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Introduction
Approximately 600 000 people in Australia have severe mental 
illnesses such as schizophrenia and bipolar disorder.1 Ongoing 
medication and psychosocial treatments are most often pre-
scribed to patients with severe and serious mental illness2,3; 
however, the treatment and management of chronic mental ill-
ness is recognised as complex and is often silo-based and dis-
connected, particularly regarding the sharing of information 
between clinicians.4 This shortcoming has led to major ineffi-
ciencies in the public health care system, poor management, and 
monitoring of patient’s quality of care in the community, and 
difficulty in ensuring adherence to treatment is maintained.

Indeed, adherence to treatment among severe mental illness 
populations is invariably low, with mean rates of only 42% in 
patients with schizophrenia and 41% in patients with bipolar 
disorder.3 The most commonly reported non-compliance 
behaviours among these populations include refusing to comply 
with medical advice given or attend medical appointments, as 
well as incomplete or early discontinuation of a treatment pro-
gramme.5 Such defiance is associated with an adverse effect on 
the trajectory of the illness and leads to worsening symptoma-
tology, higher rates of relapse, and recurring hospitalisation and 
ultimately increases in public health costs.6 In fact, according to 
some estimates, over 80% of patients relapse several times 

within the first 5 years of initial treatment.4 Non-adherence to 
treatment therefore presents as one of the most important chal-
lenges facing clinicians in treating highly prevalent psychiatric 
conditions. Indeed, it is clear that novel ways of enhancing 
treatment adherence are greatly needed as to reduce the preva-
lence of relapse and hospitalisation among schizophrenia and 
bipolar disorder populations.

The use of electronic health records (EHRs) has recently 
emerged as a potential approach to improve clinical decision 
making and patient outcomes.7 In Australia, the 
MyHealthRecord system contains digital health records of all 
dispensing records of prescribed drugs, the Pharmaceutical 
Benefit Schedule (PBS), and records of all clinical services pro-
vided, such as medical appointments or laboratory tests con-
ducted, the Medicare Benefit Schedule (MBS).

Evidence from a number of studies have shown that the use 
of EHRs has markedly improved our understanding of 
impending prognostic factors that are linked with recurring 
severe mental illness relapse and hospitalisation such as medi-
cation adherence, residual symptoms, concurrent physical 
health problems, and psychosocial difficulties.8

Computer algorithms in conjunction with using patients 
EHR data have been proposed as a means to accurately predict 
and quantify the risk of relapse and hospitalisation through a 
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prediction model.9 Algorithms systematically consider the 
combined effect of a set of prognostic factors, such as when 
people miss appointments, do not adhere to typical medication 
protocols, have unusual polypharmaceutical combinations, and 
have under or over testing.9 Essentially, the algorithmic predic-
tion model can estimate the level of risk an individual has in 
relation to future relapse. This type of tool can be used collabo-
ratively by clinicians, health care providers, patients, and 
extended families when deciding on ongoing treatment and 
monitoring.

To date, there have been a handful of fundamental studies 
which have investigated the utility of computer-based algo-
rithms in conjunction with EHRs on patient outcomes.10 
Vijayakrishnan et  al9 identified the signs and symptoms of 
heart failure (HF) among 50 000 primary care patients via 
exploration of their longitudinal EHR data. Specifically, retro-
spective analysis identified 4644 incident HF cases and 45 981 
group-matched controls, demonstrating the potential for their 
novel data analytic tool to draw out rich data available within 
EHRs and apply it to predictive models for HF.

Lingren et al.11 developed, evaluated, and validated a novel 
automated algorithm for detection of co-occurrence patterns of 
medical comorbidities in autism spectrum disorder (ASD) 
among a patient cohort from EHRs. Clustering analyses of 
comorbidities among the large cohort (N = 20 658 patients 
with ASD) accurately identified psychiatric, developmental, 
and seizure disorder clusters.

