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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:The growing threat of antimicrobial resistance (AMR) calls for new epidemiological surveil-

lance methods, as well as a deeper understanding of how antimicrobial resistance genes

(ARGs) have been transmitted around the world. The large pool of sequencing data avail-

able in public repositories provides an excellent resource for monitoring the temporal and

spatial dissemination of AMR in different ecological settings. However, only a limited num-

ber of research groups globally have the computational resources to analyze such data. We

retrieved 442 Tbp of sequencing reads from 214,095 metagenomic samples from the Euro-

pean Nucleotide Archive (ENA) and aligned them using a uniform approach against ARGs

and 16S/18S rRNA genes. Here, we present the results of this extensive computational

analysis and share the counts of reads aligned. Over 6.76�108 read fragments were

assigned to ARGs and 3.21�109 to rRNA genes, where we observed distinct differences in

both the abundance of ARGs and the link between microbiome and resistome compositions

across various sampling types. This collection is another step towards establishing global

surveillance of AMR and can serve as a resource for further research into the environmental

spread and dynamic changes of ARGs.

Introduction

The vast amount of genomic data available in public data repositories is a unique and poten-

tially important resource for doing research and genomic surveillance of antimicrobial resis-

tance (AMR). Using these datasets collected from locations all over the world across different

years and from various sampling sources might further aid our understanding of the emer-

gence and distribution of antimicrobial resistance genes (ARGs).

The sharing of genomic sequence data to one of the available repositories is today a major

and often mandatory step in peer-reviewed journals, for which several repositories were cre-

ated by the members of the International Nucleotide Sequence Database Collaboration

(INSDC) [1], including the European Nucleotide Archive (ENA) [2]. The number of sequenc-

ing data available at ENA continues to increase with an estimated doubling time of 18 months

(https://www.ebi.ac.uk/ena/browser/about/statistics; accessed 2022-03-08).
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Several approaches for analyzing genomic data depending on the sample types are already

well established.

However, the exploration of these resources is often restricted to a few research groups only

since both sufficient skills in bioinformatics and access to high-performing computer

resources are needed to handle the large amount of available data.

Existing collections of analyzed datasets tend to focus on either specific sample sources,

such as humans [3,4], marine [5], or urban sewage [6,7], or focus on specific genera [8]. Espe-

cially the COVID-19 pandemic has highlighted the value of data sharing to trace the spread

and evolution of the virus [9]. Despite the attempts to standardize the analysis workflows of

these databases, they are limited in their ability to generalize across environments and loca-

tions. A recent study [10] has shared a searchable collection of 661K bacterial genomes for

exploring the global bacterial diversity across different origins, providing an easy-to-access

resource for genomic research. While this is an impressive data-sharing effort, the authors did

not include metagenomic samples in their pipeline. Metagenomic techniques aim to sequence

all DNA in a sample and can be used to characterize the microbiome in different environments

[11,12], discover novel organisms [13], monitor disease [14,15], and specific genes, such as

ARGs [5,6,16].

Here, we present a large-scale metagenomic analysis of 214,095 metagenomic samples

retrieved from ENA. We have carried out an assembly-free approach by aligning sequencing

reads against ARGs and 16S/18S ribosomal RNA genes. We have previously published an in-

depth analysis of the distribution of mobilized colistin resistance [17] based on those data.

Now we both share the entire collection of mapping results and showcase how to characterize

the global resistome and microbiome with this dataset. The curated metadata and mapping

results are available at https://doi.org/10.5281/zenodo.6919377 and documentation at https://

hmmartiny.github.io/mARG/Tables.html.

Materials and methods

Retrieval of metagenomes

We retrieved metagenomic datasets from ENA [2] uploaded between 2010-01-01 and

2020-01-01 that had library source as “METAGENOMIC” and library strategy of “WGS.” We

collected 214,095 sequencing runs from 146,732 samples from 6,307 projects corresponding to

442 Tbp of raw reads taking up 300 TB of storage. The associated metadata for each sample

was also retrieved.

