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Abstract: 12-Aza-epothilones (azathilones) incorporating quinoline side chains and bearing
different N12-substituents have been synthesized via highly efficient RCM-based macrocyclizations.
Quinoline-based azathilones with the side chain N-atom in the meta-position to the C15 atom in
the macrocycle are highly potent inhibitors of cancer cell growth in vitro. In contrast, shifting the
quinoline nitrogen to the position para to C15 leads to a ca. 1000-fold loss in potency. Likewise,
the desaturation of the C9-C10 bond in the macrocycle to an E double bond produces a substantial
reduction in antiproliferative activity. This is in stark contrast to the effect exerted by the same
modification in the natural epothilone macrocycle. The conformation of a representative azathilone
bound to o/ B-tubulin heterodimers was determined based on TR-NOE measurements and a model
for the posture of the compound in its binding site on (3-tubulin was deduced through a combination
of STD measurements and CORCEMA-ST calculations. The tubulin-bound, bioactive conformation
of azathilones was found to be overall similar to that of epothilones A and B.

Keywords: anticancer; azathilones; conformation; drug discovery; epothilones; natural product; SAR;
STD; synthesis; tubulin

1. Introduction

Epothilones A and B (Figure 1) are the major representatives of a larger family of natural
products that were first isolated from the myxobacterium Sorangium cellulosum by Reichenbach and
Hofle in 1987 [1,2]. Epothilones A and B are highly active microtubule-stabilizing agents [3,4] and
they both show potent in vitro antiproliferative activity [3-5], against both drug-sensitive as well as
multidrug-resistant cancer cell lines; in addition, for epothilone B excellent in vivo antitumor activity
has been demonstrated in tumor xenograft models in mice [5-7]. Based on these preclinical findings,
the epothilone scaffold has been widely explored in anticancer drug discovery [8,9] and at least nine
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epothilone analogs or derivatives have entered clinical trials in humans. This includes the epothilone
B lactam ixabepilone, which was approved by the US FDA in 2007 for the treatment of advanced
and drug-resistant breast cancer [10]. Quite intriguingly, however, the structural diversity within
this substantial group of clinical candidates is rather limited, which could restrict the potential for
pharmacological differentiation between these compounds. In order to address this issue, we have
extensively investigated a number of what we have termed hypermodified epothilone analogs, i.e.,
analogs that are of only limited structural similarity with the original natural products [11]. While the
early part of these studies had targeted analogs that were still based on a regular polyketide backbone
throughout [12-14], our more recent work has focused on structures where carbon 12 has been replaced
by an acylated nitrogen atom, thus leading to 12-aza-epothilones or azathilones [15-17] (Figure 1).
In these structures, the regular polyketide pattern that originates from the successive assembly of
(substituted) C2 units in the course of the biosynthesis of epothilones is disrupted by the incorporation
of nitrogen in place of the x-carbon of the propionate or acetate unit from which C26 (in the case of
epothilone B), C12 and C13 are derived (for numbering see Figure 1). Thus, while most of the gross
structural features of azathilones undoubtedly resemble those of polyketide-derived macrolides, they
may in fact be designated as “non-natural” natural products [18], as they could not be the product of
a canonical biosynthesis pathway.

Epothilone A: R = H
Epothilone B: R = Me

Figure 1. Molecular structures of epothilones A and B and their evolution into azathilones.

The initial design of the azathilones was exclusively chemistry-driven, the basic objective being
the discovery of analogs that would be synthetically more readily accessible than the natural products
themselves. At the same time, and somewhat simplistically, the carbonyl oxygen of the N12 acyl
residue of azathilones was meant to mimic the epoxide oxygen in natural epothilones in their
interactions with their purported target protein tubulin (we use the term “purported target”, as
it was not clear at this point if the compounds would in fact display the same mode of action as
natural epothilones). This (weak) structural hypothesis became obsolete shortly after the beginning of
our synthetic work on azathilones, when it was shown that epothilones C and D, which incorporate
a 12,13-Z double bond instead of an epoxide moiety, were equally potent microtubule-stabilizing
agents as the corresponding parent compounds epothilones A and B, respectively [19,20]. Likewise,
it was found that the epoxide moiety in epothilones A and B could be replaced by a cyclopropane
ring without any loss in microtubule-stabilizing activity or cellular potency [21,22]. Nevertheless, and
independent of the exact role of the carbonyl oxygen of the N12 acyl substituent, our first series of
azathilones with R = Me, Et, and {Bu (Figure 1), while clearly less active than natural epothilones,
showed significant antiproliferative activity against the human cervical carcinoma cell line KB31 (ICs
values between 70 and 200 nM) [15]. However, the most potent compound that emerged from our
initial work was the N12-fert-butyl carbamate 1 (Figure 1, R = O-fBu), which was an intermediate in the
synthesis of the above N12-acyl analogs and which was found to be only ca. 15-fold less active against
KB31 cells than epothilone A (IC5p = 31 nM vs. 2.1 nM for epothilone A) [15]. In addition, analog 1, like
other urethane-based azathilones, appeared to be less susceptible to Pgp-mediated drug efflux than
the corresponding amides. Building on these early findings we then explored if the potency of 1 could
be improved by the replacement of the natural thiazolyl-vinyl side chain by a dimethylbenzimidazole
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moiety (Figure 1, analog 2) [16], a modification which we had previously shown to lead to enhanced
antiproliferative activity for polyketide-based epothilone analogs [23-25]. While we had hoped that
this would also be the case for 2 in comparison with 1, we were in fact stunned by the magnitude
of the effect observed. Thus, the ICsg value of 2 against KB31 cells was ca. 90-fold lower than for 1
(0.34 nM vs. 31 nM) and similar differences were also observed for the A549 lung carcinoma, MCE-7
breast carcinoma, and PC3 prostate carcinoma cell lines [16]. These differences are significantly higher
than those observed between (otherwise identical) polyketide-based epothilone analogs bearing either
a thiazolyl-vinyl or a dimethylbenzimidazole side chain [23-25]. Equally intriguing is the fact that the
desaturation of the C9-C10 bond in 1 or 2 to a trans double bond is associated with a profound loss
in potency [16]; this is fundamentally different from the effect observed for the same modification in
epothilone analogs that are based on a regular polyketide-derived macrolactone ring [14,26,27].

Azathilone 2 promotes tubulin assembly in vitro with similar potency as epothilone A and its
effects at the cellular level are typical of a microtubule-stabilizing agent [16], which clearly shows that
the transition from the regular epothilone scaffold to an azathilone-type macrocycle does not lead
to a switch in the mode of action. However, a question that has remained unaddressed so far is, if
the profound antiproliferative activity of 2 is uniquely linked to its particular dimethylbenzimidazole
side chain or if related analogs with other benzo-fused heterocyclic side chain moieties would retain
similar activity, as is the case for the corresponding epothilone B and D analogs [25]. Likewise, it has
not been determined if such alternative side chain modifications would be associated with the same
loss in potency as 1 and 2 upon desaturation of the C9-C10 bond to a E double bond and if these effects
would depend on the position of the N-atom in the heterocycle. In order to address these questions, we
have investigated a series of quinoline-based azathilones 3-6 (Figure 2) and we have determined their
affinity to cross-linked microtubules and their in vitro antiproliferative activity against three different
human cancer cell lines.

o O
Figure 2. Molecular structures of azathilones investigated in this study.
In addition, we have also performed extensive NMR studies with 2, in order to characterize its

interactions with the tubulin/microtubule system at the molecular level and thus shed light on the
distinct difference in activity between 2 and its 9,10-E-dehydro congener.

2. Results and Discussion

2.1. Chemistry

As part of our previous work, we had developed two strategies for the synthesis of azathilone 2
that were based on macrocyclization either by macrolactonization or by ring-closing olefin metathesis
(RCM) between C9 and C10 [16]. The former approach was elaborated for scale-up purposes in
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response to difficulties that had been encountered for the reduction of the 9,10 double bond formed
in the ring-closing step. In spite of these difficulties, our synthesis of quinoline-based azathilones 3
and 4 was to rely on RCM-based macrocyclization, simply because this approach would also provide
simultaneous access to the desired 9,10-dehydro analogs 5 and 6 [28]. We also felt that a sufficient
investment in the optimization of the reduction step after RCM would eventually allow us to perform
the reaction in satisfactory yield. The corresponding general retrosynthesis of 3-6 is exemplified in
Scheme 1 for target structure 3a. Thus, 3a would be obtained from diene 17a by RCM followed by
deprotection and reduction. Diene 17a in turn would be assembled by esterification of known acid
16 [29] with alcohol 10. The latter would be derived from aldehyde 8 [25] by reductive amination with
allyl amine followed by carbamoylation with BOC-anhydride.

OYO

RCM N X
Reduction
pZ
N

11, OO

"

3a

Ox

OTBS g

Reductive amination

Scheme 1. Retrosynthesis of azathilone 3a.

In the forward direction, the reductive amination of 8 with allyl amine proceeded smoothly to
provide amine 9 in 76% yield (Scheme 2). Subsequent reaction of 9 with BOC-anhydride or ethyl
chloroformate then gave the respective carbamates, which were further transformed into the free
alcohols 10 and 11 by TBS-ether cleavage with TBAF in THF in 86% and 84% overall yield, respectively.

4 steps, 23% X
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Scheme 2. Synthesis of alcohols 10 and 11. Reagents and Conditions: (a) i. AllyINH;, MS 4 A, THE,
rt — 50 °C, 24 h; ii. NaBHy, MeOH, 0 °C, 20 min, 76% (2 steps); (b) Boc,O, CH,Cly, rt, 14 h, 86%;
(c) TBAF, THF, rt, 5-7 h; 10: quant; 11: 96%; (d) EtOC(O)Cl, acetone, rt, 2 h, 87%.
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As illustrated in Scheme 3, alcohol 15 was obtained from aldehyde 13 [30] in analogy to the
synthesis of 10 from 8 in 55% overall yield.

20O

4 steps, 45% N\
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—_— Z

D¢

N

N

=
12

0._0 N\ H
b, c N Pz
N P - /\/
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Scheme 3. Synthesis of alcohol 15. Reagents and Conditions: (a) i. AllyINH,, MS 4 A, THF, rt to 50 °C,
24 h; ii. NaBHy, MeOH, 0 °C, 20 min, 67% (2 steps); (b) Boc,O, CH,Cly, rt, 14 h, 86%; (c) TBAF, THE, rt,
5h, 95%.

The EDC/DMAP-mediated esterification of acid 16 with alcohols 9 and 10 furnished dienes 17a/b
in high yields (84% in both cases) (Scheme 4). When the latter were subjected to Grubbs II catalyst in
toluene at reflux temperature for 30 min, ring-closure to the macrocyclic olefins occurred in excellent
yields (82% and 96%, respectively); in both cases the E isomer was obtained as the only isolable product.
Treatment of the cyclization products with HF-pyridine then gave E-9,10-dehydro azathilones 5a and
5b in 67% and 51% yield, respectively, after purification by preparative HPLC. The reaction required
careful monitoring by MS, in order to prevent cleavage of the urethane moiety, in particular in the case
of the tert-butyl carbamate.

RO._0O
Y = 10: R =t-Bu
AN N© 11:R=Et

OH
A
_a o N/
o}
< 17a: R ={-Bu
O OTBSO 17b: R = Et
B 16
O OTBSOH
lb, c
RO.__O RO _O
X X
Z Pz
N d N
2
X 3a:R=1Bu : Y 5a: R ={Bu
O OH 3b: R=Et O OH 5b: R = Et

Scheme 4. Synthesis of azathilones 5a/b and 3a/b. Reagents and Conditions: (a) EDC, DMAP, CH,Cl,,
0 °C — rt, 5 h, 17a: 84%; 17b: 84%; (b) Grubbs II (15 mol %), toluene, refl, 30 min, 82% (R = tBu); 96%
(R = Et); (c) HF-py, pyridine, THF, 0 °C — rt, 8 h, 5a: 67%; 5b: 51% (after HPLC purification); (d) PADA,
CH,Cl,, AcOH, rt, 5.5-7 days. 3a: 66%; 3b: 65% (after HPLC purification).
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The conversion of 5a into the saturated azathilone 3a was performed with in situ generated
diimide [31] under conditions that were established as the result of an extensive optimization process,
involving the investigation of all four macrocyclic dienes prepared in the course of this study. Thus,
the starting material 5a was dissolved in CH,Cl, together with a large excess of bis-potassium
azodicarboxylate (PADA) and a solution of AcOH in CH,Cl, was slowly added to the yellow
suspension with a syringe pump. After 18 h the white suspension was filtered through a pad of
silica and the filtrate was concentrated. The whole procedure was repeated until the conversion
of starting material was deemed reasonable, in the case of 5a the total reaction time amounted to
7 days. Azathilone 3a was finally obtained in 66% yield after purification by preparative RP-HPLC.
Similar conditions were used for the transformation of olefin 5b into 3b (for details see the Experimental
Section); 3b was obtained in 65% yield (after preparative RP-HPLC) together with 25% of unreacted
starting material 5b.

The elaboration of acid 16 and alcohol 15 into azathilones 6 and 4 was completely analogous to
the synthesis of 5a/b and 3a/b, respectively (Scheme 5). The overall yield for the three step sequence
from 15 to 6 was 41%; most notably, as for the cyclization of dienes 17a/b, the RCM of the diene derived
from 16 and 15, i.e., 18, provided the macrocyclic E olefin exclusively (82% yield).