Similarly, Murphy et al12 developed an EHR trigger algo-
rithm to specifically identify delays in follow-up of patients 
with imaging results indicative of lung cancer. The trigger 
algorithm was applied to the records of 89 168 patients’ retro-
spective data, from which 131 were identified by the trigger as 
being high risk for delayed diagnostic evaluation. Further 
results confirmed a true absence of follow-up in 75 cases (trig-
ger positive predictive value of 57.3% for detecting evaluation 
delays), with 4 subsequent diagnoses of primary lung cancer 
within the subsequent 2 years.

Using a hospital-based cancer registry from Osaka 
University Hospital, Gon et al.13 conducted a study to validate 
an algorithm designed to determine stroke diagnostic code 
accuracy among 27 932 patients EHRs in Japan. Results 
revealed the diagnostic code and clinical examination com-
bined improved the proportion of identified presence of disease 
in the diagnostic code, leading to improved accuracy and 
efficacy.

The findings above demonstrate the potential within the 
field of algorithmic-EHR interventions to improve patient 
care and well-being. In the light of this potential, this study 
aimed to evaluate the efficacy of an algorithmic intervention, 
namely, the Actionable Intime Insights (AI2) application,14 in 
reducing reduced rates of hospitalisation among simulated 
patients with schizophrenia and bipolar disorder. The AI2 
application sources Medicare Benefit Scheme (MBS) and 
Pharmaceutical Benefit Scheme (PBS) data from the 

electronic Australian MyHealthRecord registry from which it 
then stores in a temporal timeline trajectory. Using high-tech 
pattern recognition algorithms, the AI2 application is then able 
to identify and predict indicators of deterioration in function-
ing and subsequent risk of relapse/hospitalisation. For example, 
if the AI2 algorithm detects a gap between historically subse-
quent PBS prescription refills for a patient, and this exceeds 
beyond 61 days (effectively 2 months plus a grace period), then 
an alert is generated, stored, and used to notify appropriate care 
providers for potential follow-up with the patient.

The AI2 application has the potential of providing just-in-
time adaptive early care intervention, which and can be shared 
simultaneously and jointly with both state-level and federal-
level health care providers.14 However, as the AI2 platform is 
yet to be tested in clinical practice, important questions remain 
to be answered. For example, the optimal frequency of alerts 
triggered over a period of time, the extent to which triggered 
alerts must be actioned, and in turn, how effective each actioned 
clinical intervention must be to reduce hospitalisation risks and 
improve patient outcomes is as yet unknown.

Therefore, the remaining of this article presents the devel-
opment and demonstration of Monte Carlo simulation meth-
odology to stochastically generate alerts for simulated patients 
with schizophrenia and bipolar disorder by the AI2 application 
that are generated over a 2-year period. The simulations are 
used to demonstrate the estimated, relative impact of actioning 
alerts at varying rates with clinical interventions of differing 
levels of effectiveness on hospitalisation rates. Five patient-
simulated scenarios are described, each with different diagno-
ses and treatment protocol profiles.

Methods
Simulated patient profiles

Currently, there are several pharmacologic treatments typically 
used for patients with schizophrenia and bipolar disorder.15,16 
Typically, each treatment approach has a standardised protocol 
which stipulates how and when a patient should interact with 
their psychiatrist/psychologist and also pharmacist to receive 
the treatment. The characteristics of the 5 simulated profiles 
presented in this article represent 5 different hypothetical 
pharmacologic treatment interventions that could be used for 
patients with schizophrenia and bipolar disorder. The pharma-
cologic treatment types have not been chosen based on their 
demonstrated effectiveness, and their inclusion is not to sug-
gest they are better or worse than other options. Merely, they 
have been chosen at random for the purpose of testing the util-
ity and effectiveness of the AI2 algorithmic intervention.

The 5 simulated patient profiles below correspond to spe-
cific treatment plans that might be prescribed by clinicians to 
patients with differing levels of mental health issues, including 
frequency and type of medication and frequency of appoint-
ments. It is hypothesised that when a patient is adherent to 
their treatment protocol, the observed time period between 
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consecutive appointments with the clinician, or the observed 
time period between consecutive visits to the pharmacist, 
matches the stipulated protocol:

•• Patient A (a patient with schizophrenia) is prescribed oral 
antipsychotics depot (long-acting injectable medication) 
by their treating clinician and has a follow-up appointment 
once in 6 months. They are instructed to pick up a prescrip-
tion for medication from a pharmacy once a month.