Preprocessing and mapping of sequencing reads

The retrieved raw FASTQ reads were trimmed and aligned against reference sequences, as out-

lined in Martiny (2022) [17]. In brief, we used FASTQC v.0.11.15 (https://www.

bioinformatics.babraham.ac.uk/projects/fastqc/) for read quality checking and BBduk2 v.36.49

[18] for trimming the raw sequencing reads. With the k-mer-based alignment tool KMA

1.2.21 [19], the trimmed reads were mapped against reference sequences from 2 different data-

bases: The AMR gene database ResFinder [20] (downloaded 2020-01-25), which contained

3,085 sequences of acquired ARGs, and the ribosomal rRNA Silva [21] gene database (version

138, downloaded 2020-01-16), which had 2,225,272 reference sequences with more than 88%

of them being 16/18S rRNA genes. For KMA, we used the following alignment parameters: 1,

-2, -3, -1 for a match, mismatch, gap opening, and gap extension. For read pairing, we used a

value of 7 and a minimum relative alignment score of 0.75. Data retrieval, quality checking,

trimming, and read alignments were done using the Danish National Supercomputer for Life

Sciences (https://www.computerome.dk/).
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Standardization of metadata

The following attributes for each metagenome were standardized: sampling location, sampling

host or environment (referred to as a host below), and sampling date.

To standardize the label for sampling locations, we looked at the values entered in the two

fields “country” and “location.” First, the latitude and longitude coordinates were mapped to a

country using the Python library Shapely 1.7.1 [22] to find the matching area defined in one of

the 3 public domain map datasets (countries, marine, and lakes) available in the Natural Earth

Data collection. If the lookup failed or the coordinates were not given, the second step was to

match the text attribute in the country label to ISO 3166 country codes with a fuzzy search

with the Python library PyCountry 20.7.3 (https://github.com/flyingcircusio/pycountry).

Finally, if the 2 lookup searches did not yield a match, we did a manual lookup of the country

labels to standardize the text.

For the standardization of host labels, we mapped the taxonomic id given by the attribute

“host_tax_id” to the NCBI Taxonomy database [23], or if the feature was missing, the “tax_id”

was used instead.

Since the only way to curate entered collection dates is to look up suspicious dates in pub-

lished studies manually, and that was deemed too time-intensive, we decided to replace dates

entered as later than 2020-01-01 in the sample attribute field “collection_date” with the miss-

ing value NULL.

Measuring the abundance of ARGs

Since we report the fragment count aligned to each reference gene, the mapping results are

compositional and should be treated as such [24]. In the simplest form, the ARG abundance

for a sample or sample group can be calculated as the log-ratio of the count of reads, ni, aligned

to each ARG i over the total sum of rRNA read fragments nB:

x ¼ ½n1; n2; . . . ; nD; nB�; i ¼ 1::D

Abundance xð Þ ¼ log
n1

nB
; log

n2

nB
; . . . ; log

nD

nB

� �

where D is the number of ARGs and nB ¼

PDB
j

nj

1�106 with DB being the number of read fragments

aligned to rRNA genes. Each ARG count ni has been adjusted with the length of the gene in

kilobases.

The relative abundance resistance classes were calculated as the proportion of ARG resis-

tance assigned to different classes and scaled with κ = 100:

Relative abundance xð Þ ¼
k
P

ni
ni

Diversity measurements

Besides the read abundance values, we report the species richness, Shannon diversity index

[25], and the Gini–Simpson [26] diversity index of read counts of ARGs, genera, and phyla per

sample. Species richness is the number of different genes or taxonomic groups present in the

sample with at least 1 read fragment aligned.
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The Shannon index (H0) was calculated using the proportions of reads pi ¼
niP

n
:

H0 ¼ �
XR

i¼1

pilnpi

whereas the Gini–Simpson index (GS) was calculated using the read counts n = [n1,. . .,nD] and

N = ∑n is the total count of reads for the group:

GS ¼ 1 �

P
ni � ðni � 1Þ

N � ðN � 1Þ

Together with these 2 indices, we also report the sample-wise unique number of reference

sequences or taxonomic groups matched.