Scheme 5. Synthesis of azathilones 6 and 4. Reagents and Conditions: (a) EDC, DMAP, CH,Cl,,
0°C — rt, 5 h, 90%; (b) Grubbs II (15 mol %), toluene, refl, 30 min, 81%; (c) HF-pyr, pyridine, THF,
0 °C — rt, 6 h, 55% (after HPLC purification); (d) PADA, MeOH/CH,Cl,, AcOH, rt, 77 h, 55% (after
HPLC purification).

The reduction of 6 was conducted in MeOH/CH,Cl, under not yet optimized conditions (for
details see the Experimental Section), to provide azathilone 4 in 55% yield (after preparative RP-HPLC)
together with 18% of unreacted starting material 5b. In contrast, the use of Crabtree’s catalyst in
CH,Cl, at 0 °C did not give any conversion of 5b. Conversion was observed with Pt,O in EtOH at
room temperature, but the reaction was non-selective and incomplete. Under these conditions 4 was
obtained in only 14% yield and not entirely pure after tedious HPLC purification. Finally, the use of
2,4,6-triisopropylbenzenesulfonyl hydrazide and triethylamine in MeOH at room temperature [32]
gave very slow conversion and the reaction was plagued by the formation of numerous side products,
which necessitated extensive HPLC purification to provide 4 in 25% yield.

2.2. Biological Evaluation

All azathilones prepared in this study were assessed for their in vitro antiproliferative activity
on the human carcinoma cell lines A549 (lung) and MCF-7 (breast). As can be seen from the data
compiled in Table 1, azathilones 3a and 3b are highly active against both cell lines, with ICs values
that are comparable with those for natural epothilone A. 3a tends to be slightly more potent than 3b,
which is in line with the trend observed for azathilone 2 and the corresponding ethyl carbamate 19
(Figure 3), although the difference was more pronounced for the latter compound pair [16].

Importantly, azathilone 3a is essentially equipotent with 2 on the A549 cell line, while 3b is ca.
3-fold more potent than the corresponding dimethylbenzimidazole 19 [16]. These data show that also
modified side chains other than the specific dimethylbenzimidazole moiety present in 2 and 19 can
support highly potent antiproliferative activity in combination with the azathilone macrocycle.
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Figure 3. Molecular structure of azathilone 19.

As had been observed for 1 and 2 [16], desaturation of the C9-C10 bond in 3a or 3b to an E double
bond results in a dramatic loss in cellular potency; the ICsy values for the corresponding dehydro
analogs 5a and 5b are more than 1000-fold higher than those for the saturated parent compounds
(Table 1). Although the number of examples of E-9,10-dehydroazathilones is still limited, collectively,
the available data strongly suggest that the presence of a 9,10-E double bond is incompatible with
potent bioactivity in the context of the azathilone structural framework. In contrast, the desaturation
of the C9-C10 bond to an E double bond has proven to enhance (or at least not to diminish) cellular
potency of natural epothilones or closely related polyketide-based epothilone analogs [14,26,27,33-35].
This seemed to suggests that the bioactive, tubulin-bound conformation of the azathilone macrocycle
was likely to be different from that of the natural products. However, this hypothesis could not be
validated in subsequent structural studies (vide infra) and the reasons for the divergent behavior of
9,10-dehyroazathilones and their polyketide-based congeners are still elusive at this point.

In stark contrast to 3a, its constitutional isomer 4 inhibits the proliferation of A549 and MCF-7
cells only with micromolar activity (IC5p values of 1034 nM and 998 nM, respectively, vs. 1.1 nM
and 1.4 nM for 3a, Table 1). Changes in the cellular activity of epothilone B or D analogs bearing
pyridyl-vinyl or quinolyl side chains as a function of the position of the N-atom in the heterocycle have
been observed previously, but the magnitude of the change is exceptionally high between azathilones
3a and 4. Thus, ICs( values of 0.3 nM, 4.3 nM, and 11.8 nM, respectively, have been reported for the
three isomeric pyridyl-epothilone B analogs 20-22 (Figure 4) against the KB31 cell line (the only cell
line for which data on these compounds have been reported) [36]. Likewise, a 110-140-fold difference
in antiproliferative activity has been observed between isomeric quinolyl-epothilone D analogs 23
and 24 (Figure 4) (ICsp values of ca. 1 nM vs. ca. 100 nM); intriguingly, however, the corresponding
epothilone B analogs 25 and 26 were found to be essentially equipotent (ICsy values < 1 nM for both
compounds across three cell lines) [25].

Table 1. Antiproliferative activity of azathilones against human cancer cell lines (ICs5 [nM]) 1

Compound A549 MCE-7 SK-OV-3 SKVBL1
2 1.9+ 042 ND 27+043 879 + 53
3a 1.1+0.1 14402 1.2+03 71+3
5a 2986 + 113 3133 + 147 ND ND
3b 54 +02 59+0.2 48 +0.7 372+ 3
5b >5000 >5000 ND ND
4 1023 + 29 998 + 43 ND ND
6 >>5000 >>5000 ND ND

Epothilone A 2.8+ 0.1 21+03 13402 39+03

1 Cells were incubated with test compounds for 72 h. A549, human small cell lung carcinoma; MCF-7, human
breast carcinoma; SK-OV-3, human ovarian carcinoma; SKVBL1, Pgp-overexpressing variant of the SK-OV-3
cell line [37]. Numbers presented are average values from three independent experiments + standard deviation.
For experimental details see the supporting materials. ND, not determined; 2 From ref. [16]; 3 This work.
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Figure 4. Molecular structures of previously reported pyridine- [36] and quinoline-based [25]
epothilone B analogs.

Based on the available data it thus appears that the antiproliferative activity of azathilone-type
epothilone analogs exhibits a significantly stronger dependence on the position of the N-atom in the
side chain heterocycle than is the case for analogs with a natural macrolactone core structure. However,
additional data are required to support (or disprove) the validity of this preliminary conclusion.
Independent of this, although 4 is only a moderately potent cell growth inhibitor, it is still more active
than its 9,10-dehydro variant 6 (Table 1), which re-enforces the above conclusions on the detrimental
effects of the desaturation of the C9-C10 bond in azathilones even for a lower potency level of the
saturated parent compound.

The differences in antiproliferative activity between 3a and 5a and also between 3a and 4 are
reflected in differences in the binding affinity of the compounds for stabilized, crosslinked microtubules
(Table 2). Even if the correlation is not completely linear, it is clear from the data in Table 2
that E-9,10-dehydro azathilone 5a and analog 4, which has the N-atom in the heterocycle in the
“non-natural” position, bind to microtubules with >10-fold lower affinity than 3a.

Table 2. Binding constants of azathilones for stabilized microtubules .

Compound Ky [106-M~1]
2 102
3a 42406
5a 0.43 £0.05
4 0.30 £ 0.05
Epothilone A 36.32

! Association constant Kj, with glutaraldehyde-stabilized microtubules at 35 °C, as determined as described in
ref. [38]. Numbers are average values from three independent experiments + standard deviation; 2 From ref. [39].

Similar differences in microtubule-binding affinity have also been observed between 23 and 24
and between 25 and 26 (Figure 4), in spite of the fact that 25 and 26 display similar antiproliferative
activity (vide supra). At the same time, the association constant for 3a is ca. 10-fold lower than the
ones reported for epothilone A or quinolyl-epothilone D (23), although the latter is a two orders of
magnitude less potent growth inhibitor than 3a. A fully consistent interpretation of these data is
elusive at this point. While one could speculate that the potent antiproliferative activity of certain
azathilones may result from additional interactions with cellular targets other than tubulin, at least
for azathilone 2 we have previously shown that its overall biological profile is very similar to that of
epothilone A [16].
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A critical issue uncovered during the cellular profiling of azathilone 2 was a substantial loss in
potency (>600-fold) against the Pgp-overexpressing multidrug-resistant cell line KB-8511 compared to
the drug-sensitive parental KB31 line (ICsy values of 222 nM vs. 0.34 nM) [16]. The susceptibility of 2
to Pgp-mediated efflux has been confirmed in this study for the drug-sensitive/multidrug-resistant
ovarian cancer cell line pair SK-OV-3/SKVLB1. As can be seen from Table 1, in analogy to the
KB31/KB8511 system, azathilone 2 suffers from a dramatic drop in growth inhibitory activity in the
Pgp-overexpressing, multidrug-resistant SKVLBL1 cell line [37] in comparison with the sensitive SKOV3
line. An activity differential between SK-OV-3 and SKVLBL cells is also obvious for azathilones 3a
and 3b, although the corresponding resistance factors are clearly lower than for 2 (ca. 60 and 70,
respectively, Table 1). A resistance factor of only 3 is observed for epothilone A. While these findings
confirm that the replacement of the natural epothilone core structure by the azathilone macrocycle
leads to inherently enhanced susceptibility to Pgp-mediated efflux, they also show that the magnitude
of the effect depends on the specific nature of the side chain and may be further modulated (i.e.,
reduced) in new analogs. It should also be emphasized that both 3a and 3b are still potent growth
inhibitors even in the SKVLBI cell line, even if their ICsy values are no longer in the single digit
nanomolar range.

In order to gain insight into the interactions between azathilones and the tubulin/microtubule
system at the molecular level, we have investigated the conformational properties of azathilone 2, both
in its free state in aqueous solution and when bound to tubulin, by means of NMR spectroscopy and
computational methods.

2.3. Structural Studies

The conformation of 2 free in aqueous solution was determined by solution NMR experiments in
D,0 at 500 MHz and 298 K. The complete assignment of the 'H-NMR resonances of 2 was achieved on
the basis of 1D, 2D TOCSY and 2D ROESY experiments. Due to the intermediate size of the compound,
which leads to near-zero longitudinal NOE effects, the conformational information in the free state was
derived from 2D ROESY experiments. For this purpose, an ensemble of 250 structures was obtained
from a restrained-free Monte Carlo conformational search, as implemented in Macromodel software.
The combined computational and NMR data indicated the presence of two families of low energy
conformers of 2 in aqueous solution, with very similar conformations of the macrocycle, but distinct
torsion angles about the C15-C16 bond (for atom numbering see Figure 1). In fact, ROESY cross peaks
of approximately equal intensity were observed between H15 and H17 and between H15 and H27,
respectively. This finding is indicative of rapid rotation around the C15-C16 bond on the NMR time
scale, which suggests that 2 in aqueous solution is present in an equilibrium between two equally
populated conformers A (C14-C15-C16-C17 dihedral angle of ca. 170°) and B (C14-C15-C16-C17
dihedral angle of ca. 10°) (Figure 1). In both cases, the conformation of the macrocycle was found to be
similar to that reported for epothilone A free in aqueous solution [40] (Table S1) and also to that of
tubulin-bound 2 (vide infra).

As a next step, we undertook the determination of the bioactive, tubulin-bound conformation
of azathilone 2 by means of transferred nuclear Overhauser enhancement (TR-NOE) measurements.
Strong negative TR-NOE cross-peaks were observed for azathilone 2 in the presence of tubulin under
conditions where «/f tubulin heterodimers have been shown not to assemble into microtubule
polymers [41]. The NOE-derived distances in the bound state are summarized in Table 52 and
the corresponding conformations are depicted in Figure 5A. No significant differences were found
between the conformation of the macrocyclic core structure of 2 in the tubulin-bound state and
free in solution, thus indicating that the macrocycle in the free state is pre-organized for binding.
In addition, the analysis of the intensities of the cross peaks H15-H17 and H15-H27 revealed that the
dimethylbenzimidazole side chain adopts two distinct orientations also in the bound state (Figure 5A);
in contrast to the near balanced conformational equilibrium in solution, however, conformer A is
clearly more populated than B.
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We have previously reported similar observations for the side chain conformations of
tubulin-bound epothilone A or B [41], where a syn-periplanar conformation about the C17-C18 bond
(C16-C17-C18-C19 torsion angles of —28° (epothilone A) and —29° (epothilone B) is substantially more
populated (>80%) than the anti-periplanar arrangement. This conformation places the heterocyclic
nitrogen atom in the thiazole ring in epothilones A and B approximately in the same position (relative
to the macrocycle) as N in conformer B in azathilone 2 (Figure 5B) (for atom numbering see
Figure 1). Virtually the same side chain orientation as in tubulin-bound 2 has also been observed
for quinoline-based epothilone analog 25 (Figure 4) [42]. In analogy to the free state in solution,
the conformation of the macrocycle in tubulin-bound 2 is overall similar to that in tubulin-bound
epothilone A or B [41,43] (Figure 5B and Table S3); deviations do exist for individual torsion angles,
but mainly for those bonds including, or being adjacent to N'2. Of particular interest is the torsion
angle about the C9-C10 bond, which was determined to be around —150° (Table S3). However, this
number should be interpreted with caution, as the accuracy of the data in this region of the structure
is limited, due to signal overlap in the NMR spectra. It thus remains unclear at this point if the
profound loss in biological activity incurred upon desaturation of the C9-C10 bond in azathilones
could be caused by a simple incompatibility of the bioactive conformation with a fixed C9-C10 torsion
angle of 180° or if other (additional) effects come into play. In this context it should be remembered
that the introduction of a double bond will affect the (intrinsically) preferred torsion angles about
adjacent bonds due to 1,3 allylic strain effects [44]. Interestingly, such secondary effects do not seem
to be of major relevance for natural epothilones and closely related analogs (vide supra), where the
conformation about the C9-C10 bond in the tubulin-bound state has been clearly established to be
close to anti-periplanar [41-43].

