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Abstract: Non-small cell lung cancer (NSCLC) is frequently associated with oncogenic

driver mutations, which play an important role in carcinogenesis and cancer progression.

Targeting epidermal growth factor receptor (EGFR) mutations and anaplastic lymphoma

kinase rearrangements has become standard therapy for patients with these aberrations

because of the greater improvement of survival, tolerance, and quality-of-life compared to

chemotherapy. Clinical trials for emerging therapies that target other less common driver

genes are generating mixed results. Here, we review the literature on rare drivers in NSCLC

with frequencies lower than 5% (e.g., ROS1, RET, MET, BRAF, NTRK, HER2, NRG1,

FGFR1, PIK3CA, DDR2, and EGFR exon 20 insertions). In summary, targeting rare

oncogenic drivers in NSCLC has achieved some success. With the development of new

inhibitors that target these rare drivers, the spectrum of targeted therapy has been expanded,

although acquired resistance is still an unavoidable problem.
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Introduction
Lung cancer is the most common malignant disease with poor survival; the vast

majority of cases are non-small cell lung cancer (NSCLC). The treatment strategy

for NSCLC has been revolutionized by the discovery of molecular alterations that

drive tumor initiation and progression. Epidermal growth factor receptor (EGFR),

anaplastic lymphoma kinase (ALK), and KRAS are the most frequent oncogenic

drivers of NSCLC, and the targeting of EGFR mutations and ALK rearrangements

has achieved great success. To date, the US Food and Drug Administration (FDA)

has approved five EGFR tyrosine kinase inhibitors (TKIs) as the standard treatment

for patients with activating EGFR mutations in NSCLC, including first-generation

gefitinib and erlotinib, second-generation afatinib and dacomitinib, and third-

generation osimertinib. There are also currently five FDA-approved inhibitors of

ALK rearrangements, including first-generation crizotinib, second-generation ceri-

tinib, alectinib, and brigatinib, and third-generation lorlatinib. The second- and

third-generation inhibitors have exhibited enhanced activity against central nervous

system (CNS) lesions and acquired resistance to crizotinib resulting from secondary

ALK mutations. These achievements have led to clinical trials targeting less

common driver genes, such as ROS1, RET, MET, BRAF, NTRK, HER2, NRG1,

FGFR1, PIK3CA, DDR2, and EGFR exon 20 insertions (ins). In this review, we

focus on these rare drivers and summarize their molecular biology, clinical features,

targeted therapy, and acquired resistance.
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ROS1 Rearrangements
Human proto-oncogene ROS1, which is located on chromo-

some band 6q22.1, is also known as MCF3 or c-ros-1.1,2 It

encodes a receptor tyrosine kinase (RTK) that contains an

extracellular or ectodomain, a single-pass transmembrane

region with a hydrophobic stretch, and an intracellular car-

boxyl-terminal tyrosine kinase domain.3 Although the exact

mechanisms by which ROS1 rearrangements promote carci-

nogenesis remain unclear, because most fusion partners of

ROS1 lack dimerization domains,4 ROS1 rearrangements are

believed to promote signal transduction programs, prolifera-

tion, and cell survival through the upregulation of SHP-1 and

SHP-2 and activation of the PI3K/AKT/mTOR, JAK/STAT,

and MAPK/ERK pathways5–7 (Figure 1).

ROS1 fusion detection methods include fluorescence

in situ hybridization (FISH), immunohistochemistry

(IHC), reverse transcription-polymerase chain reaction

(RT-PCR), and next-generation sequencing (NGS). FISH

is the most common method, but formal screening recom-

mendations for ROS1 fusions have not been established.4

ROS1 rearrangements are found in 1 to 2% of NSCLC.

Over 14 types of ROS1 fusion partner genes have been

reported, including CD74, SLC34A2, SDC4, EZR, FIG,

TPM3, LRIG3, KDELR2, CCDC6, MSN, TMEM106B,

TPD52L, CLTC, and LIMA1, with the most frequent

fusion partner being CD74 (40 to 45%).4,8 Recent research

found that patients with the CD74-ROS1 fusion were more

susceptible to brain metastases and had lower objective

response rates (ORR) to crizotinib than non-CD74-ROS1

patients, suggesting that the efficacy and prognosis of

patients with advanced ROS1-rearranged NSCLC may be

influenced by the type of ROS1 fusion partner.9 ROS1

fusions rarely overlap with other driver mutations, such

as EGFR, ALK, or KRAS.10 ROS1 and ALK share a 49%

amino acid sequence identity in the kinase domain and

77% identity in the adenosine triphosphate (ATP)-binding

site,11 suggesting that ALK-TKIs may also inhibit ROS1.

Similar to ALK, patients with ROS1-rearranged NSCLC

are often younger, Asian ethnicity, have a non-smoking or

light-smoking history, and advanced-stage disease with

adenocarcinoma histology.12

Crizotinib
Crizotinib is a drug that targets ALK, ROS1, and MET,

which has been used successfully to treat patients with

advanced ALK-rearranged NSCLC.13,14 In a phase I study

(PROFILE 1001) consisting of 50 patients with ROS1-

rearranged advanced NSCLC, the ORR for crizotinib was
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Figure 1 Key signaling pathways of oncogenic drivers in NSCLC.
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72% with three complete responses and 33 partial

responses, the median progression-free survival (PFS) was

19.2 months, and the safety profile of crizotinib was similar

to that of patients with ALK-rearranged NSCLC11(Table 1).