Results

Here, we present a large-scale mapping of 442 Tbp of raw reads of 214,095 metagenomic sam-

ples suitable for analyzing the distribution of acquired antimicrobial resistance genes and 16S/

18S rRNA genes. Furthermore, we have spent considerable effort standardizing 3 main sample

attributes: sampling date, location, and source. To facilitate easy access and usage, we have

shared the mapping results and corrected metadata in 3 different data formats (TSV, HDF,

and MySQL dumps). We also provide tutorials with code examples in R and Python on using

the data in different scenarios. Data files are all available at https://doi.org/10.5281/zenodo.

6919377.

By collecting the sequencing reads from ENA, we could also verify the inherited bias of spe-

cific sample types or sources being overrepresented simply due to the availability in the public

repository. While the 214,095 metagenomic datasets were collected from 797 different hosts,

most were either of human or marine origin (Fig 1A). A similar skewed geographical distribu-

tion towards European and North American countries was observed in the sampling locations

Fig 1. Distribution of metagenomes reveals the overrepresentation of samples from specific sources. (a) Number

of samples grouped per sampling host, where only hosts with more than 1,000 samples are plotted. (b) Sample

locations for metagenomes with available GPS coordinates; each marker is a sample. A total of 83,903 samples did not

have coordinates available. (c) Year of which a sample was collected. A total of 84,238 of the samples did not have a

valid sampling date recorded. The data underlying this figure can be found at https://doi.org/10.5281/zenodo.6919377,

and the base layer map was created with data from https://www.naturalearthdata.com/.

https://doi.org/10.1371/journal.pbio.3001792.g001
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(Fig 1B). The distribution of samples according to the sampling year reveals that a considerable

number were collected between 2010 and 2020 (Fig 1C).

Of the more than 1.8�1012 raw sequencing reads, corresponding to 442.1 Tbp, 93% of the

reads were generated using Illumina sequencing technologies (S1 Fig). We mapped over

1.69�1012 trimmed read fragments, with a median of 784,748 fragments per sample (range 1 to

916,901,400) (Fig 2A). Approximately 0.04% of all read fragments could be aligned to ARGs,

and 0.19% to rRNA genes. Overall, the amount of sequencing reads and bases available did

increase the count of aligned read fragments (S3 Fig). The number of ARG fragments aligned

increased with the number of aligned rRNA fragments, although for 34% of the samples, we

did not find any ARGs despite having read fragments aligning to 16S rRNA genes (Fig 2B).

The microbial differences in the different sampling origins were highlighted in the number of

aligned fragments (S4 Fig).

The global abundance of antimicrobial resistance

To measure the global distribution of ARGs and the composition of the resistome, we calcu-

lated the abundance of ARGs as the log-ratio of ARG fragments over summed rRNA sequence

Fig 2. Distribution of available and aligned fragments. (a) Density distribution of available fragments per sample.

(b) The distribution compares the number of fragments mapped to rRNA genes and ARGs. The data underlying this

figure can be found at https://doi.org/10.5281/zenodo.6919377.

https://doi.org/10.1371/journal.pbio.3001792.g002
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fragments. Almost all of the reference sequences from the ResFinder database had at least 1

fragment aligned, and only 94 ARGs had no hits (S2 Fig). The median observed resistance load

per metagenomic sample was 11.74 (log range: −1.45 to 23.52) (Fig 3A), which appeared to be

mainly dependent on the geographic origin and environment (Fig 3B–3D) and not on which

year the sample was taken. For example, samples originating from locations within Europe

showed similar abundance levels for most of the samples but with several outliers, whereas

multiple samples from locations in the Oceania region had a much broader load distribution

with few outliers (Fig 3C).