Figure 5. Tubulin-bound conformation of azathilone 2 and 3D model of its interaction with 3-tubulin.
(A) Overlay of the two conformers A (orange) and B (grey) of tubulin-bound azathilone 2 as derived
from the TR-NOESY data; (B) 3D model of the azathilone 2/ 3-tubulin complex (2 in orange, conformer
B) as derived from TR-NOE and STD NMR experiments, docking, and CORCEMA-ST calculations and
based on the structure of 3-tubulin in complex with epothilone A [45] (for details see text). Epothilone
A is shown in blue.

Finally, we have performed saturation transfer (STD)-NMR experiments, in order to determine
the major interaction sites in 2 with the tubulin «/ 3 heterodimer and to construct a model for bound
2 in the luminal epothilone binding site on 3-tubulin. STD-NMR is based on the magnetization
transfer from a given protein to protons of a bound ligand [46]. Only bound ligands show STD signals,
which are strongest for those ligand protons that are in closest contact with the protein. Thus, the
intensity of STD signals for individual ligand protons reflects their proximity to the protein surface.
Clear STD signals were detected for azathilone 2 in the presence of «/ {3 tubulin heterodimer (for
a ca. 15:1 molar ratio of 2 vs. tubulin). The STD intensities for individual protons are plotted for both
conformers A and B in Figure S2. In order to derive a model for the complex between 2 and tubulin, the
compound was then modelled into the luminal epothilone binding site on 3-tubulin (PDB code 4150)



Molecules 2016, 21, 1010 11 of 26

with AutoDock Vina [47]. In view of the similar tubulin-bound conformations of 2 and epothilone
A, arigid docking protocol was employed initially, based on the tubulin-bound conformation of 2
that had been derived from the TR-NOE data. In a second step, the obtained binding poses were
then further refined. Subsequently, CORCEMA-ST calculations [48] were performed with the best
binding poses obtained in the docking calculations to determine which of the proposed binding modes
provided the best agreement with the STD experimental data. Different torsion angles were considered
for both the C15-C16 bond and the O-C(CHj3)3 bond in the tert-butoxycarbonyl moiety attached to N12.
It is worth noting that the calculated STD profiles obtained for conformers A and B are very similar
(Figure S2) and both are in good agreement with the experimental data. This clearly indicates that both
conformers represent feasible solutions for the tubulin-bound structure of 2.

As illustrated in Figure 5B, the predicted overall binding mode of 2 to 3-tubulin is very similar to
that of epothilone A for both conformers A and B. Key contacts between 2 and tubulin are depicted in
Figure 6 and include a mix of hydrophobic and polar interactions.

> AsP '\ fHIP
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360
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Conformer A Conformer B Solvent exposure

286

Figure 6. Key intermolecular contacts between tubulin and azathilone 2.

Of particular note is the fact that polar interactions between C30H and the side chain of Gln 281,
C70H and the side chain carboxylate group of Asp226, and N19 (corresponding to the thiazole N in
epothilone A) and the side chain hydroxyl group of Thr 276 (for conformer B) are also observed in
the crystal structure of the tubulin-epothilone A complex [45], thus reflecting the similarities in the
binding poses of tubulin-bound 2 and natural epothilones.

In summary, we have used ring-closing olefin metathesis to prepare a set of new
12-aza-epothilones (azathilones) incorporating quinoline side chains and bearing different
N12-substituents. Quinoline-based azathilones with the side chain N-atom in the meta-position
to the C15 atom in the macrocycle were found to bind to microtubules with high affinity and to be
potent inhibitors of cancer cell growth in vitro. In contrast, analogs with the quinoline nitrogen in
the position para to C15 were ca. 1000-fold less active in cells. Collectively, the data illustrate that the
benzimidazole side chain of the previously described azathilone 2 is not a specific requirement for
potent growth inhibitory activity. We have determined the conformation of azathilone 2 bound to
tubulin heterodimers based on TR-NOE measurements and a model for the posture of the compound
in its binding site on pB-tubulin was deduced through a combination of STD measurements and
CORCEMA-ST calculations. The tubulin-bound structure of 2 was found to be overall similar to that of
epothilones A and B. The current structural data, thus, do not offer a rationale for the substantial loss in
antiproliferative activity incurred upon desaturation of the C9-C10 bond in the azathilone macrocycle
to an E double, a phenomenon that is not observed for natural epothilones.
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3. Experimental Section

3.1. General Information

All solvents used for reactions were purchased as anhydrous grade from Sigma-Aldrich (puriss.;
dried over molecular sieves; HyO <0.005%) (Buchs, Switzerland) and used without further purification.
Solvents for extractions, flash column chromatography (FC) and thin layer chromatography (TLC)
were purchased as commercial grade and distilled prior to use. Commercially available starting
materials and reagents were also from Sigma-Aldrich and used without further purification, unless
otherwise noted. In general, reactions were magnetically stirred and monitored by TLC performed on
Merck TLC aluminum sheets (silica gel 60 Fy54) (Merck, Darmstadt, Germany). Spots were visualized
with UV light (A = 254 nm) or through staining with Ce;(SO4)3/phosphomolybdic acid /H;SO4 or
KMnO,/K,COs. Chromatographic purification of products by FC was performed using Sigma-Aldrich
silica gel 60 for preparative column chromatography (particle size 40-63 um). 'H- and 3C-NMR
spectra were recorded in CDCl3 (unless otherwise noted) on a Bruker AV-400 400 or a Bruker AV-500
500 MHz spectrometer (Bruker, Karlsruhe, Germany) at room temperature. Chemical shifts () are
referenced to the solvent signal as an internal standard (chloroform & 7.26 ppm for 'H and & 77.00 ppm
for 13C spectra; DMSO-dg & 2.50 ppm for 'H and & 39.43 ppm for 13C spectra). All 1>*C-NMR spectra
were measured with complete proton decoupling. Data for NMR spectra are reported as follows:
s = singlet, d = doublet, t = triplet, q = quartet, quint. = quintet, sext. = sextet, m = multiplet, br = broad
signal, ] = coupling constant in Hz. Infrared spectra (IR) were recorded on a Jasco FT/IR-6200
instrument (Jasco Switzerland, Brechbtihler AG, Schlieren, Switzerland). Resonance frequencies are
given as wavenumbers in cm~!. Optical rotations were measured on a Jasco P-1020 polarimeter
(Jasco Switzerland, Brechbiihler AG) operating at the sodium D line with a 10 mm or 100 mm path
length cell and are reported as follows: [a]TD, concentration (g/100 mL), and solvent. HRMS (ESI)
spectra were obtained on a Varian IonSpec system (Agilent Technologies (Schweiz), Basel, Switzerland).
For analytical high-performance liquid chromatography (HPLC) the following combination of devices
by VWR HITACHI (VWR International AG, Dietikon, Switzerland) was used: Diode array detector
L-2455, autosampler L-2200, pump L-2130. For preparative HPLC a device by Gilson (Gilson (Schweiz)
AG, Mettmenstetten, Switzerland) was used.

3.2. Chemistry

(S)-N-(3-(t-Butyldimethylsilyloxy)-3-(quinolin-7-yl)propyl) prop-2-en-1-amine (9). To heat-activated
molecular sieves (4 A, 650 mg) was added a solution of aldehyde 8 [25] (522 mg, 1.65 mmol) in
8 mL THEF. To this solution were added 0.6 mL of allylamine (7.86 mmol) and the mixture was heated to
50 °C for 24 h. It was then filtered through a pad of dry Celite™, the residue was washed with THF and
the combined filtrates were concentrated under reduced pressure to give a yellow oil. This material
showed the expected mass for the imine and was directly used as such. For the reduction, 67 mg
of NaBH, (1.7 mmol) were placed in a 10 mL two-necked flask at 0 °C and a solution of the crude
imine in 3 mL MeOH was added (gas formation could be observed). After 20 min the reaction
mixture was diluted with water and extracted with EtOAc. The combined organic fractions were
washed with brine, dried over MgSO, and concentrated in vacuo. Purification of the residue by FC
(hexane/EtOAc 4:1 — 1:1 + 1% Et3N) furnished 445 mg (76%) of the desired amine 9 as a slightly
yellow oil; [a] 8T = —54.0° (c = 1.37, CH,Cl,). 'H-NMR (400 MHz, CDCl3): & = 8.87 (dd, | = 4.3 Hz,
1.7 Hz, 1H), 8.09 (dd, ] = 8.3 Hz, 1.2 Hz, 1H), 7.94 (br s, 1H), 7.75 (d, ] = 8.4 Hz, 1H), 7.54 (dd, ] = 8.4 Hz,
1.7 Hz, 1H), 7.33 (dd, ] = 8.2 Hz, 4.2 Hz, 1H), 5.85 (m, 1H), 5.10 (dq, ] = 17.2 Hz, 1.6 Hz, 1H), 5.02
(dq,J =10.3 Hz, 1.4 Hz, 1H), 4.97 (dd, ] = 7.3 Hz, 4.8 Hz, 1H), 3.17 (dt, ] = 6.1 Hz, 1.3 Hz, 2H), 2.66 (t,
] = 7.0 Hz, 2H), 2.01-1.84 (br m, 2H), 0.87 (s, 9H), 0.03 (s, 3H), —0.17 (s, 3H); NH not visible. 3C-NMR
(100 MHz, CDCl3): 6 =150.5, 148.2, 147.0, 136.9, 135.8, 127.7, 1274, 125.7, 124.9, 120.7, 115.7, 73.5, 52.5,
45.8,40.6,25.8 (3 x CHs), 18.1, —4.6, —5.0. HRMS (ESIpos): calcd. for Cy1H33N,0OSi [M + H]*: 357.2357,
found: 357.2361.
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(S)-t-Butyl allyl(3-(t-butyldimethylsilyloxy)-3-(quinolin-7-yl)propyl)carbamate (9A). A solution of amine 9
(416 mg, 1.17 mmol) and Boc, O (390 mg, 1.75 mmol) was stirred at rt for 14 h. Ethanolamine (1 mL) was
then added and the mixture was stirred for one additional hour at rt and then concentrated in vacuo.
To the resulting crude product water was added and the mixture was extracted with Et;O and CH,Cl,.
The combined organic layers were dried over MgSO, and concentrated in vacuo. Purification of the
residue by FC (hexane/EtOAc 10:1 — 1:1 + 1% Et3N) gave 460 mg (86%) of the desired carbamate 9A
as colorless oil; R¢ = 0.8 (hexane/EtOAc 1:1). [«]¥ = —36.2° (¢ = 1.50, CH,Cl,). "H-NMR (400 MHz,
CDCl3): $=8.84 (dd, ] =4.1 Hz, 1.5 Hz, 1H), 8.06 (d, ] = 7.9 Hz, 1H), 7.94 (s, 1H), 7.72 (d, ] = 8.4 Hz,
1H), 7.50 (dd, ] = 8.5 Hz, 1.2 Hz, 1H), 7.29 (dd, | = 8.1 Hz, 4.2 Hz, 1H), 5.67 (m, 1H), 5.01 (m, 1H), 4.97
(dq, ] = 7.7 Hz, 1.4 Hz, 1H), 4.84 (dd, | = 6.6 Hz, 4.7 Hz, 1H), 3.72 (m, 2H), 3.21 (m, 2H), 1.95 (m, 2H),
1.33 (s, 9H), 0.85 (s, 9H), 0.01 (s, 3H), —0.20 (s, 3H). 3C-NMR (100 MHz, CDCl3): § = 155.2, 150.4, 148.1,
146.5, 135.7, 134.1, 127.7, 127.4, 125.6, 124.7, 120.7, 116.3, 79.2, 73.0, 49.6, 43.6, 38.7, 28.3 (3 x CH3),
25.7 (3 x CH3), 18.0, —4.7, —5.1. HRMS (ESIpos): calcd. for CpsHsoN,O3SiNa [M + Na]*: 479.27004,
found: 479.27007.

(S)-t-Butyl allyl(3-hydroxy-3-(quinolin-7-yl)propyl)carbamate (10). To a solution of silyl-ether 9A (200 mg,
0.44 mmol) in 5 mL THF were added 1.32 mL (1.32 mmol) of a TBAF-solution (1 M in THF) at rt and the
mixture was stirred for 5 h. The reaction was quenched with saturated, aqueous NH4Cl solution and
the mixture was extracted with EtOAc. The combined organic layers were washed with H,O, dried
over MgS0y and concentrated in vacuo. The residue was purified by FC (hexane/EtOAc 2:1 — 1:1) to
give 152 mg (quantitative yield) of the desired free alcohol 10 as a colorless oil; R¢ = 0.1 (hexane/EtOAc
2:1). [«]fF = —1.94° (¢ = 1.05, CH,Cly). "H-NMR (400 MHz, CDCl3): 6 = 8.85 (dd, ] = 4.2 Hz, 1.4 Hz,
1H), 8.09 (dm, ] = 8.1 Hz, 1H), 8.01 (br s, 1H), 7.76 (d, ] = 8.5 Hz, 1H), 7.62 (m, 1H), 7.33 (dd, ] = 8.1 Hz,
4.2 Hz, 1H), 5.78 (m, 1H), 5.14 (br s, 1H), 5.10 (d, ] =4.7 Hz, 1H), 4.82 (m, 1H), 4.72 (m, 1H, OH), 3.88 (dd,
J = 15.7 Hz, 5.4 Hz, 2H), 3.72 (m, 1H), 3.12 (m, 1H), 2.02 (m, 1H), 1.81 (m, 1H), 1.44 (s, 9H). 3C-NMR
(100 MHz, CDCl3): 6 =171.1, 150.4, 148.2, 146.0, 135.8, 133.9, 127.9, 127 .4, 125.6, 124.8, 120.8, 116.7, 80.4,
69.9,50.1, 43.4,37.9, 28.3 (3 x CH3z). HRMS (ESIpos): calcd. for CooHysN>O3SiNa [M + Na]*: 365.1836,
found: 365.1834.