Based on the study, crizotinib became the first targeted

agent approved by the FDA for the treatment of advanced

ROS1-rearranged NSCLC in March 2016. Crizotinib also

demonstrated high response rates (71% to 80%; median

PFS 9 to 10 months) in ROS1-rearranged NSCLC in two

additional studies.15,16 Since 2017, National Comprehensive

Cancer Network (NCCN) guidelines recommend that crizo-

tinib be used for patients with known ROS1 rearrangements

(grade 2A recommendation).17

Similar to ALK or EGFR inhibition, acquired resistance

is an important issue for the inhibition of ROS1.Mechanisms

of acquired crizotinib resistance include acquired secondary

mutations in the ROS1 kinase domain, bypassing signaling

activation, and phenotypic changes. Mutations within the

ROS1 kinase domain occur in 50 to 60% of crizotinib-

resistant tumors.18 The ROS1 G2032R mutation, which is

analogous to ALK G1202R, has been the most frequent

mutation identified.18–20 Additional mutations reported in

clinical samples include D2033N (analogous to ALK

D1203N), S1986Y/F (analogous to ALK C1156Y),18,21

L2026M (analogous to ALK L1196M), and L1951R (no

known analogous mutation in ALK).22

Ceritinib
Ceritinib is a potent and selective ALK inhibitor that also

inhibits ROS1. In a phase II study (NCT01964157), 32

patients with ROS1-rearranged advanced NSCLC were trea-

ted with ceritinib, the ORR was 62% and disease control rate

(DCR) was 81%. The median PFS in this study was 9.3

months for all patients and 19.3 months for crizotinib-naïve

patients with a median OS of 24 months. In eight patients

with brain metastases, the intracranial ORRwas 25%with an

intracranial DCR of 63%.23 Based on the efficacy and safety

demonstrated in this study, ceritinib became the second tar-

geted agent recommended by the NCCN Guidelines for the

treatment of advanced ROS1-rearranged NSCLC since

November 2017. However, the toxicities of ceritinib should

be taken into consideration due to the higher frequency of

adverse events, such as diarrhea, nausea, anorexia, and

vomiting compared to crizotinib.10

Entrectinib (RXDX-101)
Entrectinib is a multikinase inhibitor that targets ROS1, ALK,

and tropomyosin receptor kinase (TRK) rearrangements and

can effectively penetrate the blood-brain barrier.24,25 An inte-

grated analysis of three studies (the phase II STARTRK-2 trial,

phase I STARTRK-1 study, and the phase I ALKA-372-001

trial) for entrectinib inROS1-positiveNSCLCwas presented at

the 2018World Conference on LungCancer (WCLC). For this

analysis, 53 ROS1-rearranged and ROS1-inhibitor-naive

NSCLC patients were evaluated, and the ORR was 77.4%,

the intracranial ORR was 73.9%, the median duration of

response (DOR) was 24.6 months, and the median PFS was

19.0months (withoutCNSmetastases: 26.3months;withCNS

metastases: 13.6 months).26 Early research found that entrecti-

nib did not show activity against the ROS1 resistance muta-

tions L2026M, G2032R, and D2033N.24,25 Based on these

results, entrectinib has recently been recommended by the

NCCN Guidelines for the first-line treatment of advanced

ROS1-rearranged NSCLC.27 The global phase II STARTRK-

2 trial (NCT02568267) is still ongoing.

Lorlatinib
Second-line TKIs are being developed, such as lorlatinib,

which was developed to target crizotinib-resistant ALK-

rearranged NSCLC. It has in vitro activity against several

crizotinib-resistant mutations, including L2026M,28,29

S1986Y/F,28 and D2033N.21 In a phase I trial for ALK-

and ROS1-rearranged NSCLC, the 12 patients with ROS1-

rearranged lung adenocarcinomas had an ORR of 50%

with a median PFS of seven months.30 In a phase II trial

of ROS1-positive patients, 70% of which were crizotinib-

resistant, lorlatinib produced an overall ORR of 36.2%,

intracranial ORR of 56%, and a median PFS of 9.6

months.31 Thus, lorlatinib has been recommended by the

NCCN Guidelines for the treatment of advanced ROS1-

rearranged NSCLC that progressed after crizotinib, entrec-

tinib or ceritinib.27

DS-6051b
DS-6051b is an oral, small molecule TKI with high affi-

nity for ROS1 and NTRK kinases. In a phase I study

(NCT02675491) evaluating DS-6051b in 15 Japanese

patients with ROS1-rearranged NSCLCs, the ORR was

58.3% in patients with assessable target lesions and

66.7% in crizotinib-naïve patients, and the DCR was

100%.32 Another phase I/Ib study (NCT02279433) of

DS-6051b in advanced solid tumors is ongoing.