•• Patient B (a patient with schizophrenia) is prescribed 
depot type D1 (long-acting injectable medication, for 
example, paliperidone) by their treating clinician and has 
a follow-up appointment once a month. They are 
instructed to pick up a prescription for medication from 
a pharmacy once a month.

•• Patient C (a patient with schizophrenia) is prescribed 
depot type D2 (long-acting injectable medication, for 
example, paliperidone Invega Trinza) by their treating 
clinician and has a follow-up appointment once in 
3 months. They are instructed to pick up a prescription 
for medication from a pharmacy once a month.

•• Patient D (a patient with schizophrenia) is prescribed 
depot type D3 (long-acting injectable medication, for 
example, risperidone Consta) by their treating clinician 
and has a follow-up appointment once in 2 weeks. They 
are instructed to pick up a prescription for medication 
from a pharmacy once a month.

•• Patient E (a patient with bipolar disorder) is prescribed 
lithium treatment by their treating clinician and has a 
follow-up appointment once in 6 months. They are 
instructed to pick up a prescription for medication from 
a pharmacy once a month.

Using these simulated profiles as a baseline, the primary 
outcome of interest was the effect of the algorithmic interven-
tion (parameter α) on the chances of readmission to hospital. 
In this model, α specifies the probability that a given alert will 
be actioned by a clinician, thereby leading to an intervention.

A secondary outcome of interest was the effect of the algo-
rithmic intervention on clinical compliance, which was meas-
ured via the use of a secondary intervention (parameter β) that 
controls whether an intervention has a positive effect (β > 0), 
negative effect (β < 0), or no effect (β = 0). In addition, there 
was a tertiary parameter γ which specifies the probability that 
an intervention has any effect (either good or bad, depending 
on β); a non-effectual intervention corresponding to β = 0. For 
each value of γ the optimal value α* of the intervention/action 
rate was determined.

Simulation of alerts

Monte Carlo simulations were used to average 100 independ-
ent simulation runs. Specifically, for each run, 20 patients were 
selected from each of the 5 patient profiles above, to give 100 

patients per run. Each patient profile specifies a treatment plan 
that determines the base rates of prescription refills and general 
practitioner (GP) appointment visits.

Five β values were chosen to represent the simulation com-
plete in 1 working day. The specific values chosen were as fol-
lows: 2 for β > 1 (corresponding to a positive intervention 
effect), 2 for β < 1 (corresponding to a negative intervention 
effect), and β = 0 (corresponding to no effect from interven-
tion). These values allow for verification that the simulation 
behaved correctly according to the mathematical models.

To simulate both compliance and non-compliance, the 
actual rates used for each patient in a given run were first ran-
domised via a normal distribution centred on the base rate of 
each treatment plan with a standard deviation of 0.3. A ran-
domised rate less than 0 or greater than twice the base rate was 
discarded and the personalised rate resampled.

For each patient, the simulator proceeded to stochastically 
generate the non-compliance events for 1 month at a time, 
sequentially over a 2-year span. Within each month to be sim-
ulated, the number of events of each type (eg, prescription refill, 
GP appointment visits, and hospitalisation readmission) was 
sampled from a Poisson distribution according to the corre-
sponding effective rate. Hence, the base rates for refill compli-
ance were chosen to correspond with the various treatment 
plans (ie, medication refill picked up once per month, corre-
sponding to a Possion rate of ρ_0 = 1 refill/month).

The effective rate represents a per-month adjustment to the 
personalised rate based on the effect of events occurring in pre-
vious months, as described below. This per-patient simulation 
was repeated 10 times to produce 10 plausible event trajectories 
for each patient.

