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Astragalus mongholicus Bunge (Fabaceae) (also known as Astragali radix-AR), a widely
used herb by Traditional Chinese Medicine practitioners, possesses a wide range of
pharmacological effects, and has been used to treat Alzheimer’s disease (AD) historically.
Its bioactive compounds are categorized into four families: saponins, flavonoids,
polysaccharides, and others. AR’s bioactive compounds are effective in managing AD
through a variety of mechanisms, including inhibiting Aβ production, aggregation and tau
hyperphosphorylation, protecting neurons against oxidative stress, neuroinflammation
and apoptosis, promoting neural stem cell proliferation and differentiation and ameliorating
mitochondrial dysfunction. This review aims to shed light upon the chemical constituents of
AR and the mechanisms underlying the therapeutic effect of each compound in manging
AD. Also presented are clinical studies which reported successful management of AD with
AR and other herbs. These will be helpful for drug development and clinical application of
AR to treat AD.

Keywords: Astragali radix, alzheimer’s disease, traditional Chinese medicine, bioactive compound, molecular
mechanism

1 INTRODUCTION

Alzheimer’s disease (AD), the most common neurodegenerative disease, is the dominant cause of
dementia and associated with aging and other factors (Scheltens et al., 2016; Long and Holtzman, 2019).
According to statistics from Alzheimer’s Disease International, Worldwide there are over 50 million
people suffering from dementia in 2018, and 152 million by 2050. Among them, approximately 60–70%
are inflicted by AD (Zhang et al., 2022). As the aging population increases, AD poses a great challenge to
the society in terms of medical resources and economic burden (Alzheimer’s Association, 2020).

AD is pathologically characterized by two hallmarks: extracellular senile plaques (SPs) formed by
amyloid-β (Aβ) deposited in the extracellular space, and neurofibrillary tangles caused by the
aggregation of intracellular hyperphosphorylated tau proteins (Karran et al., 2011; Knopman et al.,
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2021). Aβ plaques and neurofibrillary tangles play an important
role in eliciting the dysfunction of synapses and associated
neuronal death, leading to typical symptoms of AD, such as
cognitive impairment, memory loss, and so on (Hong et al.,
2016). A number of hypotheses have emerged to illustrate the
pathogenesis of AD, mainly the amyloid cascade hypothesis
(Savelieff et al., 2013; Butterfield and Halliwell, 2019; Hampel
et al., 2021), tau protein hypothesis (Arnsten et al., 2021), metal
ion disorder hypothesis (Savelieff et al., 2013), oxidative stress
hypothesis (Butterfield and Halliwell, 2019), and cholinergic
hypothesis (Hampel et al., 2018), etc. However, clinical trials
so far have failed to demonstrate the efficacy of various
therapeutics targeting the above mechanisms (Breijyeh and
Karaman, 2020). Currently, there are only 5 medications
approved by FDA to treat AD, all with limited effects; which
encourages us to find an answer in the traditional medicine.

Traditional Chinese Medicine (TCM) has been practiced in
China for thousands of years. It has its own unique theory of the
human body, including its composition, connections between
organs and recipes that target dysfunctioning organs. Astragalus
mongholicus Bunge (Fabaceae), also known as Astragali radix
(AR) or Huang qi, is a popular herbal medicine in China,
originally recorded in Shennong’s Classic of Materia Medica.
According to the Pharmacopoeia of the People’s Republic of
China, AR is the dry root of Astragalus membranaceus (Fisch.)
Bge. or Astragalus membranaceus (Fisch.) Bge. var. mongholicus
(Bge.) Hsiao (Fabaceae) (Li et al., 2014). Modern Chinese
pharmacological studies indicate that AR is mainly used as a
blood-nourishing, diuretic, tonic, expectorant, and detoxicating
agent (Fu et al., 2014). Additionally, this herb exerts anti-aging,
antioxidant, anti-inflammatory, immunomodulating and
antiviral effects, among others (Ryu et al., 2008; Shahzad et al.,
2016; Wu and Hu, 2020; Gong et al., 2021).