Repotrectinib (TPX-0005)
Repotrectinib (TPX-0005) is a potent ALK/ROS1/TRK

inhibitor that demonstrated encouraging clinical activity
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in patients with ROS1 fusion-positive NSCLC and in

patients with secondary mutations resistant to prior

TKI. In an ongoing phase I/II trial (TRIDENT-1,

NCT03093116), repotrectinib showed an ORR of 82% in

11 TKI-naive ROS1-positive NSCLC patients, and an

ORR of 39% in 18 patients pretreated with only one

prior TKI. Tumor regression occurred in all five patients

with G2032R mutation resistant to prior crizotinib

treatment.33

RET Rearrangements
The RET (rearranged during transfection) proto-oncogene

is located on chromosome 10q11.2, where it encodes

a RTK.34 RET consists of an extracellular domain,

a transmembrane domain, and an intracellular tyrosine

kinase.35 In NSCLC, at least 12 different gene partners

have been described for RET, including KIF5B, CCDC6,

NCOA4, MYO5C, EPHA5, TRIM33, CLIP1, ERC1,

PICALM, FRMD4A, RUFY2, TRIM2436 with the most

frequent fusion partner being KIF5B (72%).37 All RET

fusions preserve the tyrosine kinase activity, and each RET

partner protein contains a coiled-coil domain, which can

promote ligand-independent dimerization and constitutive

activation of RET.38 Thus, activation of downstream path-

ways (e.g., JAK/STAT3 and RAS/RAF/MEK/ERK) leads

to cellular proliferation, migration, and differentiation.39

RET rearrangements can be detected by FISH, NGS, and

RT-PCR, but cannot be adequately detected by IHC.40 At

present, there is no gold-standard method for the identifica-

tion of RET rearrangements. RET rearrangements have been

observed in approximately 1 to 2% of NSCLC.41 Similar to

ROS-1 rearrangements, RET rearrangements in NSCLC are

more commonly found among non-smokers or former light

smokers less than 60 years of age with adenocarcinoma

histology, early lymph node metastases, and advanced

disease.41 The majority of patients with RET rearrangements

have stage IV disease at the time of diagnosis, suggesting that

RET-rearranged NSCLC may have a high metastatic

potential.37 In NSCLC, RET rearrangements are mutually

exclusive with other driver mutations, such as ALK or

ROS1 rearrangements or EGFR mutations,39,42,43 suggesting

that RET rearrangements are independent oncogenic drivers

in this disease.

Multikinase RET Inhibitors
Several multikinase inhibitors with nonselective RET inhi-

bitory activity are available for patients with RET-altered

cancers (e.g., vandetanib, cabozantinib, lenvatinib,

alectinib, and sunitinib) with response rates ranging from

16% to 53%, and median PFS from 4.5 to 7.3 months.44–48

The use of multikinase RET inhibitors has often been

associated with a high rate of toxicity due to their activity

against VEGFR kinases or EGFR, and their efficacy has

been limited.44 Although cabozantinib and vandetanib

have been recommended for use against RET-rearranged

NSCLC by the NCCN guideline outside the context of

a clinical trial, no approved standard therapies have been

designed to target RET. Novel and potent inhibitors are

being developed to selectively target the RET kinase.

Some resistance mechanisms of RET rearrangements

are being discovered. Different fusion partners seem to

have different therapeutic responses, and KIF5B-RET is

associated with lower ORR. Other potential resistance

mechanisms include missense mutations in RET, activa-

tion of downstream pathway molecules (e.g., ERK, AKT),

and the amplification of MDM2.49

Selpercatinib (LOXO-292)
Selpercatinib is a novel, highly selective, ATP-competitive

small molecule RET inhibitor that has significant CNS pene-

tration, and a low potential for drug interactions.50 It was

approved by the FDA for the treatment of advanced RET-

rearranged NSCLC and medullary thyroid cancers with

a breakthrough therapy designation in September 2018.

This approval was based on the data from a phase I/II trial

(LIBRETTO-001, NCT03157128) reported at the 2018

ASCO meeting, in 30 response-evaluable patients with

RET fusion-positive NSCLC, tumor regression occurred

regardless of the RET fusion partner, with an ORR of 77%

and another 13% of the patients experiencing stable

disease.51 The updated results of this study have been pre-

sented at the 2019WCLC. In 105 previously treated patients,

selpercatinib demonstrated an overall ORR of 68% and

a CNS ORR of 91%. The median PFS and DOR was 18.4

months and 20.3 months, respectively. In 34 treatment-naive

patients, the ORR was 85%, and the median DOR and PFS

were not reached.52

BLU-667
BLU-667 (NCT03037385) is another highly potent and

selective small-molecule RET inhibitor that has increased

potency and decreased toxicity against RET alterations

compared to multikinase inhibitors.53 The preliminary ana-

lysis of a phase 1 BLU-667 clinical trial for RET-altered

NSCLC, medullary thyroid cancers, and other advanced

solid tumors was presented at the 2018 American
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Association for Cancer Research (AACR) annual meeting.