While the distribution of sample-wise resistance loads illustrates the high variability in this

data collection (Fig 3), we saw that once we stratified the relative ARG read proportions per

resistance class and sample type, there were clear separations between different groups (Fig 4).

For the sampling years with a considerable number of samples available (2004 to 2019), the rel-

ative proportion of classes was relatively consistent, with Tetracycline reads being the most

common, except for a spike of Beta-lactam reads in 2017 (Fig 4A). Across the continents and

large water bodies, we observed that ARGs conferring resistance to Aminoglycosides or Beta-

lactam antimicrobials were more common in water environments, whereas mainland regions

had a more diverse distribution (Fig 4B). Once we stratified by sampling host or source, the

distribution of resistance classes was very dependent on the group, as seen by the high propor-

tion of read fragments aligned to, for example, Phenicol for marine and soil samples and Tetra-

cycline reads being highly prevalent in mice (Mus musculus) samples (Fig 4C).

Linking the microbiome diversity with resistance diversity

The relationship between the diversity of the microbiome and the resistance genes was quanti-

fied by calculating the species richness and 2 alpha diversity measurements (Shannon and

Fig 3. Boxplots of ARG abundances in metagenomic samples show that levels vary across different origins. (a)

Distribution of ARG abundance per sample. (b) Distribution of sample-wise ARG abundance grouped by sampling

year. (c) Sample-wise ARG abundance per sampling location. (d) Sample-wise ARG abundance grouped by hosts.

Only hosts with more than 1,000 metagenomes analyzed are shown. The data underlying this figure can be found at

https://doi.org/10.5281/zenodo.6919377.

https://doi.org/10.1371/journal.pbio.3001792.g003
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Gini–Simpson) on ARG levels and phyla and genera taxonomic levels. Without looking at the

sample origin, we observed that a majority of the samples had both high microbial diversity

and ARG diversity (Figs 5 and S5). However, the relationship between genera and ARG diver-

sity indexes differed between sampling sources, with several groups containing samples that

Fig 4. Composition of reads assigned to ARGs from different resistance classes grouped by sampling origin. (a)

Grouped by sampling year. (b) Grouped per sampling location. (c) Grouped per sampling host. Only hosts with more

than 1,000 metagenomes analyzed are shown. The data underlying this figure can be found at https://doi.org/10.5281/

zenodo.6919377.

https://doi.org/10.1371/journal.pbio.3001792.g004

Fig 5. The genus–ARG diversity relationship for all metagenomic samples. The Gini–Simpson diversity indexes

were calculated on genus categories (x-axis) compared to ARG levels (y-axis). Left: scatterplot of all samples. Right:

samples colored by selected host or environmental origins. The data underlying this figure can be found at https://doi.

org/10.5281/zenodo.6919377.

https://doi.org/10.1371/journal.pbio.3001792.g005
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did not follow the assumption of the 2 diversity measurements following each other, suggest-

ing that increased diversity of microbes in, for example, soil samples does not necessarily lead

to a higher diversity of resistance genes. Contrarily, the chicken (Gallus gallus) samples showed

that they still had elevated ARG diversity despite having lower microbial diversity (Fig 5).

Discussion

Global surveillance of AMR based on genomics continues to become more accessible due to

the advancement in NGS technologies and the practice of sharing raw sequencing data in pub-

lic repositories. Standardized pipelines and databases are needed to utilize these large data vol-

umes for tracking the dissemination of AMR. We have uniformly processed the sequencing

reads of 214,095 metagenomes for the abundance analysis of ARGs.

Our data sharing efforts enable users to perform abundance analyses of individual ARGs,

the resistome, and the microbiome across different environments, geographic locations, and

sampling years.

