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BACKGROUND Atrial fibrillation (AF) is one of the most common
cardiovascular problems, and its asymptomatic tendency makes AF
detection challenging. Machine and deep learning methods are
commonly used in AF detection.

OBJECTIVE The purpose of this study was to evaluate the informa-
tion provided by convolutional neural network (CNN) and random
forest (RF) machine learning models for AF classification.

METHODS We manually extracted 166 time–frequency domains and
linear and nonlinear features to classify single-lead electrocardiograms
(ECGs) as normal, AF, other, or noisy sinus rhythms. We selected a sub-
set of 56 robust features using a genetic algorithm that was used in the
RF model. In a separate study, a 1-dimensional, 12-layer CNN was de-
signed on the raw ECG rhythms. Four features from the output layer and
128 features from the fully connected layer of CNN were explored inde-
pendently for classification. The models were trained and internally
validated on 8,528 ECGs and externally validated on a hidden dataset
containing 3,658 ECGs. Next,we analyzed the correlation between en-
gineered and CNN-learned features.
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RESULTS An RF classifier trained with 56-engineered features re-
sulted in an F1 score of 0.91, 0.78, and 0.72 for normal, AF, and
other rhythms, respectively. However, an ensemble of support vec-
tor machine and the CNN model resulted in an F1 score of 0.92, 0.87,
and 0.80, respectively.

CONCLUSION We explored various features and machine learning
models to identify AF rhythms using short (9–61 seconds) single-
lead ECG recordings. Our results showed that the proposed CNN
model abstracted distinctive features for AF classification.
KEYWORDS Arrhythmia detection; Convolutional neural networks;
Electrocardiography; Feature extraction; Random forest classifier
(Cardiovascular Digital Health Journal 2020;1:37–44) © 2020 The
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Background
Atrial fibrillation (AF) is the most common cardiac
arrhythmia, affecting 1%–2% of the world’s population,
and is associated with significant mortality and morbidity.1,2

AF episodes are commonly identified using 12-lead electro-
cardiography (ECG) characterized by atrial activity and ven-
tricular rate. Artificial intelligence–based methods have been
used recently to detect AF from ECG recordings. Most
classic machine learning methods are based on feature engi-
neering in which features are manually extracted and later
processed by predictive models. In contrast, convolutional
neural networks (CNNs) have been built with an unsuper-
vised feature extraction mechanism to classify signals.
Despite CNN showing extraordinary performance in the
AF classification problem, little is known about the informa-
tion extracted by CNN for classification.
Recently, many studies have proposed various algorithms
for automated diagnosis of cardiac abnormalities.3–7 Yu and
Chen developed a wavelet transform and neural network–
based arrhythmia detection method having accuracy of
99.65%.8 Ghorbani Afkhami et al used statistical and mixture
modeling features of ECG signals to achieve an overall accu-
racy of 99% for identifying various types of arrhythmias.9

Asgari et al used support vector machine (SVM) for auto-
matic AF detection that eliminates the need for P- or R-
peak detection.10 The model achieved sensitivity of 97%
and specificity of 97.1%. However, the results in these
studies were obtained from training the machine learning
model on a very small number of ECG records from a Mas-
sachusetts Institute of Technology–Boston’s Beth Israel Hos-
pital AF and arrhythmia database, so the proposed techniques
may not performwell on a larger cohort.10 Although amyriad
of AF detection techniques have been reported in the litera-
ture, most of the studies have limited applicability due to
use of a small and relatively clean dataset; the lack of an
out-of-sample validation set to ensure broad generalizability
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KEY FINDINGS

� This study presents an exhaustive analysis of time–
frequency, linear, and nonlinear engineered features
that can be used for cardiac arrhythmia classification.

� An optimized 1-dimensional,12-layer convolutional neural
network (CNN) model is also designed for the classification
of short, single-lead electrocardiographic recordings.

� The CNN-derived features in the proposed support vec-
tor machine classifier improved the arrhythmia classifi-
cation performance.

� This study provides an explicit comparison between en-
gineered and CNN-abstracted features for arrhythmia
detection.
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of the approach; dependency on fixed-duration or multiple-
lead ECG recordings; and computationally complex algo-
rithms with longer training time.

