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Synopsis Physiological stress may induce sublethal effects on fitness by limiting energy availability and shifting energy allo- 
cation, which can incur reproductive costs. Sublethal reproductive costs may affect vital rates, linking stress events such as heat 
waves to population demography. Here, we test the hypothesis that heat wave intensity and consecutive days of exposure to 
heat wave temperatures impact survival and individual reproductive success. We subjected groups of the marine harpacticoid 
copepod, Tigriopus californicus, to 6 heat wave regimes that differed in maximum exposure temperature, 26°C or 32°C, and 
number of consecutive exposure days (1, 2, or 7), and predicted that survival and reproductive costs would increase with heat 
wave intensity and duration. We measured individual survival and offspring production during the heat waves and for 2 weeks 
following the last day of each experimental heat wave. Despite similar survivorship between the 2 maximum temperature treat- 
ments, sublethal effects of heat wave intensity were observed. Consistent with our predictions, individuals that experienced the 
higher maximum temperature 32°C heat waves produced fewer offspring overall than those that experienced the 26°C heat 
wave. Furthermore, the number of naupliar larvae (nauplii) per clutch was lower in the 32°C group for egg clutches produced 
immediately after the final day of exposure. Our results are consistent with the hypothesis that increasing thermal stress can lead 
to sublethal costs, even with no discernible effects on mortality. Heat waves may not always have lethal effects on individuals, es- 
pecially for individuals that are adapted to routine exposures to high temperatures, such as those occupying the high intertidal. 
Costs, however, associated with stress and/or reduced performance due to non-linearities, can affect short-term demographic 
rates. The effect of these short-term sublethal perturbations is needed to fully understand the potential for population rescue 
and evolution in the face of rapid climate change. 

I
T  

v  

t  

a  

c  

c  

b  

w  

t  

(  

a  

p

changes in mean temperatures ( Bozinovic et al. 2011 ; 
Folguera et al. 2011 ; Estay et al. 2013 ; Denny 2017 ; 
Morash et al. 2018 ). Population growth rates and in- 
dividual growth and energy allocation are important 
components of fitness, and therefore affect the chance 
of a population persisting in a changing world ( Vasseur 
et al. 2014 ; Buckley and Huey 2016 ). 

Heat waves may impact fitness through lethal and 

sublethal components. Exposure to high temperatures 
may result in large-scale mortality events ( Tsuchiya 
1983 ; Garrabou et al. 2009 ; McKechnie and Wolf 2010 ), 
but may also reduce growth and/or reproduction. Sur- 
vival and reproductive costs are likely mediated by 
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emperature is one of the most fundamental abiotic
ariables affecting animal performance, especially in ec-
otherms ( Huey 1982 ; Angilletta et al. 2002 ; Hochachka
nd Somero 2002 ; Trudgill et al. 2005 ; Schulte 2015 ). As
limate change accelerates, understanding the biologi-
al responses to extreme temperature events has never
een more pressing. Climate models predict a warmer
orld that includes an increase in the frequency, dura-
ion, and severity of temperature events, or heat waves
 Frich et al. 2002 ; Meehl and Tebaldi 2004 ; Rahmstorf
nd Coumou 2011 ). Thermal variability affects both

opulation and individual growth rates differently than 

The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. This is an Open 
ccess article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/ ), which 
ermits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. 

https://academic.oup.com/journals
https://doi.org/10.1093/iob/obac005
mailto:Matthew.Siegle@dfo-mpo.gc.ca
https://creativecommons.org/licenses/by/4.0/


2 M. R. Siegle et al . 

s  

2  

u  

l  

a
 

e  

c  

f  

T  

s  

w  

i  

t  

t  

p

M
S

T  

w  

o  

i  

A  

o  

i  

fl  

T  

o  

w  

D
 

i  

q  

3  

s  

(  

m  

m  

r  

f  

c  

i  

v  

r  

n  

h  

m  

t
 

w
2  

s  
constraints on energy production and allocation. Un- 
der a period of heat stress, energy normally allocated 

to growth and reproduction under non-stressful con- 
ditions may be re-allocated to the maintenance of en- 
ergetic balance (homeostasis) in response to increas- 
ing thermal stress ( Somero 2002 ; Helmuth et al. 2010 ; 
Sokolova et al. 2012 ; Sokolova 2013 ). 