(S)-Ethyl allyl(3-(t-butyldimethylsilyloxy)-3-(quinolin-7-yl) propyl)carbamate (9B). To a solution of amine
9 (150 mg, 0.42 mmol) and K,CO3 (176 mg, 1.26 mmol) in 4 mL acetone was added a solution of
ethyl chloroformate (70 mg, 0.63 mmol) in 1 mL acetone at 0 °C. The mixture was stirred at rt and the
reaction was quenched with water. The aqueous layer was extracted with EtOAc and the combined
organic layers were dried over MgSO,4 and concentrated in vacuo. Purification of the residue by
FC (hexane/EtOAc 2:1) gave 156 mg (87%) of the desired carbamate 9B as a yellow oil; R¢ = 0.2
(hexane/EtOAc 4:1); 0.4 (hexane/EtOAc 2:1). [oc]%T = —41.8° (c = 1.79, CH,Cl,). 'H-NMR (400 MHz,
CDCl3): 6 =8.88 (dd, ] =4.3 Hz, 1.6 Hz, 1H), 8.10 (d, ] = 8.2 Hz, 1H), 7.95 (br s, 1H), 7.76 (d, ] = 8.4 Hz,
1H), 7.53 (dd, ] = 8.4 Hz, 1.6 Hz, 1H), 7.35 (dd, | = 8.3 Hz, 4.3 Hz, 1H), 5.69 (m, 1H), 5.03 (m, 2H), 4.88
(dd, J =7.1 Hz, 5.9 Hz, 1H), 4.06 (q, ] = 7.2 Hz, 2H), 3.78 (m, 2H), 3.26 (m, 2H), 1.98 (m, 2H), 1.16 (t,
J =7.1 Hz, 3H), 0.89 (s, 9H), 0.05 (s, 3H), —0.17 (s, 3H). 3C-NMR (100 MHz, CDCl3): § = 156.2, 150.6,
148.2,146.4,135.8, 133.9, 127.8, 127.5, 125.8, 124.8, 120.8, 116.8, 72.9, 61.1, 49.7, 43.6, 38.6, 25.8 (3 x CH3),
18.1, 14.6, —4.6, —5.1. IR (film): U = 2931, 2857, 1698, 1472, 1417, 1384, 1250, 1092, 836, 776, 677. HRMS
(ESIpos): caled. for CpsH3sN,O35iNa [M + Na]*: 451.2387, found: 451.2385.

(S)-Ethyl allyl(3-hydroxy-3-(quinolin-7-yl)propyl)carbamate (11). To a solution of silyl-ether 9B (154 mg,
0.36 mmol) in 4 mL. THF were added 1.08 mL (1.08 mmol) TBAF-solution (1M in THF) at rt. The mixture
was stirred at rt for 7 h; aqueous NH4Cl solution was then added and the solution was extracted with
EtOAc. The combined organic layers were washed with H,O, dried over MgSO,4 and concentrated in
vacuo. The residue was purified by FC (hexane/EtOAc 2:1 — 1:1) to furnish 109 mg (96%) of the free
alcohol 11 as a yellow oil; R¢ = 0.1 (hexane/EtOAc 2:1). [oc]%T = —8.57° (c = 1.25, CH,Cl,). 'H-NMR
(400 MHz, CDCl3): 6 =8.86 (dd, ] =4.3 Hz, 1.7 Hz, 1H), 8.10 (dd, ] = 8.3 Hz, 1.0 Hz, 1H), 8.01 (br s, 1H),
7.77 (d, ] = 8.5 Hz, 1H), 7.62 (d, ] = 6.2 Hz, 1H), 7.34 (dd, ] = 8.4 Hz, 4.3 Hz, 1H), 5.78 (m, 1H), 5.15 (br
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s, 1H), 5.11 (m, 1H), 4.85 (d, ] = 8.6 Hz, 1H), 4.15 (q, ] = 7.1 Hz, 2H), 3.95-3.73 (m, 3H), 3.19 (m, 1H),
2.05 (m, 1H), 1.86 (m, 1H), 1.23 (t, ] = 7.1 Hz, 3H); OH-proton not visible. 3C-NMR (100 MHz, CDCl3):
6 =157.6,150.5, 148.2, 145.9, 135.8, 133.5, 127.9, 127.4, 125.6, 124.8, 120.8, 117.0, 70.0, 61.9, 49.7, 43.6,
37.7,14.6. IR (film): U = 3392 (br), 2980, 2926, 1673, 1472, 1415, 1241, 1069, 839, 771, 677 cm™—!. HRMS
(ESIpos): caled. for C1gH»npN,OsNa [M + Na]*: 337.1523, found: 337.1520.

(5)-3-((t-Butyldimethylsilyl)oxy)-1-((3aS,6R,7aR)-8,8-dimethyl-2,2-dioxidotetrahydro-3H-3a,6-methano-
benzolclisothiazol-1(4H)-yl)-3-(quinolin-6-yl)propan-1-one (12A). To a solution of 4.53 g (10.90 mmol) of
(5)-1-((3aS,6R,7aR)-8,8-dimethyl-2,2-dioxidotetrahydro-3H-3a,6-methanobenzo|c]isothiazol-1(4H)-yl)-
3-hydroxy-3-(quinolin-6-yl)propan-1-one (3:1 mixture of diastereoisomers) [25] in 75 mL of DMF were
added 2.25 g (32.9 mmol) of imidazole and 2.52 g (16.4 mmol) of TBSCI and the reaction mixture was
stirred at 40 °C for 16 h. The solution was then evaporated, CH,Cl, and water were added, and the
organic layer was separated. The aqueous solution was additionally extracted with CH,Cl; and the
combined organic extracts were dried over MgSOy, and evaporated. The residue was purified by
FC (hexane/EtOAc 3:2, three runs) to give 3.76 g (65%) of protected alcohol 12A as a light-yellow
solid (single isomer) and 1.15 g (20%) of the corresponding 3R-isomer; R¢ = 0.7 (hexane/EtOAc 1:1).
TH-NMR (400 MHz, CDCl3): & = 8.86 (dd, ] = 4.3 Hz, 1H), 8.10 (dm, | = 8.3 Hz, 1H), 8.03-8.01 (m, 1H),
7.75(d, ] = 7.0 Hz, 1H), 7.75 (d, | = 7.5 Hz, 1H), 7.35 (dd, ] = 8.3 Hz, 4.2 Hz, 1H), 5.39 (t, | = 6.8 Hz, 1H),
3.73(d, ] =7.7 Hz, 1H), 3.33 (s, 2H), 3.22 (dd, | = 14.9 Hz, 6.9 Hz, 1H), 3.14 (dd, ] = 149 Hz, 6.9 Hz, 1H),
1.92 (dd, J = 13.6 Hz, 7.9 Hz, 1H), 1.83-1.64 (br, m, 3H), 1.62 (m, 1H), 1.26 (m, 2H), 0.84 (s, 9H), 0.78
(s, 3H), 0.45 (s, 3H), 0.05 (s, 3H), —0.17 (s, 3H). 3C-NMR (100 MHz, CDCl3): § = 168.9, 150.2, 148.1,
141.8,136.1,129.5, 128.3, 127.9, 125.0, 121.1, 71.9, 64.9, 52.9, 48.1, 47.5, 46 .5, 44.5, 38.2, 32.8, 26.3, 25.7
(3 x CH3),20.0,19.6,18.1, —4.7, —5.0.

(5)-3-((t-Butyldimethylsilyl)oxy)-3-(quinolin-6-yl)propanal (13). To a solution of 3.76 g (7.11 mmol) of
TBS-ether 12A in 35 mL of CH,Cl, were added dropwise 18 mL of a 1M solution of DIBAL-H (18 mmol)
at —78 °C under Ar over a period of 30 min. The mixture was then stirred at —78 °C for 6 h. Water was
then added to quench the reaction, the mixture was diluted with additional water (200 mL), CH,Cl,
(200 mL) and 45 mL of 1 N NaOH. The organic layer was then separated and the aqueous solution
was additionally extracted with CH,Cl, (2 times). The combined organic extracts were washed with
water, dried over MgSQy, and the solvent was evaporated. Purification of the residue by FC with
hexane/EtOAc 1/1 (3 runs) gave 2.29 g (102%) of slightly impure aldehyde 13 as a yellow oil; R¢ = 0.6
(hexane/EtOAc 1:1). [a]RT = —76.2° (¢ = 1.09 in CH,Cl,). 'H-NMR (400 MHz, CDCl3): & = 9.77
(dd, J=24Hz, ] =2.0 Hz, 1H), 8.86 (dd, ] = 4.3 Hz, 1.8 Hz, 1H), 8.10 (dm, | = 8.4 Hz, 1H), 8.06 (d,
J=8.7Hz, 1H), 7.73 (m, 1H), 7.68 (dd, | = 8.7 Hz, 1.9 Hz, 1H), 7.36 (dd, ] = 8.4 Hz, | = 4.2 Hz, 1H),
538 (dd, J=8.0Hz, | = 42 Hz, 1H), 291 (ddd, ] = 159 Hz, ] = 8 Hz, ] = 2.5 Hz, 1H), 2.68 (ddd,
J=16.0Hz, ] =43 Hz, ] = 1.9 Hz, 1H), 0.84 (s, 9H), 0.03 (s, 3H), —0.17 (s, 3H). 1*C-NMR (100 MHz,
CDCl3): & = 200.6,150.4, 147.9, 142.0, 136.0, 129.9, 127.9, 127.3,124.1, 121.4, 70.3, 53.8, 25.6 (3 x CH3),
18.0, —4.7, —5.2. HRMS (ESIpos): calcd. for C1gHy5NO,SiNa [M + Na]*: 338.1547, found: 338.1539.

(S)-N-(3-(t-Butyldimethylsilyloxy)-3-(quinolin-6-yl)propyl)prop-2-en-1-amine (14). To heat-activated
molecular sieves (4 A, 600 mg) was added a solution of aldehyde 13 (250 mg, 0.79 mmol) in 5 mL
THE. To this solution were added 0.3 mL of allylamine (3.93 mmol) and the mixture was heated to
50 °C for 24 h. It was then filtered through a pad of dry Celite™, the residue was washed with THF
and the combined filtrates were concentrated under reduced pressure to give a yellow oil. For the
reduction, 32 mg of NaBH4 (0.81 mmol) were placed in a 10 mL two-necked flask at 0 °C and a solution
of the crude imine in 3 mL. MeOH was added (gas formation could be observed). After 20 min the
reaction mixture was diluted with water and extracted with EtOAc. The combined organic extracts
were washed with brine, dried over MgSO4 and concentrated in vacuo. Purification of the residue by
FC (hexane/EtOAc 4:1 — 1:1 + 1% Et3N) furnished 188 mg (67%) of the desired amine 14 as slightly
yellow oil; [a] ST = —58.1° (¢ = 1.29, CH,Cl,). 'H-NMR (400 MHz, CDCl3): 6 = 8.82 (dd, | = 4.3 Hz,
1.8 Hz, 1H), 8.06 (dd, ] = 8.4 Hz, 1.4 Hz, 1H), 8.02-8.00 (m, 1H), 7.65 (dd, ] = 7.1 Hz, 2.1 Hz, 2H), 7.31
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(dd, ] =8.3 Hz, 4.3 Hz, 1H), 5.82 (m, 1H), 5.07 (dq, | = 17.2 Hz, 1.6 Hz, 1H), 5.00 (dq, ] = 10.3 Hz, 1.6 Hz,
1H), 4.93 (dd, | = 7.5 Hz, 4.7 Hz, 1H), 3.15 (dt, ] = 6.0 Hz, 1.2 Hz, 2H), 2.63 (dd, | = 7.3 Hz, 6.7 Hz,
2H), 1.97-1.80 (br m, 2H), 0.85 (s, 9H), 0.01 (s, 3H), —0.21 (s, 3H); NH proton not visible. 3C-NMR
(100 MHz, CDCl3): 6 = 149.9, 147.7,143.7, 136.8, 135.8, 129.3, 127.8, 127.8, 123.8, 121.0, 115.6, 73.3, 52.5,
45.7,40.7,25.7 (3 x CHs), 18.1, —4.7, —5.1. HRMS (ESIpos): calcd. for Cp;H3N,OSiNa [M + Na]*:
379.2176, found: 379.2178.

