE2 is internalized,
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viral RNA is released to the cytosol, and the viral particles are
produced and released to infect other cells. The decrease of ACE2
from the cell surface by endocytosis and enzymatic degradation
results in ACE/ACE2 imbalance and dominance of the ACE-
mediated pathway leading to hypertension, acute lung injury,
and multiorgan damage. Defective variants of ERAPs (i.e., low
activity ERAP1 allotypes and lack of functional ERAP2)
exacerbate the impact of SARS-CoV-2 on hypertension and
organ damage. On the other hand, active ERAP variants may
counter-balance SARS-CoV-2-mediated pathogenesis (81).

It should be noted here that secreted ERAP2 was postulated
also to play a role in HIV infection: by trimming N-terminal
arginine from extracellular substrates, it increases free arginine
concentration, essential for synthesis of nitric oxide, an
important biological messenger. Thus, ERAP2 may affect
protection against HIV in this way in addition to its role in
immunopeptidome production, contribution to the regulation
of hypertension, and a possible effect of interactions of
truncated ERAP2/Iso3 with ERAP1 or with untruncated
ERAP2/Iso1 (42, 43, 46).
9 CONCLUSIONS

The original finding that functional ERAP2 protein is absent in
25% of individuals who mostly remain healthy, and that the
immune system of the mouse copes well without ERAP2,
suggested that it is basically unimportant and plays only a
subsidiary role for ERAP1. However, ERAP2 activity may
support effective immune response to a pathogen. On the
other hand, the lack of ERAP2 may, in many instances,
prevent it from overtrimming antigenic peptides produced by
ERAP1, which are necessary to fight infection or contribute to
autoimmune disease. In addition, the defective ERAP2 allele is
not without function in immune defense as, in viral infections, it
produces truncated protein isoform possibly interfering with
ERAP1 and functional (allotype A) ERAP2. In addition,
ERAPs secreted from the cells may trim cell surface cytokine
and growth factor receptors, affecting immune response
indirectly, and this activity may also be dependent on their
polymorphisms. They may also regulate blood pressure and
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influence the severity of the coronavirus disease 2019
(COVID19). Therefore, some ERAP1–ERAP2 combinations
may be protective against one disease but carry a risk for
another. So, for ERAP2, the question “to be or not to be,” i.e.,
whether it is better to have ERAP2 or not, may depend on the
genetic background of an individual (including, first and
foremost, his/her HLA genotype) as well as on environmental
factors. In some circumstances, the presence of an active ERAP2
variant may be beneficial, but in others, it may be harmful. Some
of us, due to bad luck, improper genetic constitution (among it,
the presence or absence of ERAP2) and environmental influence,
contract serious or even fatal diseases, but our species as a whole
survives even the worst pandemics such as cholera, plague, AIDS,
or, now, COVID-19. For those less lucky, whose genetic
(including ERAP2) and environmental factors predispose them
to a disease, ERAP2 inhibitors may in some circumstances,
become helpful if the patients possess this enzyme in its active
form and if it contributes to an unfavorable condition.
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JR, et al. ERAP, KIR, and HLA-C Profile in Recurrent Implantation Failure.
Front Immunol (2021) 12:755624. doi: 10.3389/fimmu.2021.755624

42. Saulle I, Ibba SV, Torretta E, Vittori C, Fenizia C, Piancone F, et al.
Endoplasmic Reticulum Associated Aminopeptidase 2 (ERAP2) Is Released
in the Secretome of Activated MDMs and Reduces In Vitro HIV-1 Infection.
Front Immunol (2019) 10:16482019. doi: 10.3389/fimmu.2019.016482019

43. Saulle I, Marventano I, Saresella M, Vanetti C, Garziano M, Fenizia C, et al.
ERAPs Reduce In Vitro HIV Infection by Activating Innate Immune
Response. J Immunol (2021) 206:1609–17. doi: 10.4049/jimmunol.2000991