Compounding the effects of heat waves on energy 
allocation, extreme heat events may further exacerbate 
the effect of temperature on energy balance through 

changes in energy production and reductions in to- 
tal energy availability. At higher temperatures, aero- 
bic scope, that is, the total energy available beyond 

maintaining basal metabolic functions, declines as oxy- 
gen concentration decreases ( Pörtner and Knust 2007 ). 
As oxygen concentration decreases, energy production 

shifts away from higher yielding aerobic pathways to 
lower yielding anaerobic ones resulting in lower total 
energy production ( Verberk and Calosi 2012 ). Addi- 
tionally, energetically expensive physiological stress re- 
sponses may be activated in response to cellular damage 
( Bell et al. 1988 ; Feder and Hofmann 1999 ; Bragg and 

Wagner 2009 ; Hoekstra and Montooth 2013 ). These 
concurrent changes in energy allocation, energy pro- 
duction and energy availability extend an individual’s 
survival time in stressful conditions. These changes in 

individual physiology, however, can impair individual 
fitness, and therefore its contribution to population per- 
sistence over the longer term, by reducing reproductive 
effort. Advancing frameworks that link models of en- 
ergy and temperature ( Pörtner 2010 ; Pörtner 2012 ) to 
ecological models of energy budgets ( Kooijman 2010 ) 
and fitness is critical for mechanistically understanding 
the sublethal effects of physiological stress to ecologi- 
cally relevant demographic rates ( Sokolova et al. 2012 ; 
Sokolova 2013 ). 

Individual fitness links physiological processes to 
the population vital rates that underlie population per- 
sistence in the face of environmental stress. The im- 
pact to individual fitness, however, depends upon on 

the type of the stressor, the intensity of the stres- 
sor, and the duration of the exposure period ( Rohmer 
et al. 2004 ; McNamara and Buchanan 2005 ). The ef- 
fects of temperature stress on individual survival and 

reproductive effort may be hard to predict, due to 
the non-linearity with which many metabolic pro- 
cesses scale with temperature. Furthermore, thermo- 
tolerance is plastic, and resistance to stressful temper- 
atures reflects both long-term evolutionary adaptation 

and short-term effects of thermal history ( Angilleta 
2009 ; Schulte 2015 ). Moreover, while the physiological 
responses to heat stress such as the heat shock response 
are well studied ( Lindquist and Craig 1988 ; Schlesinger 
1990 ; Hightower 1991 ), organismal responses may not 
cale linearly with repeated heat stress events ( Smith
011 ), and may instead change rapidly, leading to pop-
lation level-effects that exceed a threshold and have
ong-lasting effects on population demography ( Harley
nd Paine 2009 ). 
The objectives of this study were to test the hypoth-

sis that lethal and sublethal costs increase with in-
reasing heat wave intensity and duration. We tested
or these heat wave effects in the splash pool copepod,
igriopus californicus (Copepoda: Harpacticidae). We
ubjected individuals to one of six experimental heat
ave regimes varying in heat wave intensity (daily max-
mum temperature: 26°C or 32°C) and exposure dura-
ion (consecutive days of exposure were 1, 2, or 7). We
racked survival, egg clutch production, and offspring
roduction to estimate individual fitness. 