(S)-t-Butyl allyl(3-(t-butyldimethylsilyloxy)-3-(quinolin-6-yl)propyl)carbamate (14A). A solution of amine 14
(163 mg, 0.46 mmol) and Boc, O (154 mg, 0.69 mmol) in 7 mL CH,Cl, was stirred at rt for 14 h. 1 mL
of ethanolamine was then added and stirring was continued for one additional hour. The mixture
was concentrated in vacuo, water was added to the residue, and the mixture was extracted with
Et,O and CH,Cl,. The combined organic layers were dried over MgSO, and concentrated in vacuo.
Purification of the residue by FC (hexane/EtOAc 10:1 — 4:1 + 1% Et3N) gave 180 mg (86%) of the
desired carbamate 14B as a colorless oil; R¢ = 0.6 (hexane/EtOAc 2:1). [cx]%T = —37.5° (c=1.29, CHCly).
'H-NMR (400 MHz, CDCl3): 5 = 8.83 (dd, ] = 4.0 Hz, 1.6 Hz, 1H), 8.08 (dm, ] = 8.2 Hz, 1H), 8.03 (d,
] =9.1Hz, 1H), 7.67-7.64 (m, 2H), 7.33 (dd, | = 8.3 Hz, 4.2 Hz, 1H), 5.68 (m, 1H), 5.02 (q, ] = 1.2 Hz, 1H),
499 (dq, ] =9.2 Hz, 1.5 Hz, 1H), 4.83 (dd, ] =7.0 Hz, 4.8 Hz, 1H), 3.72 (m, 2H), 3.20 (m, 2H), 1.95 (m,
2H), 1.34 (s, 9H), 0.86 (s, 9H), 0.01 (s, 3H), —0.20 (s, 3H). >*C-NMR (100 MHz, CDCl3): § = 155.3, 150.0,
147.7,143.4,135.9, 134.1, 129.4, 127.9, 127.6, 123.9, 121.1, 116.3, 79.3, 72.9, 49.7, 43.6, 38.8, 28.3 (3 x CH3),
25.7 (3 x CH3), 18.1, —4.7, —5.1. HRMS (ESIpos): caled. for CsHyN2O3SiNa [M + Na]*: 479.27004,
found: 479.2699.

(S)-t-Butyl allyl[3-hydroxy-3-(quinolin-6-yl)propyl] carbamate (15). To a solution of silyl-ether 14B
(200 mg, 0.44 mmol) in 5 mL THF were added 1.32 mL (1.32 mmol) TBAEF-solution (1 M in THF) and
the mixture was stirred at rt for 5 h. The reaction was quenched with saturated aqueous NH4Cl solution
and the mixture was extracted with EtOAc. The combined organic layers were washed with H,O, dried
over MgSOy and concentrated in vacuo. The residue was purified by FC (hexane/EtOAc 2:1 — 1:1)
to furnish 143 mg (95%) of the desired free alcohol 15 as a colorless oil; R¢ = 0.2 (hexane/EtOAc
2:1).[o]RT = —9.49° (¢ = 1.13, CH,Cl,). 'H-NMR (400 MHz, CDCl3): 6 = 8.85 (dd, | = 4.2 Hz, 1.5 Hz,
1H), 8.12 (dd, ] = 8.4 Hz, 1.2 Hz, 1H), 8.04 (d, ] = 8.7 Hz, 1H), 7.84 (br s, 1H), 7.66 (dd, ] = 8.8 Hz, 2.0 Hz,
1H), 7.36 (dd, ] = 8.2 Hz, 4.2 Hz, 1H), 5.80 (m, 1H), 5.16 (br s, 1H), 5.12 (d, ] = 6.3 Hz, 1H), 4.80 (m, 2H;
1xOH), 3.91 (dd, J = 15.7 Hz, 5.4 Hz, 2H), 3.72 (m, 1H), 3.10 (m, 1H), 2.03 (m, 1H), 1.76 (m, 1H), 1.45
(s, 9H). 13C-NMR (100 MHz, CDCl,): & = 171.13, 150.08, 147.71, 142.60, 136.07, 133.83, 129.35, 128.15,
127.72,123.79, 121.18, 116.75, 80.53, 69.80, 50.12, 43.33, 38.09, 28.36 (3 x CHjz). HRMS (ESIpos): calcd.
for CooHpsN,O3SiNa [M + Na]*: 365.1836, found: 365.1831.

(35,6R,7S,85)-{(S)-3-[Allyl(t-butoxycarbonyl)amino]-1-(quinolin-7-yl)propyl}3,7-bis(t-butyldimethylsilyloxy)-
4,4,6,8-tetra-methyl-5-oxodec-9-enoate (17a). To a solution of alcohol 10 (115 mg, 0.34 mmol) in 3 mL
CH,Cl, were added sequentially 48 mg (0.39 mmol) of DMAP and 77 mg (0.39 mmol) of EDCI at
0 °C. After stirring for 5 min, a solution of 120 mg (0.24 mmol) of acid 16 [29] in 2 mL CH,Cl, was
added, the cooling bath was removed and stirring was continued at rt for 5 h, when TLC analysis
(hexane/EtOAc 4:1) indicated complete conversion. The mixture was then concentrated in vacuo
and the resulting residue was purified by FC (hexane/EtOAc 4:1) to furnish 166 mg (84%) of the
desired ester 17a as a colorless o0il; R¢ = 0.3 (hexane/EtOAc 4:1). [cx]%T = —45.1° (¢ = 1.01, CHCl,).
1H-NMR (400 MHz, CDCl3): & = 8.89 (dd, ] = 4.4 Hz, 1.3 Hz, 1H), 8.11 (d, ] = 8.4 Hz, 1H), 8.00 (br s,
1H),7.78 (d, ] =8.5Hz, 1H), 7.50 (d, | = 8.2 Hz, 1H), 7.37 (dd, ] = 8.4 Hz, 4.1 Hz, 1H), 5.86 (m, 2H),
5.69 (m, 1H), 5.06-4.98 (m, 3H), 4.94 (dm, ] = 17.3 Hz, 1H), 4.31 (dd, ] = 6.5 Hz, 3.2 Hz, 1H), 3.76 (dd,
J =7.1Hz, 2.0 Hz, 3H), 3.21 (m, 2H), 3.00 (qi, ] = 7.0 Hz, 1H), 2.50 (dd, ] = 17.1 Hz, 3.4 Hz, 1H), 2.34
(dd, J =17.1 Hz, 6.1 Hz, 1H), 2.22 (m, 1H), 2.12 (m, 1H), 2.02 (s, 1H), 1.37 (br s, 9H), 1.15 (br s, 3H), 1.00
(s, 3H), 0.98 (d, ] = 7.0 Hz, 3H), 0.94 (d, ] = 7.0 Hz, 3H), 0.87 (s, 9H), 0.86 (s, 9H), 0.05 (s, 3H), 0.02 (s,
3H), —0.01 (s, 3H), —0.01 (s, 3H). 3C-NMR (100 MHz, CDCl3): § = 217.8, 171.3, 155.2, 150.8, 148.1,
141.4,139.9, 135.8, 134.1, 128.2, 127.9, 126.9, 125.1, 121.2, 115.3, 116.3, 79.6, 76.2, 74.2, 73.8, 53.3, 50.0,
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46.1,43.6,43.5,40.3,34.9,28.4 (3 x CH3), 26.2 (3 x CH3), 26.1 (3 x CH3), 23.6,19.7,18.8, 18.5,18.2, 15.2,
—3.5, -39, —4.2, —4.7. Some of the peaks in the carbon spectrum were hardly visible due to peak
broadening. IR (film): & = 2929 (br), 2857, 1738, 1696, 1463, 1365, 1251, 1162, 987, 834, 775, 669 cm L.
HRMS (ESIpos): caled. for C46HysN2O7Si;Na [M + Na]*: 847.5083, found: 847.5088.

(25,95,10S,11R,14S,E)-t-Butyl-10,14-bis(t-butyldimethyl-silyloxy)-9,11,13,13-tetramethyl-12,16-dioxo-2-
(quinolin-7-yl)-1-oxa-5-azacyclohexadec-7-ene-5-carboxylate (17aA). To a solution of diene 17a 63 mg
(0.076 mmol) in 148 mL toluene was added Grubbs 2nd generation catalyst (10 mg, 0.012 mmol,
15 mol %) in 2 mL of toluene at reflux temperature. The reddish-yellow solution was stirred at reflux
temperature for 30 min, when complete conversion had occurred according to MS analysis; the
mixture was then cooled down with an ice bath. The solvent was removed in vacuo and the residue
was purified by FC (hexane/EtOAc 10:1 — 4:1). Because the resulting product still had a brownish
color, a second column chromatography was performed leading to 50 mg (82%) of the desired olefin
17aA as a greyish foam; R¢ = 0.2 (hexane/EtOAc 4:1); R¢ = 0.5 (hexane/EtOAc 2:1). [oc]%T =-11.2°
(c = 1.00, CH,Cl,). "H-NMR (400 MHz, CDCl3): § = 8.90 (dd, ] = 4.1 Hz, 1.0 Hz, 1H), 8.11 (d, ] = 8.2 Hz,
1H), 8.08 (br s, 1H), 7.79 (d, ] = 8.4 Hz, 1H), 7.55 (dd, ] = 8.4 Hz, 1.6 Hz,1H), 7.37 (dd, ] =8.4 Hz, 42 Hz,
1H), 6.10 (d, ] = 9.7 Hz, 1H), 5.37 (dd, ] = 15.4 Hz, 6.3 Hz, 1H), 5.26 (dm, | = 15.6 Hz, 1H), 4.39 (m,
2H), 4.01 (dd, ] = 8.7 Hz, 2.5 Hz, 1H), 3.64 (m, 1H), 3.25 (m, 2H), 2.99 (m, 1H), 2.60 (dd, ] = 16.6 Hz,
6.3 Hz, 1H), 2.48 (m, 1H), 2.44-2.38 (m, 1H), 2.30 (m, 1H), 2.20 (m, 1H), 1.40 (s, 9H), 1.24 (s, 3H), 1.15
(s, 3H), 1.13 (d, ] = 6.8 Hz, 3H), 1.04 (d, ] = 6.9 Hz, 3H), 0.88 (s, 9H), 0.83 (s, 9H), 0.12 (s, 3H), 0.06 (s,
6H), —0.03 (s, 3H). '>*C-NMR (100 MHz, CDCl3): § = 216.5, 170.4, 155.6, 150.8, 148.2, 141.5, 135.7, 134.6,
128.2,127.9,127.0,125.2,124.5,121.3, 79.6, 77.1, 73.4, 73.0, 54.3, 48.2, 43.8, 43.6, 42.8, 42.5, 34.5, 28 .4
(8 x CH3),25.9 (6 x CH3), 23.8,19.0, 18.3, 18.2,18.1,12.8, —3.7, —4.3, —4.3, —4.9. Some of the peaks in
the carbon spectrum were hardly visible, due to peak broadening. IR (film): o = 2929 (br), 2857, 1739,
1472, 1365, 1252, 1160, 1082, 988, 836, 775, 670 cm~—!. HRMS (ESIpos): calcd. for C44H7pN»O7Si;Na
[M + Na]*: 819.4770, found: 847.4766.

(25,95,10S,11R,14S,E)-t-Butyl-10,14-dihydroxy-9,11,13,13-tetramethyl-12,16-dioxo-2-(quinolin-7-yl)-1-0xa-5-
azacyclohexadec-7-ene-5-carboxylate (5a). To a solution of bis-TBS-ether 17aA (116 mg, 0.15 mmol) in 6 mL
THF in a 50 mL plastic tube were added 1.3 mL of pyridine and 2 mL of HF-pyridine (HF-pyridine
dropwise) at 0 °C. After 15 min, the cooling bath was removed and the mixture was stirred at rt for 2 h.
As significant amounts of starting material were still detectable at this point by MS analysis, another
1.3 mL of HF-pyridine were added; 2 h later the conversion to the mono-TBS-protected product was
nearly complete. Another 0.8 mL of HF-pyridine were added and stirring was continued. Subsequent
to this, samples of the reaction mixture were analyzed by MS every 30 min. After 7 h only small
amounts of the bis-TBS-protected product were still detectable. To avoid BOC-cleavage, the reaction
was quenched at this point. Thus, the reaction mixture was added dropwise to 35 mL of a cooled
saturated, aqueous NaHCOj solution (strong gas formation). The solution was then extracted with
EtOAc and the combined organic layers were washed with brine, dried over MgSO,4 and concentrated
in vacuo. The residue was purified by FC (CH,Cl, /MeOH 200:1 — 20:1) followed by preparative
RP-HPLC on a Waters Symmetry® C18 5 um (Waters, Milford, MA, USA), 19 mm x 100 mm column,
employing an CH3CN/H,0 gradient (CH3CN/H,O 40:60 — 90:10) at a flow rate of 25 mL/min
to furnish 57 mg (67%) of the macrolactone 5a as a white solid; R¢ = 0.3 (EtOAc). [cx]%) = —107.4°
(c = 1.00, CH,Cl,). 'H-NMR (500 MHz, 318 K, DMSO-dg): 6 = 8.89 (dd, ] = 4.2 Hz, 1.7 Hz, 1H), 8.33
(dm, ] = 8.4 Hz, 1H), 8.04 (br s, 1H), 7.95 (d, | = 8.5 Hz, 1H), 7.62 (dd, | = 8.4 Hz, 1.5 Hz, 1H), 7.50 (dd,
J=8.2Hz, 42 Hz, 1H), 5.93 (m, 2H), 5.37 (m, 1H), 5.17 (d, ] = 6.6 Hz, 1H, OH), 4.53 (m, 2H), 4.01 (dd,
J = 14.9 Hz, 5.3 Hz, 1H), 3.68 (dd, ] = 15.2 Hz, 7.6 Hz, 1H), 3.56 (m, 1H), 3.28 (m, 2H), 3.12 (m, 1H),
2.45-2.38 (m, 2H), 2.20 (m, 1H), 2.09 (m, 1H), 2.02 (m, 1H), 1.30 (s, 9H), 1.19 (s, 3H), 1.12 (d, ] = 6.6 Hz,
3H), 1.04 (d, ] = 6.8 Hz, 3H), 0.93 (s, 3H). '3C-NMR (125 MHz, 318 K, DMSO-dg): & = 216.6, 169.7, 154.3,
150.5, 147 .4, 141.6, 135.6, 135.5, 128.0, 127.0, 125.5, 125.1, 124.2, 121.2,78.5, 74.4, 73.3, 69.2, 53.4, 48.3,
43.8,41.0,40.4, 38.5,34.3, 27.8 (3 x CH3), 19.9, 18.9, 17.3, 14.8. Some of the carbon signals were hardly
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visible, due to peak broadening. IR (film): = 3472 (br), 2929 (br), 1740, 1687, 1415, 1365, 1251, 1173,
1042, 982 cm~!. HRMS (ESIpos): calcd. for C3pHysN>O7Na [M + Na]*: 591.3041, found: 591.3042.