To avoid confounding the effectiveness of alerts with the 
detection of alerts, a basic assumption of this experiment 
was that non-compliance with the treatment plan specified 
in a patient’s profile could be automatically detected with 
100% accuracy. In practice, the accuracy of detection 
remains to be tested in the real-time AI2 algorithm. Each 
such detection in any given month gave rise to an alert. 
However, the simulator used a stochastic mechanism such 
that each alert was only actioned by a clinical intervention 
with probability α. The value of this control parameter α 
was varied from 0 to 1 in increments of 0.05 for each simu-
lation (of 100 runs).

It was further assumed that an intervention in 1 month 
(triggered by non-compliance) resulted in a temporary 
change in the rate of compliance in the next month. In prac-
tice, a variety of environmental circumstances mean that any 
given intervention could have either a positive or a negative 
effect on compliance. To model this, another simulation con-
trol parameter, β, was added to specify the multiplicative fac-
tor by which an intervention increased or decreased the 
probability of patient compliance with the treatment plan in 
the following month. Due to the amount of time it took to 
run the simulations, the values of β were limited to a discrete 



4 Biomedical Informatics Insights 

number of intervention factors, namely, moderately negative 
(0.8), weakly negative (0.9), neutral (1.0), weakly positive 
(1.1), and moderately positive (1.2). These values were chosen 
to be sufficiently distinct as to cover the desired range of 
behaviours. Other values tried in pretesting demonstrated 
similar characteristics.

In contrast to the effect of interventions, it was assumed 
that the rate of hospital readmission in any given month was 
temporarily increased for each consecutive month of non-com-
pliance in preceding months. However, the counting of non-
compliances was halted at any hospital readmission, on the 
assumption that the readmission involved treatment that would 
counter the effects of non-compliance in the same month as, or 
previous months to, the readmission.

The detection of non-compliance is heavily dependent on 
each patient’s treatment plan. For example, if the plan specified 
6-monthly GP appointments, then non-compliance is indi-
cated for a given month if there were no GP visits in that 
month or any of the preceding 5 months. Conversely, for fort-
nightly appointments, non-compliance was indicated if there 
were fewer than 2 GP visits in the month. For the purposes of 
this study, non-compliance was operationalised as no simulated 
PBS refills in any given month.

The simulator was implemented in the R programming lan-
guage and run interactively in R Studio. In total, there were 100 
runs × 5 profiles/run × 20 patients/profile × 10 repetitions/
patient × 24 months/repetition × 21 α values × 5 β val-
ues = 252 000 000 distinct months of stochastic simulations. 
Computationally, the entire simulation took approximately 
8 hours.

Mathematical models

All simulated treatment plans specify refilling the PBS medi-
cation script each month, corresponding to a base Poisson rate 
of ρR0 = 1 refill/month, giving the probability of 1 or more 
monthly refill event of

Prob exp Rrefill( ) = − −1 ( )ρ

where ρR is the personalised randomisation of ρR0. An inter-
vention modifies the probability of refill via

Prob Prob exp Rrefill intervention refill| *( ) ( ) ( )= = − −1 ρ′

for a given intervention factor β;this latter probability, when 
inverted, corresponds to an effective refill rate of ρR′.

Each treatment plan also specifies a GP appointment every 
W weeks, where W depends on the particular plan. This corre-
sponds to a base Poisson rate of ρV0 = 4/W visits/month, which 
is again randomised to obtain the personalised rate of ρV, 
giving

Prob exp Vvisit( ) ( )= − −1 ρ

The intervention factor β similarly modifies the GP visit 
rate via

Prob Prob exp Vvisit intervention visit| *( ) ( ) ( )= = − −β ρ′1

corresponding to an effective visit rate of ρV′.
The probability of hospital readmission depends on the 

patient profile. The appropriate baseline values are here taken 
to be 30% per year, for both patients with schizophrenia17 on 
antipsychotic treatment and patients on lithium treatment.18 
This corresponds to a base Poisson rate of about ρH0 = 0.03 
readmissions/month. The probability of one or more readmis-
sions in a month is then

Prob exp Hreadmission( ) = − −1 ( )ρ

where ρH is again the personalised randomisation of the base 
rate ρH0.