ethods 
tudy system, site description, and field collection 

he splash pool copepod, T. californicus, is an organism
ell-suited for investigations of the effect of heat stress
n energy balance and fitness. This copepod species
s distributed from Baja California to southeastern
laska in the northeastern Pacific Ocean. Populations
ccupy splash pools in the supralittoral zone of the high
ntertidal—a zone characterized by daily temperature
uctuations and highly variable salinity conditions.
he replenishment of splash pools with seawater may
nly occur during the highest tides each tidal cycle or
ith storm events, 1 or 2 days per month ( Egloff 1966 ;
ybdahl 1994 ). 
The reproductive life history of T. californicus makes

t highly amenable to experimental manipulation and
uantification of fitness metrics. Over approximately
–4 weeks individuals develop through 12 life stages:
ix naupliar stages (N1–N6) and five copepodid stages
C1–C5) to reach the adult stage. Adult males clasp im-
ature females, and immediately after a female’s final
olt into adulthood, a male will inseminate and then
elease the female. Males may mate more than once, but
emales generally mate only once. However, females are
apable of producing multiple broods from the same
nsemination even ( Burton 1985 ). Eggs brood on the
entral side of the urosome where the egg clutches are
eadily apparent. Females typically produce around 30
auplii per clutch ( Powlik et al. 1997 ). The clasping be-
avior of mating pairs, visibility of gravid females, and
oderate number of nauplii produced per clutch make

racking reproductive effort relatively straightforward. 
We collected individuals from splash pools located
ithin the rocky shores of Botany Bay. 48°31.7’N, 124°
7.1’W. in Juan de Fuca Provincial Park, located on
outhwestern Vancouver Island near Port Renfrew, BC
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Fig. 1 Daily temperature regime for the experimental heat waves to which the groups of T. californicus copepods were exposed. The black 
line is for the 32°C heat waves and grey line is for the 26°C heat waves. 
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Supplementary Fig. 1). Botany Bay is located at the
esternmost entrance to the Strait of Juan de Fuca and
s characterized by cool maritime weather due to fog,
loud cover, and high precipitation (annual mean pre-
ipitation is around 2.5 m). Summer air temperatures
ange from a mean low of 12°C to a mean high of 23°C.
ndividuals were collected in November 2015. Collec-
ions were composed of individuals from approximately
ve neighboring splash pools, that were brought back
o The University of British Columbia, where they were
ombined and housed in 500 mL jars and 10 L aquaria
n November and May. Water temperature in the lab
anged from 19–21°C, consistent with small fluctua-
ions in room temperature, and salinity was maintained
t 30–34 ppt. Tigriopus cultures were fed ground Spir-
lina algae (Max Pro brand fish food) ad libitum . 

eat wave experiments 

o test our hypothesis, we subjected groups of copepods
o one of six experimental heat wave scenarios. The sim-
lated heat waves reflect both realistic daily temper-
ture fluctuations as well as realistic heat wave dura-
ions ( Siegle et al. 2018 ). Daily fluctuatio ns o f experi-
ental heat waves included a six-hour gradual increase

rom the minimum temperature (20°C), one hour at the
maximum temperature (26°C or 32°C), and a six-hour
decline back to the minimum temperature ( Fig. 1 ). The
six heat wave treatments included heat wave durations
of 1, 2, or 7 consecutive days of exposure at either max-
imum temperature. The maximum temperatures were
selected to span a range of high temperatures encoun-
tered in the field. Field summer temperature data show
that 26°C is in the 50 th percentile of daily maximum
temperature and 32°C is in the 5 th percentile of daily
maximum temperature (Supplementary Table 1, Sup-
plementary Fig. 2). We recorded summer splash pool
hourly temperatures by epoxying ibutton data loggers
(Embedded Data Systems) into 6–12 splash pools dur-
ing the summers of 2014 and 2015. The thermal envi-
ronments in the lab were created with a Panasonic M1R-
154 programmable incubator. 