An ORR of 45% was observed among the 11 evaluable

NSCLC patients, including heavily pretreated patients,

who had received prior RET-targeting agents.54

METActivation
MET (the mesenchymal-to-epithelial transition) is a receptor

kinase that activates tyrosine kinases by binding the ligand

hepatocyte growth factor (HGF) and inducing MET dimer-

ization and autophosphorylation.55 These effects activate

downstream signaling pathways, including RAS/RAF/

MAPK, PI3K/AKT/mTOR, WNT/β-catenin, and STAT,

that play important roles in cell growth, apoptosis, motility,

and invasiveness.56,57 In NSCLC, several mechanisms of

MET activation have been identified, including mutation,

rearrangement or amplification of the MET gene, overex-

pression of MET or HGF protein.55,58

MET Exon 14 Skipping Mutation
MET exon 14 skipping mutations comprise approximately

3% of NSCLC cases and are more commonly found in

females, elderly patients, non-smokers, pulmonary sarco-

matoid carcinoma (PSC), and are associated with poor

prognosis.59,60 MET exon 14 skipping mutations are

mutually exclusive with other known driver genes (e.g.,

EGFR, KRAS, and HER2 mutations or ALK, ROS1, and

RET rearrangements), suggesting that they are indepen-

dent carcinogenic drivers.61 Clinical trials using MET-

targeted TKIs (e.g., cabozantinib, capmatinib, crizotinib,

merestinib, savolitinib, and tepotinib) for NSCLC patients

with MET exon 14 altered-NSCLC are currently ongoing.

Crizotinib

Crizotinib has been approved for the treatment of ALK-

positive or ROS1-positive lung cancers and has significant

antineoplastic activity in patients with MET alteration.61 In

the PROFILE 1001 clinical trial, a cohort of 65 patients

with MET exon 14-altered NSCLC were treated with crizo-

tinib and achieved an ORR of 32%, a median PFS of 7.3

months, and a median OS of 20.5 months.62 Secondary

MET tyrosine kinase domain mutations (e.g., MET D1228

and Y1230) acquired after progression during crizotinib

therapy are considered as the emerging mechanisms of

resistance to MET inhibition.63–65 Subsequent studies

found that these mutations confer resistance to type

I MET inhibitors which preferentially bind the active con-

formation of MET (e.g., crizotinib, savolitinib, and capma-

tinib) through impaired drug binding, while sensitivity to

type II inhibitors, which bind the inactive conformation

(e.g., glesatinib and cabozantinib), is maintained.66

Capmatinib (INC280)

Another MET-selective agent, capmatinib, has demonstrated

a clinically meaningful response rate and a manageable toxi-

city profile in patients with advanced-stage NSCLC that

contain MET exon 14 mutations in an ongoing study

(GEOMETRY mono-1, NCT02414139). Results demon-

strated an ORR and median PFS of 40.6% and 5.4 months,

respectively, among 69 pretreated patients and 67.9% and 9.7

months, respectively, for 28 treatment-naïve patients.

Preliminary activity in patients with brain metastases was

also observed with an intracranial ORR of 54% in 13 evalu-

able patients.67 Based on these results, the FDA granted

breakthrough therapy designation to capmatinib (INC280)

as a first-line treatment for patients with metastatic MET

exon14 skipping-mutated NSCLC in September 2019.

Tepotinib

Tepotinib, a MET-selective oral inhibitor, has demonstrated

promising antitumor activity in patients with advanced

NSCLC that harbor a MET exon 14 skipping mutation and

a favorable safety profile with an ORR of 35% in 41 patients

in an ongoing phase II study (VISION, NCT02864992).68

Tepotinib was approved by the FDA with a breakthrough

therapy designation in September 2019, for the treatment of

patients with metastatic NSCLC harboring MET exon 14

skipping alterations who progressed following platinum-

based chemotherapy.

Savolitinib

Savolitinib (AZD6094, HMPL-504, volitinib) is a potent

and highly selective inhibitor of MET tyrosine kinase. The

preliminary data from a phase II study of savolitinib in

MET exon 14 skipping mutant PSC or other types of

NSCLC (NCT02897479) were reported at the 2019

AACR Annual Meeting. Savolitinib showed encouraging

antitumor activity and an acceptable safety profile. In 31

evaluable patients, the ORR was 51.6%, and the median

PFS was not reached.69

MET Amplification
MET gene amplification occurs in 1 to 5% of treatment-

naïve NSCLC,56 but more often mediates bypass pathway

activation in patients with acquired resistance to EGFR-

TKIs. The combinations of EGFR- and MET-targeted

therapeutics may be effective against these conditions.
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Tepotinib + Gefitinib