To address these issues, we designed two experiments: the
first, we implemented feature engineering–based classifiers
such as random forest, SVM, linear discriminant analysis
(LDA), quadratic discriminant analysis (QDA), decision
trees, and k-nearest neighbor (KNN); and the second, we
explored CNN-derived features from the raw ECG data,
which expands on our previous work in the area.11 The objec-
tive of this study was to optimize the proposed algorithm in
each experiment and to compare the performance of algo-
rithms. Our effort was motivated by the PhysioNet
Computing in Cardiology Challenge 2017, which provided
the ECG dataset with a variety of arrhythmias (Figure 1).

To the best of our knowledge, this is the first study to
analyze the interrelationships between CNN and engineered
features for arrhythmia classification. Some key contribu-
tions of this study are as follows:

� The study provides an explicit comparison of information
obtained by engineered and CNN-abstracted features for
AF classification.

� Various novel predictors for AF are implemented that
derive morphologic, temporal, and spectral information
from a single-channel ECG signal, which can be as short
as 9 seconds.

� ACNN-SVM integratedmodel is implemented that surpassed
the classification performance of state-of-the-art models.

� The results of this study can aid in the interpretability of the
deep learning model while allowing for the discovery of
potentially newer non-QRS features useful for classifica-
tion of arrhythmias.
Methods
ECG dataset and preprocessing operations performed to
clean data, a methodology for feature transformation, selec-
tion, and classification tools used in this study for arrhythmia
detection are described. We designed random forest and
CNN-based classification models and analyzed the perfor-
mance of these models in different scenarios. This study
uses publicly available de-identified data.
Experimental dataset and preprocessing
We used a training dataset of 8,528 ECG recordings collected
using single-channel ECG device (AliveCor, Mountainview,
CA).12 The data containing cardiac rhythms of 4 classes were
sampled at 300 Hz and had a bandwidth of 0.5 Hz to 40 Hz. A
hidden test dataset of 3,658 recordings of similar lengths was
used to access the performance of the built classifiers. Access
to this test dataset was not provided to the public. Before
feature extraction, we performed a data quality check on
ECG recordings and corrected inverted ECGs identified us-
ing the percentile-based statistical algorithm.13 To reduce
computational time and complexity, we down-sampled all
ECG recordings to 200 Hz.
Feature engineering
Time–domain features
We explored 56 time–domain features, including some
novel and standard measures of the heart rate variability
(HRV) signal that are recommended by the Task Force of
the European Society of Cardiology and the North Amer-
ican Society of Pacing and Electrophysiology.14 We calcu-
lated 8 descriptive measures—mean, standard deviation
(SD), kurtosis, skewness, range, median, median absolute
deviation, and mean absolute deviation—each from prepro-
cessed ECG and RR intervals calculated using the Pan-
Tompkins algorithm.15 We also calculated descriptive mea-
sures, except for median absolute deviation and mean abso-
lute deviation, from first- and second-order RR intervals
along with their coefficient of correlations. We generated
a unique set of features by defining 10 quantiles on RR in-
terval series from each class and identified the mean of RR
intervals in the lower 5% and upper 5% range of RR inter-
vals. We applied the Kolmogorov-Smirnov test to compare
the RR interval series with a reference RR interval database
created by considering 50 examples from each class. We
then computed 8 features using the mean and median of
the p value by comparing RR interval series with the refer-
ence database.

Recent work on AF detection showed that P-wave indices,
such as PR interval, P-wave morphology similarity, etc, can
indicate abnormal atrial activities.16,17 Combining informa-
tion from atrial and ventricular responses of the cardiac cycle
can enhance AF detection efficacy. Therefore, we identified
PR regions in the entire ECG recordings and calculated 7
descriptive measures from each PR region. The mean of
descriptive measures from the recordings is then used as fea-
tures in our classification models. To identify the PR region
approximately, we extracted 50 samples before the R peak
identified using the Pan-Tompkins algorithm. We also calcu-
lated the mean duration of the QT interval in ECG recordings.
To obtain an approximate QT region, we extracted 15



Figure 1 Representative electrocardiographic recordings of 10-second duration for different classes of cardiac rhythms. AF 5 atrial fibrillation.
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samples before the R peak to identify Q onset and 225 sam-
ples after the R peak to account for the T wave.