We tested the hypothesis that increasing heat wave
intensity and duration lead to increasing costs to in-
dividual fitness. We subjected mated females to heat
wave treatments and tracked female survival and re-
production for 20 days following the first day of the
experimental heat waves. We isolated mate-clasping
pairs in 6 mL wells of a 12-well plate. Each well was
filled with 4–5 mL of sterilized seawater (28–32 ppt).
By isolating clasping pairs, we ensured that we tracked
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females at the beginning of their reproductive life-stage 
( Burton 1985 ), rather than females that had already 
produced multiple broods or were post-reproductive. 
Pairs were held at 20°C for 12 days, then subjected to 
the heat wave treatments. The sample size of clasping 
pairs was 29–32 for each heat wave treatment. After 
each heat wave, individuals were held at 20°C with 

a 16:8 hour light:dark cycle for the remainder of the 
experiment. Each pair received ∼0.05 mg of ground 

Spirulina algae (Nutrifin Max brand) at day 1, 4, 8, and 

16 of the experiment. This addition, in conjunction 

with some natural algae growth provided ample food 

without excessive bacterial growth. We periodically 
conducted 50% water changes and added distilled 

water to maintain salinity. Feeding and water changes 
occurred on the same day for all treatments. 

To reduce the possibility of cannibalism ( Gallucci 
and Ólafsson 2007 ), males were removed and dis- 
carded when the first egg clutch appeared. After nau- 
plii hatched or egg sacs degraded, the female was trans- 
ferred to a new well. This process was repeated for 
each subsequent egg clutch. We checked each individual 
daily for clasping status (still clasped vs. unclasped), ap- 
pearance of an egg clutch, mortality, and nauplii hatch- 
ing. Nauplii were collected two to three days after hatch- 
ing and preserved in 75% ethanol. Egg clutches that had 

not hatched by the end of the experiment were not used 

in any subsequent analyses on the rate of nauplii pro- 
duction. A Leica M165C stereoscope was used to count 
the number of nauplii produced from each egg clutch. 

Statistical analyses 

1. Fitness assays–Female survival 

We estimated female survival probabilities during 
the experimental heat waves and for 2-weeks post heat 
wave using the standard non-parametric Kaplan–Meier 
(KM) survivorship function (with right-censored data) 
( Kaplan and Meier 1958 ). The probability of survival, 
S , depends upon the number of deaths divided by the 
number at risk. (the hazard function; λ, at a particular 
time point, t ). The KM method updates the information 

at each censoring event, i.e., each death). 

S (t = S 
(
t − 1 ∗1 − λ ( t ) 

)
. 

We first used the Gehan–Breslow (modified 

Wilcoxon) test to test for differences in the sur- 
vival curves between the 26°C and 32°C groups. This 
test weights earlier time points, and because the heat 
waves occurred at the beginning of the experiment 
we expected most mortality to occur during this 
time. Next, we performed a Log-rank test, giving 
equal weight to all time points, to test for differences 
in the survival curves between the two temperature 
roups. The Gehan–Breslow and Log-rank tests were
erformed with the survMisc package in R ( Dardis
015 ). 

2. Fitness assays–Female reproduction 

Total lifetime reproductive output can be impacted
y reducing the number of clutches a female produces,
nd by reducing the number of offspring per clutch
hile reproductive. To distinguish between the effects
n total reproduction and the immediate effects on off-
pring per clutch, we standardized the total number of
auplii produced by a female by the total number of
ays she persisted in the experiment. Consequently, we
nly measured the direct of effect of heat wave intensity
nd duration on short-term reproductive output and
ot on total lifetime reproduction. We performed a two-
ay ANOVA to investigate the effect of heat wave inten-
ity and duration on the standardized number of off-
pring produced per female. We performed a Wilcoxon
ank Sum test in the coin package ( Hothorn et al. 2006 ,
008 ) in R to test for an effect of temperature inten-
ity on the number of nauplii per clutch. To investigate
he acute effects of heat stress on reproduction, we also
estricted the analysis of temperature intensity on the
umber of nauplii per clutch to only those clutches pro-
uced immediately after the last day of the heat wave. 
We also investigated the time to egg clutch produc-

ion using the Kaplan–Meier method described above
or the survival analysis. 