A phase II trial showed that the combination of tepotinib

and gefitinib improved the PFS and OS versus chemother-

apy in patients with MET-amplified EGFR-mutant NSCLC

that was resistant to prior EGFR-TKI therapy. The combi-

nation of tepotinib and gefitinib in MET amplification

subgroups had an ORR of 66.7% and a median PFS of

21.2 months whereas chemotherapy had an ORR of 42.9%

and a median PFS of 4.2 months. This combination also

had an ORR of 68.4% and a median PFS of 8.3 months for

patients with high MET-expressing tumors compared to

33.3% and 4.4 months with chemotherapy, respectively.70

Savolitinib + Osimertinib

The TATTON trial is a phase Ib clinical trial that is

investigating the clinical response of adding MET inhibitor

savolitinib to osimertinib in patients with EGFR-mutant

NSCLC that developed resistance to prior EGFR-targeted

therapies through MET gene amplification. The data were

presented at the 2019 AACR Annual Meeting. This treat-

ment regimen caused an ORR of 52% and a median DOR

of 7.1 months in 46 patients, who were previously treated

with a first- or second-generation EGFR-TKI. The ORR

was 28%, and the median DOR was 9.7 months in 48

patients who received a prior third-generation EGFR-

TKI.71 A phase II SAVANNAH trial will further explore

the combination in patients with MET-positive disease that

has progressed on osimertinib.

BRAF Mutation
The B-Raf proto-oncoprotein (BRAF) is a serine/threonine

kinase that regulates cell proliferation, differentiation,

angiogenesis, and cell death. It functions downstream of

RAS and signals through the MAPK/ERK pathway.72

BRAF mutations appear in approximately 2 to 4% of

NSCLC and are more commonly found in current or for-

mer smokers and female patients. V600E is the most

common mutation and accounts for 1 to 2% of lung

adenocarcinomas and roughly 50% of BRAF-mutant

NSCLC. Compared with non-V600E genotypes, V600E

is associated with more aggressive tumor histology and

a poorer prognosis.73,74 BRAF mutations are also com-

monly found in melanoma with a prevalence of 50%, and

V600E is the most common mutation. Targeting BRAF

has made some progress in the treatment of melanoma.

Single-agent BRAF inhibitors (vemurafenib, dabrafenib)

and the combination of dabrafenib and the mitogen-

activated protein kinase (MEK) inhibitor, trametinib,

have already been approved by the FDA for metastatic

BRAF V600E-mutant melanoma and are being explored

for BRAF-mutated NSCLC.75

A retrospective study EURAF evaluated the efficacy of

different BRAF inhibitors, including vemurafenib, dabra-

fenib, and sorafenib, against advanced NSCLC harboring

BRAF mutations. The PFS and median OS for BRAF

inhibition therapy were five months and 10.2 months,

respectively.76 In chemotherapy-pretreated patients with

NSCLC harboring BRAF V600E, the combination of dab-

rafenib and trametinib had an ORR of 63%, median PFS

of 9.7 months, and median OS of 18.2 months. In treat-

ment-naïve BRAF V600E-mutant metastatic NSCLC, this

combination showed an ORR of 64%, median PFS of 10.9

months, and median OS of 24.6 months compared to an

ORR of 33%, median PFS of 5.5 months, and median OS

of 12.7 months for dabrafenib monotherapy.77–79 Based on

these results, the combination of dabrafenib and trametinib

was approved in June 2017 by the regulatory authorities of

both the US and European Union for treatment of

advanced NSCLC harboring the BRAF V600E mutation

regardless of the previous therapy.80 Belvarafenib, a pan-

RAF kinase inhibitor, was well-tolerated and exhibited

antitumor activity in patients with advanced solid tumors

harboring RAS or RAF mutations, and further investiga-

tion of its combination with the MEK inhibitor cobimeti-

nib is ongoing (NCT02405065, NCT03118817).81

Several possible secondary resistance mechanisms to

BRAF inhibitors have been proposed, including reactiva-

tion of ERK signaling through the MAPK pathway,

bypassing of the MAPK pathway via the activation of

alternative signaling pathways and other uncharacterized

mechanisms.82 The secondary resistance mechanism to the

dual inhibition is more complex and requires further

investigation.

NTRK Rearrangements
The neurotrophic tropomyosin receptor kinase (NTRK)

genes (NTRK1, NTRK2, and NTRK3) encode three TRK

proteins (TRKA, TRKB, and TRKC), which play an

important role in the cell growth, differentiation, and

apoptosis of peripheral and central nervous system

neurons.83 They activate downstream PI3K/AKT/mTOR,

RAS/RAF/MAPK, PLC-γ, and protein kinase C pathways

to control cell cycle progression, proliferation, apoptosis,

and survival.84–87 NTRK1 and NTRK2 rearrangements

occur in 3 to 4% NSCLC,88,89 and CD74, MPRIP,

SQSTM1, TRIM24 are their known fusion partners.90
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The clinical and pathologic features of patients with

NTRK1 and NTRK2 rearrangements are not well

characterized.

Larotrectinib (LOXO-101)
Larotrectinib (LOXO-101) is a highly selective pan-TRK

inhibitor.91 In an ongoing study of 55 patients with

a variety of NTRK fusion-positive cancers, the ORR is

75% regardless of tumor type.92 The results for four

NSCLC patients enrolled in this study were reported at

the 2018 WCLC. At the time of analysis, three of the four

patients had ongoing responses to the drug (ranging from

5.7 to 12 months) whereas one patient had stable disease

that finally progressed after 300 days of treatment.93 The

success of this trial led to FDA approval of larotrectinib

for adult and pediatric patients with solid tumors harboring

NTRK gene fusions in May 201894 Three different cate-

gories of mutations were observed after larotrectinib pro-

gression and may represent resistance mechanisms,

including substitutions in the solvent front (NTRK1 p.