(25,9S,10S,11R,14S)-t-Butyl-10,14-dihydroxy-9,11,13,13-tetramethyl-12,16-dioxo-2-(quinolin-7-yl)-1-oxa-
5-azacyclohexadec-ane-5-carboxylate (3a). To a yellow suspension of macrolactone 5a (9 mg, 0.016 mmol)
and dipotassium azadicarboxylate (PADA) (500 mg, 2.58 mmol) in 5 mL CH,Cl; was added a solution
of AcOH (0.3 mL, 5.25 mmol) in 3 mL CH,Cl, dropwise via syringe pump at rt over a period of 2.5 h.
After stirring for 18 h, the white suspension was filtered through a plug of Celite™, the residue was
washed with CH,Cl, and the combined filtrates were concentrated in vacuo. The resulting crude
mixture was again dissolved in 5 mL of CH,Cl, together with 500 mg (2.58 mmol) PADA and another
0.3 mL (5.25 mmol) AcOH were added as a solution in 3 mL CH,Cl, dropwise via syringe pump.
After 18 h, the reaction mixture was again filtered. The reaction/work-up-sequence was repeated
until a reasonable conversion to the reduced product could be observed by HPLC. Altogether 3.5 g
(18 mmol) of PADA and 2.1 mL (36.7 mmol) of AcOH were used, the overall reaction time was 7 days.
After the final work up, the resulting crude mixture was purified by preparative RP-HPLC on a Waters
Symmetry® C18 5 um, 19 mm x 100 mm column, employing an CH3CN/H,0 gradient (CH;CN/H,O
40:60 — 90:10) at a flow rate of 25 mL/min, to yield 6 mg (66%) of the desired azathilone 3a as a white
solid; R¢ = 0.2 (CH,Cl,/MeOH 50:1). [«]RT = —8.7° (¢ = 1.00, CH,Cl,). 'H-NMR (500 MHz, 318 K,
DMSO-dg): & =8.89 (dd, ] = 4.1 Hz, 1.6 Hz, 1H), 8.33 (dm, | = 8.3 Hz, 1H), 8.05 (br s, 1H), 7.95 (d,
J=84Hz, 1H),7.63 (dd, | = 8.4 Hz, 1.4 Hz, 1H), 7.50 (dd, ] = 8.3 Hz, 4.2 Hz, 1H), 5.93 (m, 1H), 5.26 (d,
J=7.6Hz, 1H, OH), 4.26 (d, ] = 6.4 Hz, 1H, OH), 4.19 (m, 1H), 3.43 (m, 1H), 3.37 (m, 1H), 3.23 (m, 2H),
3.10 (m, 1H), 2.96 (m, 1H), 2.42 (dd, ] = 14.4 Hz, 10.6 Hz, 1H), 2.11 (m, 2H), 1.55 (m, 1H), 1.43 (m, 1H),
1.33 (s, 9H), 1.32 (s, 3H), 1.30-1.16 (m, 4H), 1.02 (d, ] = 6.7 Hz, 3H), 0.93 (s, 3H), 0.90 (d, ] = 6.8 Hz,
3H). '*C-NMR (125 MHz, 318 K, DMSO-dg): & = 217.8, 170.5, 154.3, 150.6, 147.5, 141.7, 135.5, 128.0,
127.0,125.1,124.3,121.2,78.1,74.0, 73.1,71.3,52.7, 47.0, 44.2, 42.2, 38.6, 36.0, 35.5, 27.9 (3 x CH3), 27.0,
24.7,20.5,20.0,17.2, 14.1. Some of the carbon signals were hardly visible, due to peak broadening. IR
(film): © = 3442 (br), 2922 (br), 1735, 1687, 1457, 1418, 1366, 1291, 1253, 1160, 1072, 1047, 976, 837 cm .
HRMS (ESIpos): caled. for C3pHsN,O7Na [M + Na]*: 593.3197, found: 593.3201.

(35,6R,75,85)-((S)-3-(Allyl(ethoxycarbonyl)amino)-1-(quinolin-7-yDpropyl) 3,7-bis(t-butyl-dimethylsilyloxy)-
4,4,6,8-tetra-methyl-5-oxodec-9-enoate (17b). To a solution of alcohol 11 (19 mg, 0.06 mmol) in 2 mL
CH,Cl, were added sequentially 8.2 mg (0.067 mmol) of DMAP and 13.1 mg (0.067 mmol) of EDCI at
0 °C. After stirring for 5 min, a solution of 21 mg (0.042 mmol) of acid 16 [29] in 2 mL CH,Cl, was
added, the cooling bath was removed and stirring was continued at rt for 5 h, when TLC analysis
(hexane/EtOAc 4:1) indicated complete conversion. The mixture was then concentrated in vacuo and
the resulting residue was purified by FC (hexane/EtOAc 4:1) to furnish 28 mg (84%) of the desired
ester 17b as a colorless oil; Rf = 0.1 (hexane/EtOAc 4:1). [oc]%T = —37.9° (c = 1.00, CH,Cl,). "TH-NMR
(400 MHz, CDCls): 5 =8.89 (dd, ] =4.3 Hz, 1.0 Hz, 1H), 8.11 (d, ] = 8.1 Hz, 1H), 8.01 (br s, 1H), 7.78 (d,
J=83Hz, 1H),7.51(d, ] =7.7 Hz, 1H), 7.37 (dd, | = 8.4 Hz, 4.1 Hz, 1H), 5.90-5.82 (m, 2H), 5.70 (m, 1H),
5.07 (m, 1H), 5.04 (dm, ] = 11.5 Hz, 1H), 4.99 (dd, ] = 10.6 Hz, 1.2 Hz, 1H), 4.94 (dm, ] = 17.5 Hz, 1H),
4.31(dd, J =6.4 Hz, 3.4 Hz, 1H), 4.06 (q, ] = 7.1 Hz, 2H), 3.80 (m, 2H), 3.75 (dd, ] =7.2 Hz, 2.0 Hz, 1H),
3.26 (m, 2H), 3.00 (qi, ] =7.1 Hz, 1H), 2.50 (dd, ] = 16.9 Hz, 3.5 Hz, 1H), 2.35 (dd, ] = 16.7 Hz, 6.4 Hz,
1H), 2.23 (m, 1H), 2.14 (m, 1H), 2.02 (m, 1H), 1.16 (br t, ] = 7.1 Hz, 3H), 1.15 (s, 3H), 1.00 (s, 3H), 0.98
(d, ] =72Hz,3H),0.94 (d, ] =7.0 Hz, 3H), 0.87 (s, 9H), 0.85 (s, 9H), 0.05 (s, 3H), 0.00 (s, 3H), —0.01 (s,
3H), —0.01 (s, 3H). >*C-NMR (100 MHz, CDCl3): § = 217.8, 171.3, 156.1, 150.7, 148.1, 141.5, 139.9, 135.7,
133.7,128.2,127.9,126.9, 125.0, 121.2, 116.8, 115.3, 76.2, 74.0, 73.7, 61.3, 53.3, 49.9, 46.1, 43.4, 43.0, 40.3,
34.8,26.2 (3 x CHj), 26.0 (3 x CH3), 23.6,19.7, 18.8, 18.5, 18.2, 15.2, 14.6, —3.6, —3.9 —4.2, —4.7. Some of
the signals in the carbon spectrum were hardly visible, due to peak broadening. IR (film): ¥ = 2955,
2931, 2855, 1739, 1699, 1472, 1416, 1384, 1252, 1171, 988, 836, 774 cm~!. HRMS (ESIpos): calcd. for
C44H72N207Si2Na [M + Na]+: 819.4770, found: 819.4772.
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(25,95,10S,11R,14S,E)-Ethyl 10,14-bis(t-butyldimethyl-silyloxy)-9,11,13,13-tetramethyl-12,16-dioxo-2-
(quinolin-7-yl)-1-oxa-5-azacyclohexadec-7-ene-5-carboxylate (17bA). To a solution of diene 17b (25 mg,
0.031 mmol) in 63 mL toluene was added Grubbs 2nd generation catalyst (4.0 mg, 0.0047 mmol,
15 mol %) in 2 mL of toluene at reflux temperature. The reddish-yellow solution was stirred at reflux
temperature for 30 min, when complete conversion had occurred according to MS analysis; the
mixture was then cooled down with an ice bath. The solvent was removed in vacuo and the residue
was purified by FC (hexane/EtOAc 4:1) to furnish 23 mg (96%) of the desired olefin 17bA as a brown
oil. [«]RT = —8.6° (¢ = 1.00, CH,Cl). "H-NMR (400 MHz, CDCl3): 6 = 8.91 (dm, ] = 3.9 Hz, 1H), 8.12
(d, ] =84 Hz, 1H), 8.10 (s, 1H), 7.79 (d, ] = 8.1 Hz, 1H), 7.56 (dd, ] =8.5 Hz, 1.7 Hz, 1H), 7.38 (dd,
J=85Hz,4.0 Hz, 1H), 6.11 (d, ] = 10.5 Hz, 1H), 5.38 (dd, ] = 15.7 Hz, 6.3 Hz, 1H), 5.30-5.23 (m, 1H),
4.47-4.38 (m, 2H), 4.10 (m, 2H), 4.00 (dd, ] = 8.7 Hz, 2.9 Hz, 1H), 3.71 (m, 1H), 3.29 (m, 2H), 2.99 (m,
1H), 2.60 (dd, | = 16.8 Hz, 6.2 Hz, 1H), 2.48 (m, 1H), 2.43-2.38 (m, 1H), 2.32-2.16 (m, 2H), 1.24 (s, 3H),
1.20 (br t, ] =7.1 Hz, 3H), 1.15 (s, 3H), 1.13 (d, ] = 6.8 Hz, 3H), 1.04 (d, ] = 6.9 Hz, 3H), 0.88 (s, 9H), 0.83
(s, 9H), 0.12 (s, 3H), 0.07 (s, 6H), —0.04 (s, 3H). 3C-NMR (100 MHz, CDCl3): § = 216.3, 170.4, 150.8,
148.2,144.3, 141.5, 135.7, 135.0, 128.1, 127.9, 127.2, 125.5, 124.2, 121.3,77.2, 73.3, 73.0, 61.3, 54.3, 48.7,
43.8,43.3,42.9,42.5,34.3,25.9 (6xCH3), 23.9,19.1, 184, 18.2,18.1, 14.7, 13.1, —3.7, —4.2 (2 x CH3), —4.9.
Some of the signals in the carbon spectrum were hardly visible, due to peak broadening (especially the
quaternary C-atoms). IR (film): © = 2931, 2855, 2354, 1739, 1695, 1472, 1424, 1385, 1250, 1216, 1084, 988,
836, 774 cm~!. HRMS (ESIpos): caled. for C4pHggN,O7SipNa [M + Na]*: 791.4457, found: 791.4464.

(25,95,105,11R,14S,E)-Ethyl 10,14-dihydroxy-9,11,13,13-tetramethyl-12,16-dioxo-2-(quinolin-7-yl)-1-oxa-
5-azacyclohexadec-7-ene-5-carboxylate (5b). To a solution of bis-TBS-ether 17bA (22 mg, 0.029 mmol)
in 1.5 mL THF in a 12 mL plastic tube were added 0.25 mL of pyridine and 0.4 mL of HF-pyridine
(HF-pyridine dropwise) at 0 °C. After 15 min, the cooling bath was removed and the mixture was
stirred at rt for 2 h. As significant amounts of starting material were still detectable at this point by MS
analysis, another 0.3 mL of HF-pyridine were added; 4 h later the conversion was still incomplete and
another 0.1 mL of HF-pyridine were added. 3 h later MS analysis indicated the presence of product
and only traces of the mono-TBS-deprotected species. The reaction mixture was then added dropwise
to a cooled saturated, aqueous NaHCOj3 solution (strong gas formation). The solution was then
extracted with EtOAc and the combined organic layers were washed with brine, dried over MgSOy4
and concentrated in vacuo. The residue was purified by FC (CH,Cl,/MeOH 100:1 — 20:1) followed
by preparative RP-HPLC on a Waters Symmetry® C18 5 um, 19 mm x 100 mm column, employing
an CH3CN/H,O gradient (CH3CN/H,O 20:80 — 95:5) at a flow rate of 25 mL/min to furnish 8 mg
(51%) of the macrolactone 5b as a white solid; Ry = 0.6 (CH,Cl, /MeOH 10:1). [oc]gT = —132.7° (c = 1.00,
CH,Clp). 'H-NMR (500 MHz, 318 K, DMSO-dg): & = 8.90 (dd, | = 4.2 Hz, 1.7 Hz, 1H), 8.33 (dd,
J=84Hz 14 Hz 1H),8.05(d, ] =09 Hz, 1H), 7.96 (d, ] = 8.4 Hz, 1H), 7.63 (dd, ] = 8.4 Hz, 1.7 Hz,
1H),7.51 (dd, ] = 8.3 Hz, 4.2 Hz, 1H), 5.95 (m, 2H), 5.38 (m, 1H), 5.15 (d, ] = 6.6 Hz, 1H, OH), 4.56 (d,
] =6.4Hz, 1H, OH), 4.52 (m, 1H), 4.08 (dd, ] = 14.8 Hz, 5.2 Hz, 1H), 3.98 (q, ] = 7.0 Hz, 2H), 3.71 (dd,
J =15.1 Hz, 7.8 Hz, 1H), 3.56 (dt, ] = 7.0 Hz, 3.2 Hz, 1H), 3.37 (m, 1H), 3.27 (qi, ] = 7.1 Hz, 1H), 2.47-2.39
(m, 2H), 2.22 (m, 1H), 2.10 (m, 1H), 2.04 (m, 2H), 1.18 (s, 3H), 1.12 (d, ] = 6.7 Hz, 3H), 1.11 (t, ] = 7.1 Hz,
3H), 1.04 (d, ] = 6.8 Hz, 3H), 0.93 (s, 3H). '3C-NMR (125 MHz, 318 K, DMSO-dg): & = 216.6, 169.8, 155.1,
150.6, 147.4, 141.6, 135.8, 135.5, 128.0, 127.0, 125.3, 125.2, 124.3, 121.2, 74.4, 73.3, 69.2, 60.4, 53.4, 48.4,
439,41.1,395,38.5,34.1,19.9,19.0, 17.4, 14.9, 14.3. Some of the signals in the carbon spectrum were
hardly visible, due to peak broadening (especially the quaternary C-atoms). IR (film): & = 3446 (br),
2976,2927, 1739, 1689, 1468, 1421, 1383, 1288, 1251, 1221, 1181, 1046, 983, 890, 838, 771 cm~!. HRMS
(ESIpos): caled. for C30H4oN,OyNa [M + Na]*: 563.2728, found: 563.2728.