The risk of readmission is worsened by the number of con-
secutive monthly non-compliances. It is estimated that a read-
mission probability of 30% per year increases to 50% after 
6 months of non-compliance and to 80% after 12 months of 
non-compliance. A simple model approximately fitting these 
values is

Prob n -

*Probn

yearly readmission non compliances

yearly read

|( ) =
λ mmission( )

for constant λ = 1.086, corresponding to an 8.6% increase in the 
probability of readmission for each month of non-compliance. 
Hence, the probability of one or more readmissions in a month 
is

Prob n -  

*Probn

readmission non compliances

yearly read

|

(

( ) =
− −1 1 λ mmission] ( )

 ) = − −12 1 exp Hnρ

The inversion of this probability gives the modified rate ρHn; 
for n = 0, it also gives the base rate ρH0. The effective, personal-
ised, monthly rate of readmissions given n preceding, consecu-
tive months of non-compliance is then taken to be 
ρH′ = ρH + ρHn − ρH0.

Results
Effect of intervention on compliance

Monte Carlo simulation runs were conducted to compute the 
average proportion of months in each patient’s simulated tra-
jectory that contained events of interest. Results showed that 
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for positive interventions (β > 1), the compliance rate increased 
with increasing α; for negative interventions (β < 1), the com-
pliance rate decreased with increasing α; and for neutral inter-
ventions (β = 1), the compliance rate was independent of α. In 
addition, the average compliance rate of 0.39 was close to the 
theoretical value of 0.40 (see Figure 1). This moderate value is 
an artefact of the initialisation of the rates of the Poisson events 
models and could be increased by choosing initial rates that are 
biased upwards of the base treatment rates.

Effect of compliance on readmissions

Figure 2 shows results of the plotted yearly probability of one 
or more hospital readmissions against the simulated compli-
ance rate, for all values of α and β. As expected, the chance of 
readmission decreased as compliance increased, with observed 
readmission probabilities higher than the base value of 30%, 
which is likely due to the artefactually low rate of compliance 
noted above.

Effect of intervention quality

Figure 3 demonstrates the results of how effective the interven-
tion quality was on actioned alerts. As expected, when all inter-
ventions were ineffective (γ = 0), then no alerts were actioned. 
Conversely, when all interventions were effective (γ = 1), then 
all alerts were actioned. The graph reveals that the success of 
interventions in reducing the risk of readmissions increases 
dramatically for γ ⩾ 0.6.

Discussion
Non-compliance with pharmacologic and psychosocial inter-
vention treatments occurs frequently among people with schiz-
ophrenia and bipolar disorders, leading to subsequent increases 
in hospitalisation risk if undetected. In the light of this prob-
lem, the rationale of this study was to investigate whether an 
algorithmic intervention using the Medicare MBS and PBS 
data repository, specifically relating to prescriptions and 
appointments, could provide an effective alerting system that 
could detect when recommended treatment protocols are not 
being followed.

Stochastic simulation methodology was used to examine 
events of treatment non-compliance over time in patients with 
chronic severe mental illnesses and also observe the impact of 
the AI2 algorithmic intervention on reducing hospitalisation 
risk of actioning each alert of treatment non-compliance with 
an intervention. The investigated scenarios were chosen to rep-
resent the quality of clinical interventions for alerts varied in 
range from highly effective to ineffective to realistically repre-
sent variation expected in clinical practice.

Results indicated that the probability of patients being 
readmitted to hospital per year was higher among those who 
had lower monthly compliance with the intervention. This 
finding concurs with the results of Rosen et al19 who found that 
patients with low or moderate medication adherence had sig-
nificantly higher hospital readmission rates (20.0%) when 
compared with patients with high adherence (9.3%), and also 
the pooled findings of DiMatteo et al20 meta-analysis, which 

Figure 1. The simulated average monthly compliance rate as a function 

of the probability α that a non-compliance alert leads to an intervention, 

for a variety of intervention quality effects: moderately negative, β = 0.8 

(*); weakly negative, β = 0.9, (▽); neutral, β = 1.0 (o); weakly positive, 

β = 1.1 (△); and moderately positive, β = 1.2 (+).