G595R, NTRK3 p.G623R), the gatekeeper position

(NTRK1 p.F589L), and the xDFG position (NTRK1 p.

G667S, NTRK3 p.G696A).92

LOXO-195
LOXO-195 is a second-generation TRK-selective inhibitor

that was developed to overcome NTRK1 p.G595R-

mediated resistance.95 It has been used in two patients

with NTRK fusion-positive cancer (colon and infantile

fibrosarcoma) that progressed after larotrectinib treatment.

Both patients achieved objective responses from LOXO-

195 therapy.95 Furthermore, a multicenter phase 1/2 clin-

ical trial of LOXO-195 in patients with solid tumors har-

boring NTRK fusion is now underway (NCT03215511).

Entrectinib (RXDX-101)
The multi-kinase inhibitor entrectinib also showed anti-

NTRK activity. The integrated analysis of STARTRK-1,

STARTRK-2, and ALKA-372-001 trials we mentioned in

ROS1 rearrangements also reported the efficacy of entrec-

tinib in NTRK fusion-positive solid tumors. In 54 patients,

it showed an ORR of 57.4%, a median PFS of 11.2

months, and a median OS of 20.9 months.96 It was recom-

mended by the NCCN Guidelines for the treatment of

advanced NTRK fusion-positive NSCLC, and approved

by FDA with breakthrough therapy designation.27

HER2 Mutation
As a membrane-bound tyrosine kinase in the ERBB

family, human epidermal growth factor receptor 2 (HER2

or ERBB2) differs from EGFR (ERBB1) due to its lack of

endogenous ligand. HER2 activates signal transduction

pathways, including PI3K, MAPK, and JAK/STAT,

through heterodimerization with other members of the

ERBB family, which promotes cell proliferation and

survival.97 In NSCLC, HER2 amplification is not consid-

ered to be oncogenic driver mutation, but one of the

secondary mechanisms of resistance to EGFR-TKIs.98

HER2 mutation is regarded as potential drivers of onco-

genesis which have been identified in approximately 2 to

4% of NSCLC and are associated with adenocarcinoma

histology, female gender, Asian ethnicity, and never-

smoked status, and the YVMA 776–779 ins in exon 20

is the most frequent HER2 mutation.99

HER2-targeted therapies have had great success

against breast cancer, including trastuzumab, pertuzumab,

ado-trastuzumab emtansine (T-DM1), and lapatinib, which

have been approved by the FDA for HER2-positive breast

cancer.100 However, currently available targeted drugs

have limited activity in HER2-mutant NSCLC, and there

are no HER2-targeted drugs approved for NSCLC.101

A retrospective international multicenter study analyzed

27 patients with stage IV or recurrent HER2-mutant lung

adenocarcinoma treated with afatinib and found a median

time-to-treatment failure (TTF) of three months, and

a median DOR of six months.102 The responses appeared

to be better in the exon 20 ins subgroups. A recent study of

afatinib in heavily pretreated NSCLC patients showed

a median TTF of 9.6 months, an ORR of 33%, and

a DCR of 100% among ten patients with HER2 exon 20

ins.103 In a retrospective study of 101 NSCLC patients

with HER2 mutations, for 29 patients who received ner-

atinib, lapatinib or afatinib, the ORR was 7.4%, and med-

ian PFS was 3.4 months; for 58 patients who received

T-DM1 alone or trastuzumab in combination with che-

motherapy, the ORR was 50.9%, and median PFS was

4.8 months.101 A phase II basket trial assessed the activity

of T-DM1 in 18 HER2-mutant NSCLC patients and

showed an ORR of 44% with a median PFS of 5

months.104 Poziotinib showed promising preclinical and

early clinical activity in NSCLC patients with HER2 or

EGFR exon 20 ins,105 in an ongoing phase II study

(NCT03066206), initial responses of 50% and a median

PFS of 5.1 months were observed in 12 evaluable
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advanced HER2 exon 20 ins NSCLC patients.106 An

ongoing phase I study of another novel HER2-targeted

drug, trastuzumab deruxtecan (DS-8201a), demonstrated

an ORR of 62.5% and DCR of 75% in 12 patients with

HER2-expressing or -mutated NSCLC.107 A phase II study

for this drug against the same condition recently began

accrual (NCT03505710).