We have given a brief characterization of the distribution of ARGs according to the collec-

tion of metagenomes. However, in-depth analyses remain to be performed to investigate the

influence of temporal, geographical, and environmental origins on the dissemination and evo-

lution of antimicrobial resistance. For example, analyzing the spread of specific ARGs across

locations and different environments could reveal new transmission routes of resistance and

guide the design of intervention strategies to stop the spread. We have previously published a

study focusing on the distribution of mobilized colistin resistance (mcr) genes using this data

resource, showing how widely disseminated the genes were [17]. Another use of the data col-

lection could be to explore how the changes in microbial abundances affect and are affected by

the resistome. Furthermore, our coverage statistics of reads aligned to ARGs could be used to

investigate the rate of new variants occurring in different reservoirs. Even though we have

focused on the threat of antimicrobial resistance, potential applications of this resource can be

to look at the effects of, for example, climate changes on microbial compositions. Linking our

observed read fragment counts with other types of genomic data, such as evaluating the risk of

ARG mobility, accessibility, and pathogenicity in assembled genomes [27,28], and verifying

observations from clinical data [29].

We recommend that potential users consider all the confounders present in this data collec-

tion in their statistical tests and modeling workflows, emphasizing that the experimental meth-

ods and sequencing platforms dictate the obtained sequencing reads and that metadata for a

sample might be mislabeled, despite our efforts to minimize those kinds of errors. Further-

more, it is essential to consider the compositional nature of microbiomes [30]. The reads do

not depend on the distribution of genetic material in the sample but on the capacity of the

sequencing platform [24,31]. Various statistical methods already exist that consider the com-

positionality [24,32,33]. Finally, it is important to highlight that the results we have presented

here include fragment counts of 1 for the sake of transparency, but we also recommend poten-

tial users consider appropriate filters in their analysis.

The sequencing data in public repositories has continued to grow, giving us plenty of

opportunities to continue to expand our data collection even more. To establish a truly global

surveillance program of AMR, sequencing data should be analyzed as soon as published in

these archives. Although this would require access to even more computational resources, we

hope to achieve this soon and compare our approach with other methods, such as AMRFin-

derPlus [34] and CARD [35]. As new sequencing technologies are becoming more used, our

settings for our alignment procedure should also be tuned to better take advantage and be

aware of the flaws of different sequencing platforms.
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With this data resource, we have taken a step towards enabling the scientific community to

utilize the wealth of information in these metagenomic samples to broaden our understanding

of the dissemination of antimicrobial resistance and changes in microbiomes at both local and

global scales through time and environments.

Supporting information

S1 Fig. Distribution of samples per sequencing instrument platform. (a) Sample count per

platform. (b) Distribution of raw sequencing read counts per platform. The data underlying

this figure can be found at https://doi.org/10.5281/zenodo.6919377.

(TIFF)

S2 Fig. More than 96% of ARG templates had at least 1 aligned fragment. The bars illustrate

the percentage of ARGs per resistance class without and with at least 1 aligned fragment. The

parenthesis after each class label contains the number of genes found out of the total available

templates. The data underlying this figure can be found at https://doi.org/10.5281/zenodo.

6919377.

(TIFF)

S3 Fig. The sample-wise distribution of aligned (a) ARG or (b) rRNA fragments compared

to raw sequencing base counts. The data underlying this figure can be found at https://doi.

org/10.5281/zenodo.6919377.

(TIFF)

S4 Fig. The sample-wise distribution of aligned rRNA fragments and ARG fragments, col-

ored by selected host and environmental sources. The data underlying this figure can be

found at https://doi.org/10.5281/zenodo.6919377.

(TIFF)

S5 Fig. Additional distributions showing the relationship between ARGs and genera for all

metagenomic samples. (a) The richness of genus groups (x-axis) vs. ARG richness (y-axis).

(b) The relationship between Shannon diversity index calculated on genus level (x-axis) and

ARGs (y-axis). Right: samples colored by selected host or environmental origins. The data

underlying this figure can be found at https://doi.org/10.5281/zenodo.6919377.

(TIFF)
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