HRV measures can noninvasively evaluate sympathova-
gal balance.18,19 We derived 2 unique HRV measures: (1)
correlation coefficient and (2) percent of variance explained
by the first principal component by analyzing RR interval
and 1 sample delayed RR interval series obtained from
each ECG recording. Mathematically, the correlation coeffi-
cient was calculated as given in Equation 1:

corrðRRi; RRi11Þ; i5 1; 2; ::; n: (1)

Another novel feature was obtained by calculating the
mean absolute deviation of the derivative of the heart rate
signal. We calculated the percent of RR intervals lying be-
tween 0.6 and 1.2 seconds. We also plotted the histogram
of RR and delta RR series to provide a visual measure of
parasympathetic nervous system activity. To quantify the
measure, we identified the length of elements at the origin.
This robust feature provides information on ectopic beats in
each ECG rhythm that otherwise may go unobserved. Based
on our experiments, domain knowledge, and literature re-
view, we extracted a set of 56 time-domain–based features
for classifying ECG rhythms.
Frequency–domain features
Spectral analysis has been widely used for characterizing
ECG signals to fetch local atrial activity.20,21 Typical time–
domain techniques fail to accurately reflect the cardiac
response, especially when the ECG signal is affected by noise
and excessive amplitude variations. We computed the power
spectral density (PSD) of ECG recordings using the Welch's
averaged periodogram method with a hamming window
function. To extract fiducial points from PSD, we computed
ratios of PSD using Equation 2. Similarly, psdratio2 was
computed by dividing PSDs between frequencies 1–40 Hz
and 0–40 Hz.

psdrat15
sum ðPSD5215 HzÞ
sum ðPSD5240 HzÞ (2)

We also analyzed the spectral content of RR interval se-
ries. As the RR series is nonuniformly sampled, we computed
PSD using the Lomb-Scargle periodogram. Three main po-
wer spectral components—very low frequency (VLF;
�0.04 Hz), low frequency (LF; 0.04–0.15 Hz), and high fre-
quency (HF; 0.15–0.40 Hz)—are known to demonstrate
changes in automatic modulations of heart. Therefore, we
calculated power in each of these components along with
the LF=HF spectral power ratio to gauge sympathetic and
parasympathetic activities based on ECG signal. In addition
to these features, we attempted to estimate PSD using wavelet
coefficients. We extracted 48 unique features by decompos-
ing ECG signals with “db4” Daebauchies wavelet at 7th
scale. PSD calculations for 7 detail signals and 6th approxi-
mate signal were then made using the Welch method by
applying a hamming window of 256 samples. Furthermore,
we calculated mean PSD for both approximate and detail sig-
nals in 6 frequency bands: 1–3, 3–5, 5–9, 9–17,17–33, and
33–65 Hz. A total of 54 features based on spectral analysis
were used in the classification models.
Nonlinear approach
Nonlinear complexity indices can characterize underlying
mechanisms in the nonstationary ECG rhythms. Sample en-
tropy (SampEn) is heuristically interpreted as a measure to
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assess complexity in the ECG recordings.22,23 In this study,
we calculated SampEn from every 1-second epoch of the
recording in a sliding nonoverlapping window manner. We
computed SampEn as given in Equation 3:

SampEnðm; r;NÞ52log

�
AmðrÞ
BmðrÞ

�
: (3)

where the maximum epoch length to be compared, m 5 3,
tolerance window, r 5 0.25 ! SD of the epoch, and length
of the ECG recording, N5 200.BmðrÞ; is the probability that
2 sequences will match for m points, whereas AmðrÞ is the
probability that the 2 sequences will match form11 points.24

We then calculated 6 descriptive measures from the SampEn
series obtained from ECG recording.

To reduce the effect of noise and improve the signal-to-
noise ratio in the ECG signal, we decomposed signal with
Symlet wavelet at fifth scale. We constructed a feature set
consisting of variance, mean, and variance of the autocorre-
lation of third, fourth, and fifth detail coefficients.

We calculated the SampEn of all 5 detail coefficients us-
ing parameters m 5 2 and r 5 0.25 ! SD of series of detail
coefficients.