Figure 2. The simulated average probability of one or more hospital 

readmissions per year as a function of the simulated monthly rate of 

compliance.

Figure 3. The optimal probability α* that an alert should be actioned via 

an intervention (to minimise the hospital readmission risk) as a function of 

the proportion γ of interventions that are effective versus ineffective.
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found that of all medication-related hospitalisations that occur 
in the United States, between 33% and 69% are directly a result 
from medication non-adherence, translating to a subsequent 
cost of US $100 billion per year.21 Collectively, these findings 
indicate that the criticality in developing innovative ways of 
assisting clinicians and hospitals identifies patients with non-
compliance with treatment, who may be at risk for preventable 
relapse and hospital readmissions.

In relation to the effect of intervention quality, results dem-
onstrated that when generated alerts from the AI2 algorithmic 
intervention were mild to moderately effective (between 0.2 
and 0.6), around 10% of all actioned alerts effectively reduced 
hospitalisation risk. When the effectiveness of actioned inter-
ventions increased (>0.6), over 80% of actioned alerts from the 
AI2 intervention were contributing to effectively reducing hos-
pitalisation risk. These results suggest that while poor-quality 
interventions following alerts had little to no effect on reducing 
hospitalisation, once the quality of actioned interventions 
reached an optimal level of effectiveness, the impact of the 
alerts on reducing hospitalisation rate increased rapidly.

From a clinical perspective, this suggests that even interven-
tions of moderate quality following an alert could have a 
marked reduction in hospitalisation. Such findings demon-
strate when real-time alerts are actioned into interventions, 
patients may benefit when they receive interventions of reason-
able quality. An intervention of good quality seeks to recognise 
the patient’s biopsychosocial context, their situation perspec-
tive, and underlying motivations. It then skilfully shifts moti-
vation and behaviour towards what is objectively in the patient’s 
best interest.22 For example, adherence to medication along 
with any psychosocial supports that may be indicated. The 
patient’s self-management capabilities, competency of clinical 
practice, levels of care, and type of support and psychosocial 
options available are all potential factors contributing to the 
effectiveness of interventions in clinical practice.23

It is important to note the above findings in the light of 
several limitations. First, the simulated patients used in this 
study were based from hypothetical clinical Australian schizo-
phrenic and bipolar disorder profiles. Hence, the question of 
whether the AI2-simulated model extrapolates to realistic out-
comes cannot be answered at this point in time. For the ability 
to answer this question, and to improve on ecological validity 
and generalisability, future research in the area is pertinent, 
particularly replicable studies conducted with real-life patients 
and settings.

Second, the validity of the algorithmic intervention model is 
limited due to the fact that specificity and sensitivity analysis 
was not conducted. Thus, to be able to generate an accurate 
representation of how efficacious the alerts of the AI2 are in 
identifying patients at risk of relapse and hospitalisation, posi-
tive and negative predictive values will need to be established in 
follow-up studies. Finally, in this study, we assumed several fac-
tors affect the quality of clinical interventions patients receive 
without explicitly investigating effects associated with different 

factors. As mentioned above, one important factor to consider 
is the patient’s ability to self-care. It is unclear from these sim-
ulations whether patients or their clinicians should be alerted 
so that patients are best able to access effective and appropriate 
interventions. Real-world trials of this system in populations of 
patients with chronic severe mental illness could investigate 
whether effectiveness differs when alerts are sent to patients or 
their clinicians and carers or to both.

In summary, this study stochastically simulated events of 
treatment non-compliance in patients with schizophrenia and 
bipolar disorder over time and modelled how intervening in 
response to alerts of non-compliance could potentially reduce 
risk of hospitalisation. The findings from the analyses demon-
strate monitoring and responding to alerts of patients’ chang-
ing levels of EHR treatment adherence detected in real time by 
algorithmic intervention methods that have potential in reduc-
ing hospitalisation risk.
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