esults 
urvivorship did not differ between the two tempera-
ure intensity groups ( Fig. 2 ; Log-rank test: χ2 = 0.385,
f = 1, P = 0.53 and Gehan–Breslow test: χ 2 = 0.165,
f = 1, P = 0.68). Mortality rates were highest in the
rst 2–3 days of the heat waves, and declined thereafter.
We measured an additional two components of fit-

ess; the number of egg clutches produced as well as
he total number of nauplii that hatched. A total of 116
gg clutches containing 2199 nauplii were produced.
ero to 75 nauplii were produced per clutch, while 9.6%
7 out of 73) and 18.6% (8 out of 43) of egg clutches
ielded no nauplii in the 26°C and 32°C groups, respec-
ively. Per capita total reproductive output, estimated as
he number of offspring, declined in the high-intensity
2°C group compared to the low intensity group (t =
2.313, df = 61, P = 0.024) ( Fig. 3 ). 
We did not detect an effect of heat wave intensity on

he number of nauplii per clutch across all 116 clutches
mean nauplii per clutch: 21.01 and 15.47 for the 26°C
nd 32°C groups, respectively; Z = 1.63, P = 0.103)
 Fig. 4 A). By contrast, when we restricted the anal-
sis to the subset of egg clutches that were pro-
uced immediately after the last day of the heat
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Fig. 2 Estimated daily probability of T. californicus sur vival f or the 26 and 32°C heat wave intensity groups. Data are pooled across all exposure 
duration levels. No difference in survival probabilities ( + 95% CI) was observed between the two temperature groups. 
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ave, and excluded those produced two or more
ays after the temperature returned to a constant
0°C ( n = 9 and 6 clutches for the 26°C and 32°C
roups, respectively), increasing temperature inten-
ity reduced the number of nauplii per clutch (mean
auplii per clutch: 26.1 and 11.0 for the 26°C and
2°C groups, respectively; Z = 2.24, P = 0.025)
 Fig. 4 B). We observed a slight trend of increasing heat
ave duration negatively affecting offspring produc-
ion, despite not being statistically significant (Day 2:
 = −1.90, df = 59, P = 0.063; Day 7: t = 0.33, df =
9, P = 0.74). We found that the time to first egg clutch
roduction was delayed for the 32°C heat wave inten-
ity group; however, this slight trend was not statistically
ignificant (Log-rank test: χ2 = 1.84, P = 0.18) ( Fig. 5 ).

iscussion 

e tested the hypothesis that increasing heat wave in-
ensity and heat wave duration would increase lethal
nd sublethal fitness costs. We found that survivorship
id not differ between individuals in the different tem-
erature intensity groups. Females in the high intensity
2°C heat wave group, however, produced fewer over-
ll offspring than those in the 26°C heat wave group,
nd the number of nauplii per clutch was lower in the
2°C group than the 26°C group for clutches produced
immediately after the last day of heat wave exposure.
Thus, survivorship in the 32°C group was maintained
at a similar rate as the 26°C group, but individuals ex-
hibited reduced per capita reproductive output. These
results are consistent with the hypothesis that increas-
ing thermal stress may increase sublethal costs despite
similar patterns of mortality. 

Effects on fitness 

As predicted, offspring production decreased with in-
creasing temperature intensity. Several factors possibly
contributed to this result: a decrease in the number of
eggs produced by females in the 32°C treatment, dif-
ferential mortality rates of N1–N2 nauplii, a decline in
hatching success, and a delay in egg sac production.
We found that females in the 32°C treatment slightly
delayed egg sac production relative to females in the
26°C treatment, however, these differences were not sta-
tistically significant. We let the nauplii grow for two
to three days post hatching to attain a large enough
size to visualize and count effectively under the mi-
croscope. As such, we are not able to differentiate the
contributions of a decline in egg number, a decline in
hatching success, and a disproportionately higher mor-
tality rate of N1–N2 nauplii in the 32°C treatment to
the overall decline in offspring production, although
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Fig. 3 Total nauplii produced per female standardized by the number of days each female lived during the experiment. Overall offspring 
production decreases with increasing temperature. This effect is not observed, however, within the 26°C/2-day duration group. Boxplots 
show median values (horizontal lines) and 1 st and 3 rd quartiles (upper and lower edges of boxes). Whiskers encompass all values that are 
+ / − 1.5 times the distance between the 1 st and 3 rd quartiles. Outliers are shown as dots. 
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similar mechanisms involving maternal stress and 

provisioning underlie all three ( Koski and Kuosa 1999 ; 
Holste and Peck 2006 ). 