44. Hanson AL, Cuddihy T, Haynes K, Loo D, Morton CJ, Oppermann U, et al.
Genetic Variants in ERAP1 and ERAP2 Associated With Immune-Mediated
Diseases Influence Protein Expression and Isoform Profile. Arthritis
Rheumatol (2018) 70:255–65. doi: 10.1002/art.40369

45. Ye CJ, Chen J, Villani A-C, Gate RE, Subramaniam M, Bhangale T, et al.
Genetic Analysis of Isoform Usage in the Human Anti-Viral Response Reveals
Influenza-Specific Regulation of ERAP2 Transcripts Under Balancing
Selection. Genome Res (2018) 28:812–1825. doi: 10.1101/gr.240390.118

46. Saulle I, Vanetti C, Goglia S, Vincentini C, Tombetti E, Garziano M, et al. A
New ERAP2/Iso3 Isoform Expression Is Triggered by Different Microbial
Stimuli in Human Cells. Could It Play a Role in the Modulation of SARS-
CoV-2 Infection? Cells (2020) 9:1951. doi: 10.3390/cells9091951

47. Evnouchidou I, Weimershaus M, Saveanu L, van Endert P. ERAP1–ERAP2
Dimerization Increases Peptide-Trimming Efficiency. J Immunol (2014)
193:901–8. doi: 10.4049/jimmunol.1302855

48. Evnouchidou I, van Endert P. Peptide Trimming by Endoplasmic Reticulum
Aminopeptidases: Role of MHC Class I Binding and ERAP Dimerization.
Hum Immunol (2019) 80:290–5. doi: 10.1016/j.humimm.2019.01.003
June 2022 | Volume 13 | Article 902567

https://doi.org/10.1016/j.bbapap.2004.09.011
https://doi.org/10.1016/j.coi.2012.10.001
https://doi.org/10.3389/fmolb.2020.58355
https://doi.org/10.1016/j.humimm.2018.11.002
https://doi.org/10.1038/nsmb.2021
https://doi.org/10.1073/pnas.1912070116
https://doi.org/10.1016/j.humimm.2018.11.001
https://doi.org/10.1016/j.molimm.2016.08.005
https://doi.org/10.3389/fimmu.2018.02463
https://doi.org/10.1016/j.humimm.2019.03.004
https://doi.org/10.3389/fimmu.2020.01576
https://doi.org/10.3389/fimmu.2020.01576
https://doi.org/10.4049/jimmunol.0803663
https://doi.org/10.1111/tan.12410
https://doi.org/10.1097/BOR.0000000000000189
https://doi.org/10.1016/j.jbc.2021.100443
https://doi.org/10.3390/ijms21249608
https://doi.org/10.1093/hmg/ddy319
https://doi.org/10.1371/journal.pgen.1001157
https://doi.org/10.1093/oxfordjournals.jbchem.a022812
https://doi.org/10.1038/s41598-018-28799-8
https://doi.org/10.1016/j.placenta.2017.03.012
https://doi.org/10.1093/biolre/ioy001
https://doi.org/10.3390/ijms221685
https://doi.org/10.1002/mgg3.13
https://doi.org/10.1016/j.jaut.2016.12.008I
https://doi.org/10.1136/annrheumdis-2015-207416
https://doi.org/10.1016/j.humimm.2019.02.013
https://doi.org/10.1016/j.humimm.2019.02.013
https://doi.org/10.1007/s00439-009-0714-x
https://doi.org/10.1186/1471-2350-12-64
https://doi.org/10.1038/s41598-021-86240-z
https://doi.org/10.3389/fimmu.2021.755624
https://doi.org/10.3389/fimmu.2019.016482019
https://doi.org/10.4049/jimmunol.2000991
https://doi.org/10.1002/art.40369
https://doi.org/10.1101/gr.240390.118
https://doi.org/10.3390/cells9091951
https://doi.org/10.4049/jimmunol.1302855
https://doi.org/10.1016/j.humimm.2019.01.003
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
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