Linear approach
In our previous studies, we developed a method known as
probabilistic symbolic pattern recognition (PSPR) to quantify
the underlying changes in morphology of ECG record-
ings.25,26 In this study, PSPR symbolically discretizes ECG
recordings (down-sampled at 8 Hz) using 5 symbols (a, b,
c, d, e) with thresholds defined by quantile length of 4. The
pattern transition probabilities (PTP) of symbols in all discre-
tized series then were calculated. We also applied PSPR on a
reference database consisting of 100 normal ECG recordings
and 25 paroxysmal AF episodes from the PhysioNet 2001
challenge. The similarity between PTPs of given series PTPik
and reference series PTPjk were then calculated as given in
Equation 4:

PTSi;j 5
X7

k56

eucdist
�
PTPi

k; PTP
j
k

�
(4)

A set of 4 PSPR features was derived by calculating
pattern transition similarity (PTS) for 6th and 7th symbol
PTP using reference normal and paroxysmal atrial fibrillation
(PAF) series. Furthermore, we calculated 4 descriptive
measures—mean, maximum, minimum, and SD from 7th
approximate and 7 detail wavelet coefficients obtained after
decomposing ECG recordings with “db4” Daebauchies
wavelet. This resulted in a set of 32 wavelet descriptive-
based features, which provided information on time–
frequency scale.

Feature selection using genetic algorithm
To identify redundant features that do not improve classifica-
tion performance, we used a genetic algorithm (GA)–based
stochastic feature selection technique. To optimize the
GA-based algorithm, we used a population size of 100
and generation size of 50, and evaluated a fitness function,
which computes an average F1 score of 3 main cardiac
rhythms: normal, AF, and other. We trained a random forest
classifier with 170 decision trees for every iteration.
CNN architecture for feature extraction
Deep learning techniques have been widely used in the last
decade in the field of translational bioinformatics, medical
informatics, and medical imaging.27 A few studies have also
reported classifying ECG signals using the CNN model and
other deep learning–based approaches.28,29 In this study, we
designed a 1-dimensional, 12-layer CNN architecture to learn
the structure of ECG rhythms. This design is an improved
version of our 13-layer CNN, which required more training
time and had greater architectural complexity.11 CNN can
automatically exploit spatial or time relationships in data
without requiring the domain knowledge.

To find an optimized CNN architecture, we investigated
various structural and learning parameters, such as number
of hidden layers, feature maps, kernel size, stride, and regu-
larization coefficient. The architecture shown in Figure 2 re-
sulted in the best performance, so we report results from this
architecture. We also tried various preprocessing techniques
such as normalizing raw ECG data with z-score, min-max,
and used the first derivative of ECG instead of raw ECG input
to CNN. We zero-padded ECG signals to analyze the consis-
tent data duration of 60 seconds.

In the proposed CNN architecture, we used 12 convolu-
tion layers with a filter size of 1! 5 and each layer followed
by the batch normalization layer, activation layer, and
dropout layers. We introduced nonlinearity in the model by
using a ReLU activation function. To increase the generaliz-
ability of the model, we introduced regularization by using
dropout layers and L2 regularization. We penalized the
squared magnitude of weight by using L2 regularization fac-
tor: l51! e-4. Furthermore, we applied max-pooling layers
to control overfitting.
Result
Machine learning for arrhythmia classification
We extracted a set of 166 features characterizing the morpho-
logic, spectral, complexity, and temporal dynamics of ECG
signals. Figure 3 shows box plots of 4 representative features
used in the final classification model to discriminate 4 classes
of cardiac rhythms.We analyzed 4 groups of features as spec-
ified in Table 1, individually and collectively to gauge their
contribution to classify cardiac rhythms. We also explored
various conventional classifiers such as LDA, SVM, QDA,
decision trees, KNN classifier, and random forest using 4
sets of features and compared their classification perfor-
mance in terms of F1 score.

We grouped extracted features into 4 categories (Table 1).
Each group of features was analyzed with 6 classifiers using
5-fold cross-validation technique. Table 2 shows the compar-
ison of average F1 score obtained from different classifiers for



Figure 2 One-dimensional, 12-layer convolutional neural network architecture designed to distinguish 4 classes of cardiac rhythms using single-lead electro-
cardiography. AF 5 atrial fibrillation; BN 5 batch normalization; CL 5 convolution layer; FC 5 fully connected layer.
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each group of features. With group 1 features, a maximum
score of 0.73 was obtained with the random forest classifier.
Interestingly, group 3 features provided a better classification
response than groups 2 and 4, suggesting that analyzing the
signal complexity of ECG provides more discriminative in-
formation than spectral and linear analysis methods for
arrhythmia detection. Overall, LDA and QDA classifiers
did not perform well, which may be due to issues of class
imbalance and the features not being linearly separable. By
far an ensemble of decision trees (170 in this study) per-
formed superior compared to the other mentioned classifiers
for identifying most of the rhythms. Of note, the extracted
time–domain features provide the most meaningful informa-
tion for discriminating all cardiac rhythms.
Figure 3 Box plots of 4 representative features extracted for classification of ca
quency; PSD 5 power spectral density.
To improve classification efficacy, we first considered
evaluating the entire set of 166 features. Because random
forest performed better than other classifiers, we used random
forest as a representative machine learning model for the rest
of the analysis. We then conducted a similar analysis using
GA-selected features. The GA algorithm resulted in a subset
of 56 features that were used in the final classification model,
yielding an F1 score of 0.89, 0.76, and 0.71 for normal, AF,
and other rhythms, respectively, on a cross-validated training
dataset. The confusion matrix on this dataset is given in
Table 3.