(25,95,10S5,11R,14S)-Ethyl 10,14-dihydroxy-9,11,13,13-tetramethyl-12,16-dioxo-2-(quinolin-7-yl)-1-oxa-5-
azacyclohexadec-ane-5-carboxylate (3b). To a mixture of macrolactone 5b (4 mg, 0.0074 mmol) and
dipotassium azadicarboxylate (PADA) (1.0 g, 5.15 mmol) in 5 mL CH,Cl, was added a solution of
AcOH (0.6 mL, 5.25 mmol) in 2.5 mL CH,Cl, dropwise via syringe pump at rt over a period of 2.5 h.
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After stirring for 1 d, the mixture was filtered through a plug of Celite™, the filtrate was concentrated
in vacuo and the residue was again treated with 1 g of PADA and 0.6 mL of AcOH as described above.
After 2 days, analytical RP-HPLC showed the presence of 60% starting material and 40% product.
The mixture was worked up as described above and the crude product mixture was again treated with
1 g of PADA and 0.6 mL of AcOH as described above and the mixture was stirred at room temperature
for another 2.5 days. After this time only 40% of starting material were present in the reaction mixture.
A last work-up/treatment with 1 g of PADA and 0.6 mL of AcOH cycle and stirring for another day
resulted in a starting material /product ratio of ~25:75. The mixture was filtered, washed with H,O,
extracted with CH,Cl,, dried over MgSO, and concentrated. The resulting crude product mixture
was purified by semi-preparative HPLC (Waters Symmetry® C18 5 um, 7.8 mm x 100 mm column;
gradient from CH3CN/H;0 20:80 to 90:10; 3 mL/min flow rate) to provide 1 mg (25%) of re-isolated
starting material 5b and 2.6 mg (65%) of the desired macrolactone 3b both as white solids. R¢ = 0.2
(CH,Cl, /MeOH 50:1); R = 0.6 (CH,Cl,/MeOH 10:1). [a]RT = —9.6° (c = 1.00, CH,Cl,). 'H NMR
(500 MHz, 318 K, DMSO-dg): 6 =8.89 (dd, ] =4.2 Hz, 1.7 Hz, 1H), 8.33 (dm, ] = 8.5 Hz, 1H), 8.06 (br s,
1H),7.95(d, ] = 8.5 Hz, 1H), 7.64 (dd, ] = 8.6 Hz, 1.8 Hz, 1H), 7.50 (dd, ] = 8.2 Hz, 4.1 Hz, 1H), 5.93
(dd, J=7.1Hz, 4.2 Hz, 1H), 5.25 (d, ] = 7.4 Hz, 1H, OH), 4.27 (d, ] = 6.3 Hz, 1H, OH), 4.19 (m, 1H),
3.97 (q, ] = 7.0 Hz, 2H), 3.58 (m, 1H), 3.51 (m, 1H), 3.43 (m, 1H), 3.22-3.15 (m, 3H), 3.01 (m, 1H), 2.40
(dd, ] =14.7 Hz, 10.7 Hz, 1H), 2.12 (m, 2H), 1.57 (m, 1H), 1.45 (m, 1H), 1.39-1.30 (m, 1H), 1.32 (s, 3H),
1.27-1.22 (m, 2H), 1.12 (t, ] = 7.0 Hz, 3H), 1.02 (d, ] = 6.7 Hz, 3H), 0.93 (s, 3H), 0.90 (d, ] = 6.9 Hz, 3H).
13C-NMR (125 MHz, 318 K, DMSO-dg): § = 217.7,170.5, 155.1, 150.6, 147.4, 141.7, 135.5, 128.0, 127.0,
125.2,124.4,121.2,73.9,73.0,71.5,60.2, 52.7, 46.9, 44.2, 42.1, 38.6, 36.0, 35.1, 26.9, 24.6, 20.5, 20.0, 17.2,
14.4,14.1. Some of the signals in the carbon spectrum were hardly visible, due to peak broadening.
Several of the carbon signals were also duplicated, which we ascribe to the existence of rotamers.
In these cases only the signal for the major rotamer is listed. IR (film): O = 3408 (br), 2922 (br), 2851,
1735, 1687, 1457, 1428, 1386, 1290, 1249, 1214, 1148, 1048, 977, 837 cm~!. HRMS (ESIpos): calcd. for
C30H43N207 [M + H]+Z 543.3065, found: 543.3064.

(35,6R,7S,85)-((S)-3-(Allyl(ethoxycarbonyl)amino)-1-(quinolin-6-yDpropyl) 3,7-bis(t-butyl-dimethylsilyloxy)-
4,4,6,8-tetra-methyl-5-oxodec-9-enoate (18). To a solution of alcohol 15 (48 mg, 0.14 mmol) in 3 mL
CH,Cl, were added sequentially 20 mg (0.16 mmol) of DMAP and 32 mg (0.16 mmol) of EDCI at 0 °C.
After stirring for 5 min, a solution of 50 mg (0.1 mmol) of acid 16 [29] in 2 mL CH,Cl, was added, the
cooling bath was removed and stirring was continued at rt for 5 h, when TLC analysis (hexane/EtOAc
4:1) indicated complete conversion. The mixture was then concentrated in vacuo and the resulting
residue was purified by FC (hexane/EtOAc 4:1) to furnish 74 mg (90%) of the desired ester 18 as
a colorless oil; R¢ = 0.4 (hexane/EtOAc 4:1). [o]RT = —42.0° (¢ = 1.00, CH,Cl,). "H-NMR (400 MHz,
CDCl3): 6 =8.88 (dm, | =4.4 Hz, 1H), 8.12 (dm, ] = 8.8 Hz, 1H), 8.07 (d, ] = 8.8 Hz, 1H), 7.75 (br s, 1H),
7.66 (dd, ] =8.8 Hz, 1.7 Hz, 1H), 7.38 (dd, ] = 8.1 Hz, 4.3 Hz, 1H), 5.85 (m, 2H), 5.70 (m, 1H), 5.07-4.98
(m, 3H), 4.94 (dm, ] = 17.6 Hz, 1H), 4.28 (dd, ] = 6.0 Hz, 3.7 Hz, 1H), 3.75 (dd, ] = 7.0 Hz, 2.0 Hz, 3H),
3.21 (m, 2H), 3.02 (qi, ] = 7.0 Hz, 1H), 2.50 (dd, ] = 17.1 Hz, 3.4 Hz, 1H), 2.32 (dd, ] = 17.1 Hz, 6.3 Hz,
1H), 2.21 (m, 1H), 2.11 (m, 1H), 2.04 (m, 1H), 1.38 (br s, 9H), 1.15 (s, 3H), 0.99 (d, ] = 7.0 Hz, 3H), 0.98
(s,3H), 0.94 (d, ] =7.0 Hz, 3H), 0.87 (s, 9H), 0.85 (s, 9H), 0.05 (s, 3H), 0.00 (s, 3H), —0.01 (s, 3H), —0.01
(s, 3H). BC-NMR (100 MHz, CDCl3): § = 217.9, 171.3, 155.2, 150.6, 148.0, 139.8, 138.1, 136.2, 134.1,
130.0, 128.0, 127.6, 125.7,121.4, 116.6, 115.3,79.7, 76.2, 74.1,73.9, 53.3,49.9, 46.1, 43.5, 43.5, 40.4, 34.7,
28.4 (3 x CHj), 26.2 (3 x CH3), 26.0 (3 x CH3), 23.6,19.8,18.7,18.5,18.2,15.1, —3.6, —3.9, —4.3, —4.7.
Some of the signals in the carbon spectrum were hardly visible, due to peak broadening. IR (film):
B = 2929 (br), 2857, 1739, 1697, 1463, 1365, 1251, 1169, 988, 836, 776, 669 cm™~!. HRMS (ESIpos): calcd.
for C46H76N»O7Si;Na [M+Na]*: 847.5083, found: 847.5080.

(25,95,10S5,11R,14S,E)-Ethyl 10,14-bis(t-butyldimethyl-silyloxy)-9,11,13,13-tetramethyl-12,16-dioxo-2-
(quinolin-6-yl)-1-oxa-5-azacyclohexadec-7-ene-5-carboxylate (18A). To a solution of diene 18 (73 mg,
0.088 mmol) in 148 mL toluene was added Grubbs 2nd generation catalyst (10 mg, 0.012 mmol,
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15 mol %) in 2 mL of toluene at reflux temperature. The reddish-yellow solution was stirred at reflux
temperature for 30 min, when complete conversion had occurred according to MS analysis; the
mixture was then cooled down with an ice bath. The solvent was removed in vacuo and the residue
was purified by FC (hexane/EtOAc 10:1 — 4:1) to furnish 58 mg (82%) of the desired olefin 18A as
a light brown foam; R¢ = 0.3 (hexane/EtOAc 4:1); R¢ = 0.6 (hexane/ EtOAc 2:1). [oc]%T =—7.2° (¢ =1.00,
CH,Clp). 'H-NMR (400 MHz, CDCl3): & = 8.89 (d, ] = 3.0 Hz, 1H), 8.12 (d, ] = 7.9 Hz, 1H), 8.07 (d,
J=89Hz 1H),7.81 (d,J =1.8 Hz, 1H), 7.71 (dd, ] = 8.9 Hz, 1.8 Hz, 1H), 7.39 (dd, ] = 8.3 Hz, 4.1 Hz,
1H), 6.08 (d, ] = 10.7 Hz, 1H), 5.34 (dd, ] = 15.7 Hz, 6.3 Hz, 1H), 5.29-5.22 (m, 1H), 4.47-4.24 (m, 2H),
4.01 (dd, ] = 8.7 Hz, 2.5 Hz, 1H), 3.64 (m, 1H), 3.24 (dd, ] = 15.9 Hz, 1.3 Hz, 2H), 2.99 (m, 1H), 2.58 (dd,
] = 16.8 Hz, 6.1 Hz, 1H), 2.48 (m, 1H), 2.37 (dd, ] = 16.9 Hz, 2.5 Hz, 1H), 2.30-2.13 (m, 2H), 1.40 (s, 9H),
1.25 (s, 3H), 1.15 (s, 3H), 1.13 (d, ] = 6.8 Hz, 3H), 1.04 (d, | = 7.0 Hz, 3H), 0.88 (s, 9H), 0.84 (s, 9H), 0.13 (s,
3H), 0.07 (s, 6H), —0.04 (s, 3H); '>*C-NMR (100 MHz, CDCl3): & = 216.4, 170.4, 155.5, 150.7, 148.0, 138.4,
136.1,134.6,129.9, 128.0, 127.9,125.7,124.5, 121.4,79.6,77.2,73.3,72.9, 54.3, 48.3, 43.7, 43.5, 43.0, 42.6,
34.5,28.4 (3 x CHz), 25.9 (6 x CH3), 23.9,18.9,18.4,18.2,18.1,12.7, -3.7, —4.3, —4.3, —4.9. Some of
the signals in the carbon spectrum were hardly visible, due to peak broadening. IR (film): ¥ = 2928
(br), 2857, 1738, 1693, 1472, 1365, 1251, 1162, 1082, 988, 836, 775, 666 cm ™~ '. HRMS (ESIpos): calcd. for
C44H72N207Si2Na [M + Na]+: 819.4770, found: 847.4773.