The resistance mechanisms upon progression on HER2

targeted therapies are not fully understood. A recent study

of trastuzumab in combination with chemotherapy or afa-

tinib in 9 patients with HER2-mutant metastatic lung ade-

nocarcinoma suggested that PIK3CA mutation and

increased HER2 copy number may be potential resistance

mechanisms.108

EGFR Exon 20 Ins
EGFR exon 20 ins mutations occur in about 1.8% of all

NSCLC and 12% of cases with EGFR mutants.109 Similar

to classical activating EGFR mutations, EGFR exon 20 ins

mutations are enriched in women, non-smokers, Asian

populations, and tumors with adenocarcinoma histology.110

EGFR exon 20 ins patients respond poorly to targeted

EGFR inhibitors, including the third-generation inhibitor,

osimertinib.111–113

Poziotinib
Poziotinib is a potent and clinically active inhibitor of

EGFR and HER2 exon 20 ins.105 In a phase II trial for

cancers containing these mutations, poziotinib treatment

resulted in an ORR of 55% and a median PFS of 5.5

months for 44 advanced NSCLC patients with EGFR

exon 20 ins. Responses were also observed in 62% of

TKI-refractory patients (NCT03066206).106 Although the

FDA refused to grant breakthrough therapy designation to

poziotinib for the treatment of patients with metastatic

NSCLC containing EGFR exon 20 mutations, the preli-

minary results of poziotinib from an ongoing phase II

clinical trial (NCT03318939) demonstrated an ORR of

40% and a median DOR of 6.6 months.114

TAK-788
TAK-788 is an oral inhibitor with potent, selective precli-

nical activity against EGFR/HER2, including exon 20 ins.

Results from a Phase 1/2 (NCT02716116) showed TAK-

788 yielded a median PFS of 7.3 months and an ORR of

43% in 28 patients with locally advanced or metastatic

NSCLC with EGFR exon 20 ins. In a patient subgroup

without brain metastases at baseline, the ORR was 56% (n

= 9/16), and the median PFS was 8.1 months.115

NRG1 Fusion
The neuregulin 1 gene (NRG1) is located on chromosome

10q23.1.116 NRG1 fusion is a novel driver gene identified

in many cancer types.117 It can induce the expression of

the extracellular EGF-like domain of NRG1, which binds

to HER3 (ERBB3), thereby stimulating heterodimerization

of HER3 with HER2, and subsequently actives the AKT

and MAPK pathways.118

NRG1 fusion occurs in 1–2% of NSCLC,119 and is

mutually exclusive with other oncogenic alterations.120 It

is mainly identified using RNA-based assays. CD74 and

SCLA3A2 are the most common upstream partners, and

other partners include SDC4, SLC3A2, TNC, MDK,

ATP1B1, DIP2B, RBPMS, MRPL13, ROCK1, DPYSL2,

and PARP8.117 NRG1 fusion is more common in women,

never smokers and adenocarcinoma histology, especially

mucinous subtypes.117,121

Based on the activation mechanism, targeting the

HER2/HER3 signaling pathway is a possible therapeutic

strategy for NRG1 fusion. The pan-ERBB inhibitor afati-

nib has been reported to have anti-tumor activity in several

patients with NSCLC harboring NRG1 fusion. In 2017,

two patients with NRG1 fusion-positive stage IV NSCLC

were reported to have a durable clinical response to afati-

nib of 10 and 12 months, respectively.122 Another report

presented at the 2019 WCLC showed four NSCLC

patients with NRG1 gene fusion achieved a certain degree

of response or tumor stabilization when treated with

afatinib.123 Response to anti-ERBB3 monoclonal antibody

GSK2849330 has also been reported.120 Further studies

are needed to explore targeted therapies for NRG1 fusion.

FGFR1 Amplification
FGFR1 (fibroblast growth factor receptor 1) belongs to

a family of four transmembrane tyrosine kinase receptors

(FGFR1-4) that regulates angiogenesis, embryogenesis,

inflammation, and malignant tumor cell proliferation through

the downstream activation of the RAS/RAF/MAPK, PI3K/

AKT/mTOR, STAT, and PLCγ pathways.124,125 The FGFR1
gene, located on chromosome 10q, is amplified in about 20%

of squamous NSCLC, more common in males and active

smokers, and may be a negative prognostic marker in early-

stage NSCLC patients treated with surgery.126 A 3.5-fold

amplification of this gene was recognized as the distribution

cut-off for patient survival and may represent a stratification
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factor for clinical trials.127–129 In addition, a recent study

demonstrated that FGFR mutations might increase the risk

of lymph node metastasis in squamous NSCLC and be an

independent predictive factor for inferior survival.130 There

are currently two types of FGFR inhibitors: 1) molecules

directed against the FGFR domain, which are selective

FGFR TKIs; 2) multitarget inhibitors that are nonselective

FGFR TKIs.

Nonselective FGFR TKIs
Clinical trials using nonselective FGFR TKIs (e.g., lucita-

nib, lenvatinib, dovitinib, nintedanib, ponatinib, cediranib,

pazopanib, regorafenib, and brivanib) have demonstrated

limited activity and undesired side toxicities, such as hyper-

tension, proteinuria, cardiovascular events, and hypothyr-

oidism due to VEGF inhibition.131,132 Nintedanib is the

only FGFR inhibitor approved by the European Medical

Agency (EMA) for second-line treatment in combination

with docetaxel for NSCLC patients with locally advanced,

recurrent, or metastatic disease and adenocarcinoma

histology.132 In a phase II trial of nintedanib in patients

with FGFR1-amplified pretreated squamous NSCLC,

a 6-month PFS was observed for the six FGFR1-amplified

patients (NCT01948141).133 A phase II trial for another

nonselective FGFR TKI, dovitinib, is ongoing in pretreated

squamous NSCLC patients with FGFR1 amplification

(NCT01861197).