In line with our predictions, we observed a slight 
trend of increasing heat wave duration negatively affect- 
ing offspring production. Due to the experimental de- 
sign, most females did not begin producing egg clutches 
until they were four or five days into the heat wave. It 
is likely that if the heat wave treatments were shifted to 
have a greater overlap with the period of egg clutch pro- 
duction that a stronger signal of an effect of heat wave 
duration would have been detected. Furthermore, while 
our data are consistent with a life history trade-off be- 
tween survival and reproduction, testing for direct ev- 
idence of an energetic trade-off is beyond the scope of 
this study. It is possible that less energy was available for 
reproduction in the hotter heat wave treatment, which 

led to the observed decline in reproduction, rather than 

a re-allocation of energy away from reproduction to 
processes prioritizing survival. 

We observed declines in reproduction within the 
32°C treatment despite similar survival between the two 
heat wave intensity treatments. Based on summer field 

temperatures, we predicted that survivorship would de- 
crease more rapidly in the 32°C treatments than in the 
26°C treatments, because individuals rarely experience 
32°C in the field. At Botany Bay, daily splash pool tem- 
perature reaches 26°C approximately 50% of summer 
days, while 32°C is reached on less than 5% of sum- 
er days. It is important to note, however, that our ex-
erimental heat waves were intended to reflect summer
hermal regimes, but the copepods used for the fitness
ssays were collected in November. Mean daily maxi-
um temperatures for October–November are closer

o 16°C and reach 20°C less than 20% of the time.
ombined with a laboratory acclimation at 20°C for
2 days prior to the experiment, seasonal acclimatiza-
ion to November conditions may have led to lower
hermal tolerances than would be exhibited during the
ummer. The higher than expected mortality rates in
he 26°C groups demonstrate, however, that the exper-
mental heat wave treatments were sufficiently stress-
ul to study both lethal and sub-lethal effects on fit-
ess. Moreover, while reduced thermal tolerance due to
easonal acclimatization may explain a higher than ex-
ected mortality rate, it is not sufficient to account for
he similar patterns of survivorship between the 26 and
2°C temperature intensity groups. 
Most mortality occurred early in the experiment

efore heat waves were finished. It is possible that
he stress of clasping contributed to high female
ortality rates. Adult males exhibit pre-copulatory
ate-guarding behavior by clasping immature females

o ensure that a potential mate has not been previously
ertilized ( Burton 1985 ). Males will clasp developing
emales anywhere in the C2–C5 stage, and the clasp-
ng phase can last anywhere from one to seven days.
re-copulatory mate-guarding behavior is commonly
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Fig. 4 Number of T. californicus nauplii per clutch. The number of nauplii per clutch for each temperature intensity group is shown for all 116 
clutches over the entirety of the experiment (a), and for the 15 clutches produced immediately after the last day of exposure ( n = 9 and 6 
for the 26 and 32°C groups, respecti vel y) (b). No significant difference was found when considering all 116 clutches. Increasing temperature, 
however, reduced the number of nauplii per clutch for the restricted 15 egg clutches. Boxplots show median values (horizontal lines) and 1 st 

and 3 rd quartiles (upper and lower edges of boxes). Whiskers encompass all values that are + / − 1.5 times the distance between the 1 st and 
3 rd quartiles. Outliers are shown as dots. 
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bserved in crustaceans, and likely evolved due to
ntersexual conflict over pre-copula duration ( Parker
974 ; Jormalainen 1998 ). Females consistently resist
ale clasping, and the mate-guarding is characterized
y repeated female escapes and re-capture events (per-
onal observations). The high activity levels needed to
esist male clasping likely require large energy expen-
itures and also cost the female in terms of reduced
eeding opportunity ( Jormalainen et al. 1994 ; Huey and
ingsolver 2019 ). It is possible that the interaction be-
ween clasping stress and temperature resulted in equal
ortality rates between the 26 and 32°C despite the
rediction that mortality increases with thermal stress. 