Nowadays, there is an increasing number of studies reporting
the therapeutic effect of AR on AD, attributed to the large number
of its chemical constituents. Many of them have been found to
possess pharmacological activities, such as improving memory
and cognitive function (Sun et al., 2020). They could potentially
halt neurodegeneration through multiple components, multiple
pathways, and multiple targets. So far, over 100 compounds have
been isolated and authenticated from AR. They can be
structurally categorized into four types: saponins, flavonoids,
polysaccharides, and others (Gong et al., 2018). A variety of
saponins have been isolated from AR, including astragaloside
I-VIII, acetylastragaloside I, isoastragaloside I, isoastragaloside II,
isoastragaloside IV, soyasaponin I, soyasaponin II, etc. Studies
have shown that astragaloside Ⅳ (AS-IV) and cycloastragenol
have extensive biological activities, and some of them are
associated with AD pathogenesis. Astragalus polysaccharide
(APS), an important active macromolecule of AR, is mainly
classified into two groups: dextran and heteropolysaccharides
(Liu P et al., 2017). They exert multifarious effects, such as anti-
inflammatory, antioxidant, immunomodulating activities, and
potential therapeutic potency for neurologic diseases (Wang
et al., 2013; Zhou et al., 2017; Zhang et al., 2020). Till now,
about 40 subtypes of flavonoids have been isolated and
authenticated from AR, including quercetin, formononetin,

kaempferol, rhamnetin, isorhamnetin, genistein,
verbascoflavones, etc (Yang et al., 2020), but only a portion of
them are absorbable in the digestive tract. Among them, the
primary active ingredients are isoflavones and isoflavone
glycosides, which possess antioxidant activities. Administration
of quercetin in early-middle stage of AD pathology could
attenuate cognitive impairment through increasing Aβ
clearance and diminishing astrogliosis (Lu et al., 2018).
Additionally, there are other extracts isolated from AR,
including β-sitosterol, chlorogenic acid, caffeic acid and so on.

In this review, we will introduce the major components of
AR—saponins, flavonoids, and polysaccharides regarding their
preventive and protective effects on AD, as well as the underlying
mechanisms. This might accelerate the discovery of novel target-
specific drugs with fewer sideeffects and higher therapeutic
efficacy.

2 PHARMACOKINETICS OF ASTRAGALI
RADIX EXTRACTS

A total of 26 orally available compounds were identified from the AR
extract using a computational chemistry prediction method, including
12 flavonoids, 5 phenolic acids, 5 nitrogen-containing compounds, 3
lignanoids and 1 coumarin. Twenty one of them were identified in
in vitro and in vivo experiements, using HPLC- diode array detection-
electrospray ion trap tandem mass spectrometry. These absorbable
compounds include calycosin, formononetin, (6aR, 11aR)-3-hydroxy-
9,10-dimethoxypterocarpan, 7,2′-dihydroxy-3′,4′-dimethoxyisoflavan,
7,2′-dihyoxy-3′,4′-dimethoxyisoflavan-7-O-β-D-glucoside -6″-O-
malonate, (6aR, 11aR)-3-hydroxy-9,10-dimethoxypterocarpan-3-O-
β-D-glucoside. Except calycosin which was metabolized into
calycosin sulfate, these absorbable compounds were glucuronized in
vivo during the metabolism (Xu et al., 2006).

Shi et al. (2015) tested the pharmacokinetics of the AR water
extract in male rat plasma using ultra-performance liquid
chromatography–tandem mass spectrometry (UPLC–MS/MS).
After oral administration of the extract, 8 compounds were
successfully detected in the rat plasma. Most of them were
isoflavonoids and their metabolites. The concentration of these
isoflavonoids, including formononetin, ononin and calycosin-7-
β-glucoside, was much lower than that of their metabolites in the
rat plasma. A double-peak elimination phase was observed for the
majority of these compounds, except AS-IV. The mean plasma
concentration-time curves showed that the values of tmax of all
detected compounds were less than 1 h, demonstrating that they
could be quickly absorbed in the gastrointestinal tract of rats.

Although daidzein could not be detected in the extract, its
metabolite daidzein-7-glucuronide was found in the plasma,
demonstrating the widespread presence of biotransformation
between these isoflavonoids in vivo.

It was also shown that Calycosin-7-β-glucoside and ononin
had the lowest Cmax, suggesting that they were rapidly
transformed into their glucuronides. In fact, the majority of
these compounds had a t1/2 of 3–5 h.

Although AS-IV is relatively abundant in the herb, its
concentration in the plasma was lower than that of others. It
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might have been deglycosylated by bacteria in the intestine and
eliminated from the body, as five of its metabolites were not
detected in the plasma.

Additionally, Liu X et al. (2014) reported that six bioactive
compounds were detected in the rat plasma after oral
administration of 95% ethanol extract of AR. These included AS-
IV, AS-II, formononetin, ononin, calycosin-7-β-glucoside and
calycosin. Their presence and purity were normally used for
quality control of AR. Using UPLC-MS/MS, pharmacokinetics of
these six compounds were simulataneously studied. Among them,
both AS-II and IV fitted into a two-compartment model in the rat
plasma. In general, the t1/2 parameters of flavonoids and glycosides
were shorter than their aglucones, respectively. Among these six
compounds, formononetin was assimilated and cleared at the
slowest speed. These suggested that the main compounds
detected in the plasma could be rapidly absorbed in the
gastrointestinal tract after oral administration of extracts from AR.