In contrast, on the hidden test dataset of 3,658 ECG re-
cordings, the F1 scores were 0.91, 0.78, and 0.72, respec-
tively. We believe that lack of information on the actual
rdiac rhythms. AF 5 atrial fibrillation; HF 5 high frequency; LF 5 low fre-



Table 1 Details of 166 features extracted with feature
engineering

Type Description
No. of
features

Group 1:
Time domain

Descriptive measures of PR interval,
duration of QT interval, RR intervals,
first- and second-order RR intervals

56

Quantile based on RR intervals
KS test based on RR intervals
Heart rate variability measures

Group 2:
Frequency
domain

PSD of wavelet coefficients 54
VLF power
LF power
HF power
PSD ratios

Group 3:
Nonlinear

Descriptive measures of
sample entropy computed
on ECG and wavelet coefficients

20

Group 4: Linear PSPR features from ECG recording
sampled at 8 Hz

36

Descriptive measures of wavelet
coefficients

ECG 5 electrocardiography; HF 5 high frequency; KS 5 Kolmogorov-
Smirnov; LF 5 low frequency; PSD 5 power spectral density; PSPR 5 prob-
abilistic symbolic pattern recognition; VLF 5 very low frequency.

Table 3 Confusion matrix obtained from the cross-validated
training dataset using random forest model

Normal 4740 18 288 30
AF 56 530 151 21
Other 706 73 1604 32
Noise 85 10 41 143

Normal AF Other Noise

AF 5 atrial fibrillation.
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category of other rhythms makes the identification of
appropriate features more challenging, thereby reducing
classification accuracy.
CNN architecture for arrhythmia classification
A typical CNN model negates the need to manually extract
features and therefore has less computational burden. The
proposed architecture only requires 1-dimensional convolu-
tion operations such as multiplications and additions, which
makes it computationally efficient and a suitable choice for
real-time cardiac monitoring and anomaly detection applica-
tions using commodity Graphics processing units (GPUs).

We provided preprocessed 60-second-long ECG signals
sampled at 200 Hz as an input to the 12-layer CNN. We
divided the training database of 8,528 ECG recordings into
90% for training and 10% for validating the CNN model.
Table 2 Performance of various classifiers while using different
categories of features for classification

Classifier

Average F1 score

Group 1:
Time domain

Group 2:
Frequency
domain

Group 4:
Nonlinear

Group 4:
Linear

SVM 0.71 0.38 0.40 0.38
LDA 0.19 0.30 0.41 0.26
KNN 0.71 0.26 0.38 0.22
QDA 0.20 0.32 0.42 0.19
Decision trees 0.66 0.39 0.40 0.30
Random forest 0.73 0.46 0.46 0.36

KNN 5 k-nearest neighbor; LDA 5 linear discriminant analysis; QDA 5
quadratic discriminant analysis; SVM 5 support vector machine.
Based on our experiments, we optimized CNN using a sto-
chastic gradient descent with momentum approach. To vali-
date the model at regular intervals, we also used an early
stopping criterion, which stops training when the validation
loss stops decreasing for 30 epochs. In the final CNN archi-
tecture, we used a maximum of 60 epochs for training, a min-
ibatch with 20 observations at each iteration, and a Softmax
function as the output unit activation function. Other tech-
nical specifications for training the CNN architecture are
tabulated as kernel size of convolutional layers of 5, initial
learning rate of 0.0001, stride in convolutional layer of 1,
stride in pooling layer of 2, L2 regularization of 1! e–4, mo-
mentum of 0.9, minibatch size of 20, and maximum epochs
of 60.