eat waves in the intertidal 

xtreme heat events, heat waves, are a major source
f disturbance in intertidal systems ( Dethier 1984 ).
urythermal organisms in the intertidal routinely ex-
erience dramatic fluctuatio ns in temperature and are
redicted to be more robust to climatic extremes than
rganisms from stable environments ( Hoffmann et al.
003 ). Organisms, however, routinely encounter tem-
eratures close to their lethal limit, and may actually be
ore susceptible to increasing temperatures ( Somero
010 ). Rapid climate change is leading to an increase
n the frequency and severity of heat waves. As such,
hey will likely become an even more important factor
tructuring intertidal communities. 
We manipulated the heat wave thermal regime along
two axes: daily maximum temperature and duration of
consecutive days of exposure. Our heat wave manip-
ulations, however, also include differences in ramping
temperatures that are confounded with maximum tem-
perature. The ramping speeds (6-hour ramp-up and
ramp-down to and from maximum temperature) were
the same between the heat wave intensity groups, how-
ever, the degree increase per hour was higher for the
32°C group. In nature, heat wave structure may vary
in different but equally important ways not examined
here, for example, ramping speed; length of the daily
maximum temperature exposure; increasing daily min-
imum temperatures; differences in accumulated ther-
mal units. The interactive effects of multiple axes of
heat wave structure on fitness are not well understood.
For example, mortality may increase with increasing
daily maximum temperatures, or through an increase
in the number of degree-warming hours, which do
not necessarily entail higher daily maximum temper-
atures ( Siegle et al. 2018 ). Additionally, increases in
daily minimum temperatures may reduce the availabil-
ity of recovery time as the daily temperature recedes
following afternoon highs. This recovery time allows
for the repair of cellular components, and reduction in
concentration of heat shock proteins, which may have
deleterious effects if they persist at a high concen-
tration for too long ( Feder and Hofmann 1999 ).
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Fig. 5 Probability of time to first egg clutch for T. californicus females. The proportion of individuals that have produced their first egg clutch 
at each time step are shown for both the 26 and 32°C groups, pooled across all exposure duration levels. No statistical difference was found 
between the two temperature groups, however, there was a trend towards the higher temperature group delaying production of their first 
egg clutch (Log-rank test: χ2 = 1.84, P = 0.18). The lines represent the estimated probabilities and the shaded regions represent the 95% CIs. 
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Non-linear changes in performance with temperature 
given Jensen’s inequality ( Jensen 1906 ; Denny 2017 ) 
show that variation in temperature can have a large ef- 
fect on performance. As such, the plethora of ways tem- 
perature variation can manifest should be investigated 

accordingly. 

Conclusion 

Our results showed that temperature per se , but not 
the number of consecutive days of heat wave exposure, 
negatively impacted reproduction, but not survival, in 

T. californicus . Consequently, our study contributes to 
a small but growing literature on the impact of heat 
waves on demography, and shows that sublethal ef- 
fects of heat waves may impact population vital rates 
even if mortality rates are comparable between thermal 
regimes of varying temperature intensity. Future studies 
should investigate how manipulating other aspects of 
heat wave structure, such as increasing the daily maxi- 
mum temperature exposure time, affects individual sur- 
vival and reproduction. Additionally, the short-term ef- 
fects of sublethal heat stress will not necessarily impact 
population persistence over longer time scales ( Foley et 
al. 2019 ). Examining the effects of transient heat stress 
n both short-term individual and longer-term popu-
ation processes will be key to understanding the full
ange of heat wave effects on populations and commu-
ities. 
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