Selective FGFR TKIs
Clinical trials with selective FGFR TKIs, including BGJ398,

AZD4547, debio-1347, LY2874455, ARQ-087, erdafitinib,

and TAS-120, have had a range of activity.131,132 An ORR of

11.1% and DCR of 50% were reported for 36 FGFR1-

amplified squamous NSCLC patients treated with

BGJ398.134 Erdafitinib (JNJ-42756493) has demonstrated

antitumor activity against urothelial carcinoma. In April

2019, it received accelerated approval from the FDA for the

treatment of adults with locally advanced or metastatic urothe-

lial carcinomawithFGFR3 orFGFR2 genetic alterations, who

have progressed during or following at least one line of prior

platinum-containing chemotherapy, including within 12

months of neoadjuvant or adjuvant platinum-containing

chemotherapy.135 A phase IIa study of erdafitinib in Asian

participants with various malignant tumors, including

NSCLC, is ongoing (NCT02699606).

PI3KCA Mutation or Amplification
Phosphatidylinositol-3 kinases (PI3K) belong to a family of

heterodimeric kinases, which play an important role in the

regulation of cell growth, survival, and motility. There are

three classes of PI3K (I, II, and III), which impact cellular

signal transduction in different roles. Phosphatidylinositol

3-kinase, catalytic (PI3KCA) is a catalytic subunit of the

class IA PI3K. Aberrant activation of PI3KCA through

gene mutation or amplification is associated with human

carcinogenesis.136 PI3KCA can also be activated by

upstream growth factor receptors followed by subsequent

activation of its downstream pathways, including AKT/

mTORC1/p70S6K. Tumor suppressor PTEN is a key nega-

tive regulator of PI3K/AKT/mTOR activation through

PIK3CA.137,138

PI3KCA amplification is more common in squamous

NSCLC (33 to 37%) than adenocarcinoma (5 to

6%).139,140 PI3KCA mutations occur in about 2 to 5%

NSCLC and are also more prevalent in squamous

NSCLC.139–141 In adenocarcinoma, these mutations are

associated with a poorer prognosis,142 have been reported

to be concurrent with other oncogenic drivers and may be

related to resistance mechanisms against TKIs because

they have also been found in EGFR-mutant NSCLC that

has developed acquired resistance to EGFR-TKIs.143,144

The pan PI3K inhibitor Buparlisib (BKM120) did not

demonstrate sufficient clinical activity in patients with

relapsed NSCLC with PI3KCA mutation in a phase II

study but had activity when combined with the mTOR

inhibitor everolimus in NSCLC preclinical models. It

also had activity in pretreated head and neck squamous

cell carcinoma patients when combined with paclitaxel in

a phase II study.144–146 These trials suggest that the anti-

tumor activity of a single PI3KCA-targeted agent may be

limited, but combined therapy may provide better results.

Additional clinical trials with other PI3K inhibitors com-

bined with targeted agents and/or cytotoxic chemotherapy,

such as pictilisib (GDC-0941) in combination with cyto-

toxic chemotherapy (e.g., paclitaxel, carboplatin, peme-

trexed, and cisplatin) (NCT00974584, NCT01493843);

pilaralisib (SAR245408, XL147) combined with carbopla-

tin/paclitaxel (NCT00756847) have been completed, but

the results have not yet been released.

DDR2 Mutation
Activating discoidin domain receptor 2 gene (DDR2) muta-

tions have mainly been identified in approximately 4% of
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squamous NSCLC. These mutations can promote carcinogen-

esis through cell migration and proliferation.147,148 Dasatinib

and its combination with erlotinib have demonstrated activity

in NSCLC patients with DDR2 mutations.148–150 However,

several dasatinib clinical trials were terminated prematurely

due to intolerable toxicities, lack of efficacy, and slow

accrual.151,152 Because excessive toxicity could hinder the

potential benefit of this drug, an ongoing phase II trial

(NCT01744652) is currently trying to identify the highest

tolerable drug doses for the combination of dasatinib and

crizotinib that can be given to patients with advanced cancer.

Conclusion
With the rapid development of precision medicine over the

past decade, many oncogenic drivers have been discov-

ered, and a paradigmatic change has occurred in the diag-

nosis and treatment of patients with advanced NSCLC.

EGFR- and ALK-targeted therapy has become standard

therapy for patients with these mutations. In this review,

we discussed the rare driver genes in NSCLC, focusing on

the clinical characteristics, currently approved therapies,

and resistance mechanisms. Although targeted therapies

have been greatly successful in recent years, the benefits

obtained are limited due to the inevitable development of

drug resistance. To improve efficacy, overcome resistance,

and minimize toxicity, further studies are needed to

explore the resistance mechanisms and discover more

effective targeted therapies.
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