(25,95,10S,11R,14S,E)-Ethyl 10,14-dihydroxy-9,11,13,13-tetramethyl-12,16-dioxo-2-(quinolin-6-yl)-1-oxa-5-
azacyclohexadec-7-ene-5-carboxylate (6). To a solution of bis-TBS-ether 18A (56 mg, 0.07 mmol mmol)
in 2.5 mL THF in a 12 mL plastic tube were added 0.5 mL of pyridine and 1.5 mL of HF-pyridine
(HF-pyridine dropwise) at 0 °C. After 20 min, the cooling bath was removed and the mixture was
stirred at rt for 2 h. As significant amounts of starting material and mono-protected intermediate
were still detectable at this point by MS analysis, another 0.3 mL of HF-pyridine were added; 4 h later
the reaction mixture was added dropwise to a cooled saturated, aqueous NaHCOj3 solution (strong
gas formation). The solution was then extracted with EtOAc and the combined organic layers were
washed with brine, dried over MgSO, and concentrated in vacuo. The residue was purified by FC
(CH,Cl, /MeOH 200:1 — 20:1) followed by preparative RP-HPLC (twice) on a Waters Symmetry® C18
5 um, 19 mm x 100 mm column, employing an CH3CN/H,O gradient (CH3CN/H,0 40:60 — 90:10)
at a flow rate of 25 mL/min to furnish 22 mg (55%) of the macrolactone 6 as a white solid; R¢ = 0.4
(EtOAQ). [T = —111.3° (¢ = 1.00, CH,Cl,). '"H-NMR (500 MHz, 318 K, DMSO-de): & = 8.88 (dd,
J =4.1Hz, 1.7 Hz, 1H), 8.31 (dm, ] = 8.5 Hz, 1H), 8.00 (d, ] = 8.7 Hz, 1H), 7.97 (d, | = 1.6 Hz, 1H), 7.77
(dd,J =8.7Hz, 1.8 Hz, 1H), 7.52 (dd, | = 8.4 Hz, 4.2 Hz, 1H), 5.95 (dd, | = 15.6 Hz, 5.2 Hz, 1H), 5.91 (dd,
J=7.3Hz, 3.4 Hz, 1H), 5.36 (m, 1H), 5.19 (d, | = 6.5 Hz, 1H, OH), 4.55 (d, ] = 6.3 Hz, 1H), 4.53-4.50 (m,
1H), 4.00 (dd, ] = 14.8 Hz, 5.4 Hz, 1H), 3.68 (dd, ] = 14.7 Hz, 7.6 Hz, 1H), 3.56 (m, 1H), 3.29 (m, 2H),
3.09 (m, 1H), 2.45 (dd, ] = 15.6 Hz, 4.8 Hz, 1H), 2.38 (dd, ] = 15.4 Hz, 8.2 Hz, 1H), 2.18 (m, 1H), 2.10
(m, 1H), 2.02 (m, 1H), 1.31 (br s, 9H), 1.22 (s, 3H), 1.11 (d, ] = 6.7 Hz, 3H), 1.05 (d, ] = 6.9 Hz, 3H), 0.93
(s, 3H). 13C-NMR (125 MHz, 318 K, DMSO-de): & = 216.5, 169.7, 154.2, 150.3, 147.0, 138.4, 136.0, 135.8,
128.8,127.3,127.2,125.3,124.1, 121.5, 78.5, 74.4, 73.2, 69.3, 53.5, 48.4, 43.7, 41.0, 39.3, 38.4, 34.3, 27.8
(3 x CH3), 20.3,18.7, 17.1, 14.6. Some of the signals in the carbon spectrum were hardly visible, due to
peak broadening. IR (film): ¥ = 3383 (br), 2925 (br), 1734, 1687, 1462, 1413, 1366, 1254, 1164, 1010, 985,
836; HRMS (ESIpos): calcd. for C3;H44N;O7Na [M + Na]*: 591.3041, found: 591.3048.

(25,95,10S5,11R,145)-Ethyl 10,14-dihydroxy-9,11,13,13-tetramethyl-12,16-dioxo-2-(quinolin-7-yl)-1-oxa-5-
azacyclohexadec-ane-5-carboxylate (4). To a yellow suspension of macrolactone 6 (9 mg, 0.016 mmol) and
dipotassium azadicarboxylate (PADA) (307 mg, 1.6 mmol) in 1 mL MeOH and 0.2 mL CH,Cl; was
added a solution of AcOH (0.18 mL) in 4 mL MeOH dropwise via syringe pump at rt over a period
of 4 h. After stirring for 14 h, the mixture was filtered through a plug of Celite™, the filtrate was
concentrated in vacuo and the residue was redissolved in 1 mL MeOH and 0.2 mL. CH,Cl, and another
307 mg of PADA were added. Then a solution of acetic acid (0.18 mL) in 4 mL MeOH was added
via syringe pump at rt over a period of 2 h. After this time the white suspension was heated to
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50 °C for 5 h. At this point, only a traces of product were detectable by HPLC. The mixture was
again filtered through a plug of Celite™ and concentrated in vacuo. The residue was redissolved in
4 mL of MeOH together with 1 g of PADA and a solution of acetic acid (0.6 mL) in 3 mL MeOH was
added via syringe pump over a period of 2 h. The mixture was stirred for 14 h and then filtered, the
filtrate was concentrated, the residue was dissolved in 4 mL of CH,Cl, together with 1 g of PADA
and a solution of AcOH (0.6 mL) in 3 mL CH,Cl, was added via syringe pump over a 2 h period.
The mixture was stirred at room temperature for 2 days and then worked up as above. The residue was
dissolved in EtOAc and the solution was washed with water. After drying over MgSO, the organic
solution was concentrated in vacuo and the residue was purified twice by preparative RP-HPLC
(Waters Symmetry® C18 5 um, 19 mm x 100 mm column, gradient of CH3CN /H,O from 20:80 to 90:10
at a 25 mL/min flow rate) and finally be semi-preparative RP-HPLC (Waters Symmetry® C18 5 yum,
7.8 mm x 100 mm column, gradient of CH3CN/H,O from 20:80 to 90:10 at a 3 mL/min flow rate), to
furnish 5 mg (55%) of the desired azathilone 4 and 1.6 mg (18%) of starting material 4 both as white
solids; R¢ = 0.1 (CH,Cl, /MeOH 50:1). [«]5F = —17.2° (¢ = 1.00, CH,Cl,). 'H-NMR (500 MHz, 318 K,
DMSO-dg): 6 =8.88 (dd, ] =4.2 Hz, 1.7 Hz, 1H), 8.32 (dd, ] = 8.4 Hz, 1.4 Hz, 1H), 8.00 (d, ] = 5.9 Hz,
1H),7.99 (s, 1H), 7.78 (dd, | = 8.7 Hz, 1.8 Hz, 1H), 7.53 (dd, | = 8.2 Hz, 4.1 Hz, 1H), 5.91 (m, 1H), 5.27
(d, ] =7.5Hz, 1H, OH), 4.27 (d, ] = 6.7 Hz, 1H, OH), 4.22 (m, 1H), 3.43 (m, 1H), 3.35 (m, 1H), 3.23 (m,
2H), 3.09 (m, 1H), 2.98 (m, 1H), 2.40 (dd, | = 14.5 Hz, 10.7 Hz, 1H), 2.11 (m, 2H), 1.56 (m, 1H), 1.46
(m, 1H), 1.33 (s, 12H), 1.32-1.22 (m, 4H), 1.02 (d, ] = 6.8 Hz, 3H), 0.94 (s, 3H), 0.90 (d, ] = 6.8 Hz; 3H);
13C-NMR (125 MHz, 318 K, DMSO-d): 5 = 217.6, 170.4, 154.3, 150.3, 147.0, 138.5, 135.8, 128.8, 127.4,
127.3,124.1,121.5,78.1,73.8,73.0, 71.3, 52.8, 46.9, 44.1, 42.1, 38.6, 35.9, 35.3, 27.9 (3 x CH3), 27.0, 24 4,
20.7,19.8, 17.2, 13.8. Some of the signals in the carbon spectrum were hardly visible, due to peak
broadening. IR (film): & = 3390 (br), 2926 (br), 1733, 1684, 1467, 1420, 1366, 1290, 1253, 1148, 1026, 1010,
977,837 cm~!. HRMS (ESIpos): caled. for C3pHyeN>OyNa [M + Na]*: 593.3197, found: 593.3196.

3.3. Antiproliferative Activity

The experiments were essentially carried out as described in ref. [49]: Cells were maintained in
a 5% CO; humidified atmosphere at 37 °C in RPMI medium 1640 (Gibco BRL, San Francisco, CA,
USA) containing 10% fetal bovine serum, penicillin (100 U/mL) and streptomycin (100 pg/mL) (Gibco
BRL). Cells were seeded at 1.5 x 10%/well into 96-well microtiter plates and incubated overnight.
Compounds were added in serial dilutions on day 1. Subsequently, the plates were incubated for 72 h
and then fixed with 3.3% v/v glutaraldehyde, washed with water and stained with 0.05% methylene
blue. After washing, the dye was eluted with 3% v/v HCI and the optical density (OD) measured
at 665 nm with a TECAN GeniosPro (Mannesdorf, Switzerland). ICsy values were determined with
Graphpad Prism 4 using the formula (ODyeated — ODstart)/ (ODcontrol — ODstart) x 100. The ICsg is the
drug concentration for which the total cell number per well corresponds to 50% of the cell number in
untreated control cultures (100%) at the end of the incubation period. Data shown in Table 1 represent
the mean of three independent experiments.

3.4. Determination of Microtubule Binding Constants

Purified calf-brain tubulin and chemicals were obtained as previously described [50]. Stabilized,
moderately crosslinked microtubules were prepared as reported in ref. [51]. Binding constants of
azathilones to stabilized microtubules were measured as previously described by Matesanz et al. [38].

3.5. Conformational Studies

3.5.1. NMR spectroscopy

NMR spectra were recorded at 298 K on a Bruker AVANCE 500 MHz spectrometer equipped
with a triple-channel probe. Solution NMR was performed at 300 uM sample concentration in D,O.
Samples of 2 bound to tubulin &/ 3-heterodimers were prepared in 3 mm NMR tubes using a 300 uM
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concentration of the desired compound and 20 pM of tubulin in D,O, 10 mM NaPi, 0.1 mM GTP pH*
7.0. The tubulin sample was prepared by removing sucrose, Mg?*, and H,O from the storage buffer
of a 10 mg sample of frozen tubulin, by chromatography using a Sephadex G-25 medium column
(Sigma-Aldrich, 25 cm x 0.9 cm) equilibrated in D,O, 10 mM NaPi, 0.1 mM GTP pH* 7.0. Tubulin was
centrifuged for 10 min at 50.000 rpm in a TLA120 rotor in an Optima TLX centrifuge to remove aggregates,
and its concentration was determined spectrophotometrically by employing an extinction coefficient of
107,000 M~!.em~! in 10 mM phosphate buffer containing 1% SDS. The samples were incubated at 25 °C
for 30 min prior to measurement. STD experiments were performed with 0.5, 1, and 2 s saturation
times (by concatenation of 50 ms Gaussian pulses separated by 1 ms). TR-NOESY experiments were
performed with mixing times of 50, 100, 200, 250 and 300 ms. No purging spin lock period to remove
the NMR signals of the background macromolecule was employed, since they were basically not
observable due to the large size of the protein. First, line broadening of the ligand protons was
monitored after the addition of the protein. Strong negative NOE cross peaks were observed, in
contrast to the free state, indicating binding of 2 to the tubulin «/{3-heterodimer preparation.

The theoretical STD effects for ligands bound to tubulin ¢/ 3-heterodimers were calculated using
CORCEMA-ST program [48]. The overall correlation time . for the free state was always set to 0.75 ns
and the average rotational motion correlation time, T, for the bound state was set to 60 ns for tubulin
o/ B-heterodimers. An order parameter S? = 0.85 was employed to account for the fast rotation of the
methyl groups, as implemented in CORCEMA-ST.

3.5.2. Conformational Search of Ligands

The calculations were performed using the Macromodel /Batchmin package and the OPLS2005
all-atom force field as implemented in the program Macromodel. Bulk water solvation was simulated
using Macromodel’s generalized Born GB/SA continuum solvent model. The conformational searches
were carried out using the torsional sampling MCMM search method implemented in the Batchmin
program, and 20,000 Monte Carlo step runs were performed. Extended non-bonded cutoff distances
(a van der Waals cutoff of 8.0 A and an electrostatic cutoff of 20.0 A) were used. PR conjugate gradient
(PRCG) minimization (90,000 steps) was used in the conformational search.

3.5.3. Docking and CORCEMA-ST calculations

Protein files were prepared with the Protein Preparation Wizard module implemented in Maestro.
Docking calculations were carried out with Autodock Vina [47]. A rigid docking protocol was
performed first, using the tubulin-bound conformation of 2, as it had been derived from TR-NOE
experiments. Different conformers of the flexible parts were considered later in refinement process.
Docking poses were minimized by using Macromodel with OPLS2005 as the force field and several
steps of Polak-Ribiére conjugate gradient (PRCG) until the energy gradient become lower than
0.05 kJ/mol/A. The theoretical STD of the refined docking solutions was calculated by using
CORCEMA-ST program [48] to select the binding poses that best fit the experimental data. In order
to take into account the flexibility of the molecule several conformations were considered for both
the aromatic substituent and the tbutyoxycarbonyl group. 144 conformers were built by the torsional
scanning of C15-C16 bond and the O-C(CHj3)3 bond in the tbutyoxycarbonyl substituent. In each step
the binding pose was optimized to avoid steric clashes. Residues located at 10 A of the ligand were
considered flexible in the refinement process. Two additional shells were considered, 10-13 A around
the ligand with constrained atoms and 13-15 A around the ligand with frozen atoms.

Supplementary Materials: Supplementary materials can be accessed at: http:/ /www.mdpi.com/1420-3049/21/8/1010/s1.
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