We have designed an optimized CNN architecture that has
a fast learning speed and gives high accuracy to classify 4 cat-
egories of cardiac rhythms. Because the focus of this study
was to emphasize improving the classification efficacy for us-
able ECG recordings containing normal, AF, and other
rhythms, we report results from these 3 classes. With CNN-
Softmax, we obtained an F1 score of 0.90, 0.85, and 0.78
for identifying normal, AF, and other cardiac rhythms,
respectively. We designed the CNN architecture using MAT-
LAB (Version 2017b; MathWorks, Natick, MA).
Figure 4 F1 scores of 3 main cardiac rhythms obtained using feature
engineering–based random forest (RF) (on the hidden test dataset), convolu-
tional neural network (CNN), and an ensemble of support vector machine
(SVM) and CNN classifiers (on the validation dataset). AF 5 atrial fibrilla-
tion.



Figure 5 Heat map of the correlationmatrix showing normalized Pearson correlation between a set of 166manually extracted and convolutional neural network
(CNN)–extracted features. Red box highlights CNN features that are more correlated with time–domain features.
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Ensemble of SVM and CNN for arrhythmia
classification
Many recent studies have shown that an SVM classifier
trained with CNN-extracted features outperforms a typical
CNN-Softmax classifier in various classification prob-
lems.30–32 Therefore, in this study we investigated the
performance of a hybrid model of SVM and CNN for
cardiac rhythm classification. We used flattened features
from the first fully connected layer of the trained CNN
model (see the previous section: CNN architecture for
arrhythmia classification) in an SVM model for
classification. A set of 128 features was extracted using
network activations. The hybrid approach resulted in a
superior performance, yielding an F1 score of 0.92, 0.87,
and 0.80 for identifying normal, AF, and other cardiac
rhythms, respectively.

The training and validation loss of the CNN architecture de-
picting the summation of errors made for each example in the
training and validation sets is shown in Supplemental Figure 1.
Figure 4 shows the comparison of F1 scores for each rhythm
using 3 classification approaches. The reported results from
the random forest classifier were provided to us by the Physi-
oNet 2017 challenge organizers after evaluating our model on
hidden 3,658 ECG recordings. However, organizers could not
evaluate our CNN-based models on the hidden set due to
MATLAB platform’s incompatibility issue. Hence, we report
CNN results obtained from the validation dataset.
Applications of CNN in AF detection have been
increasing. Despite CNN resulting in high classification ac-
curacy, one criticism of the CNN approach is that the results
are not intuitive. In contrast, feature engineering–based ma-
chine learning methods allow identification of significant
predictor variables. Here we aimed to uncover the types of
ECGmorphologies captured by CNN. To do so, we analyzed
the correlations between CNN-learned and engineered fea-
tures used in the random forest model. Figure 5 shows the
heat map of the correlation matrix obtained by combining
166 manually extracted and 128 CNN-extracted features.
Most of the features in SampEn (group 3) and PSD obtained
from wavelet coefficients (group 2) showed high correlation
(p-value ,.001). Interestingly, most of the CNN features
showed high Pearson correlation (p-value ,.001; 2-tailed t
test at a5 0.01) with 4 time–domain features: correlation co-
efficients from RR and delayed RR intervals; percentage of
RR intervals lying between 0.6 and 1.2 seconds; total vari-
ance explained by first principal component computed from
RR and delayed RR interval series; and number of datapoints
centric at origin in the grid of RR interval and first-order dif-
ference of RR intervals. CNN features were comparatively
more correlated, likely due to the convolution operations.

The correlation between features may be problematic in
predictive modeling, especially in linear models because
collinearity causes singularity. However, nonlinear models
are comparatively more robust for collinearity. This may be
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one reason why the CNN-SVMmodel performed better even
though the CNN features were highly correlated.
Conclusion
In this exploratory study, we developed and evaluated 2 arti-
ficial intelligence models: a random forest using engineered
ECG features and a CNN. Our results showed that both ap-
proaches yield high accuracy in classifying ECG recordings
into correct cardiac abnormality class, yet CNN performs
slightly better in terms of F1 score. Our results also showed
that most of the features extracted within the CNN architec-
ture are not correlated with engineered features. We interpret
this as evidence that feature abstraction in the CNN algorithm
generates novel predictors carrying out additional discrimi-
nating information to engineered features considered in our
work. Furthermore, most CNN features are statistically
significantly correlated with each other. This suggests that
there is room to develop novel CNN architecture designs pro-
moting correlation-based dimension reduction while not
losing performance.
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