3 CLINICAL USE OF ASTRAGALI RADIX
FOR ALZHEIMER’S DISEASE
MANAGEMENT
Clinical TCM studies have shown that a myriad of herbs are
able to halt the progression of AD. A large number of
formulations have been developed based on the individual
condition of each patient and the pharmacological interactions
of these herbs and most included AR as a key ingredient, as
follows.

3.1 The Buyang Huanwu Decoction
Is a traditional prescription for the treatment of
neurodegenerative disorders like AD with confirmed clinical
efficacy (Liu et al., 2019; Gao et al., 2021). According to the
network pharmacology analysis, AR is the main pharmacological
ingredient in BHD (Gao et al., 2021). Liu et al. (2019) showed that
BHD suppressed the increase of receptors for advanced glycation
endproducts (RAGE), NF-κBP65, inflammatory cytokines-
ICAM-1 and VCAM-1, due to the addition of Aβ25–35 to the
cultured brain microvessel endothelial cells. In the meantime,
levels of lipoprotein receptor-related protein 1 (LRP1), a key
protein for Aβ clearance, and ApoE were decreased in this cell
culture model, but were reversed by BHD.

3.2 The Naoxintong Capsule
Derived from the BHD, is a traditional patented Chinese
medicine consisting of 16 herbs. It is mainly used for the
treatment of cerebrovascular and cardiovascular diseases,
including vascular dementia, ischemic cerebrovascular diseases,
coronary heart diseases, etc. A study on the APP/PS1 double
transgenic mousemodel reported that NXTC could downregulate
levels of Aβ, p-tau, apoptosis, and inflammatory cytokines, like
IL-6, IL-1β and TNF-α through suppressing the toll like receptor
4/NF-κB/IL-1β signaling pathway. As a result, NXTC attenuated
spatial memory deficit and cognitive decline. In HT-22 cells, it has
been shown to block L-glutamic acid-induced production of
reactive oxygen species (ROS) (Wang et al., 2021b).

3.3 The Buyuan Congnao decoction
Is also composed of ARmainly, Polygala senega L. (Polygalaceae),
Reynoutria multiflora (Thunb.) Moldenke (Polygonaceae),
Acorus calamus var. angustatus Besser (Acoraceae),
Glycyrrhiza glabra L. (Fabaceae) and Alpinia oxyphylla Miq.
(Zingiberaceae). In a rat model of AD, both ibotenic acid and
Aβ1–42 were injected into the hippocampus. BYCND was
intragastrically administered for 28 days. It was reported that
BYCNC significantly decreased the number of Aβ positive
neurons in the hippocampus of AD model rats and restored
the morphology of neurons inflicted by ibotenic acid and Aβ1–42.
The BYCND group also showed a shortened escape latency in the
Morris water maze. (Chen et al., 2012). However, no followup
studies were reported even 10 years after this initial study.

3.4 The Danggui Buxue Tang
Containing AR and Angelica biserrata (R.H.Shan & C.Q.Yuan)
C.Q.Yuan & R.H.Shan (Apiaceae), has been used for over 800 years.
In this decoction, the ratio by weight of AR and Angelica biserrata
(R.H.Shan & C.Q.Yuan) C.Q.Yuan & R.H.Shan (Apiaceae) is 5:1
(Gong et al., 2015). Historically, it is mainly used to treat female
menopausal syndromes. Recent studies have also demonstrated its
therapeutic effect on cerebrovascular and cardiovascular diseases. It
could increase the level of neurotrophic factors and reduce apoptosis
induced by Aβ, suggesting its therapeutic potential in managing
neurodegenerative disorders, especially AD (Gong et al., 2017; Gong
et al., 2019).

3.5 The Huangqi Sijunzi Decoction
Is modified from Sijunzi decoction [including Panax ginseng
C.A.Mey. (Araliaceae), Glycyrrhiza glabra L. (Fabaceae),
Atractylodes lancea (Thunb.) DC. (Asteraceae) and Smilax
glabra Roxb. (Smilacaceae)], with the addition of AR (Cui
et al., 2021). Modern pharmacology and clinical studies have
shown that HQSJZD has therapeutic potential on AD through
multi-ingredient and multi-target mechanisms (Zhang et al.,
2021). The active compounds were quercetin, kaempferol,
formononetin, isorhamnetin, hederagenin, and calycosin. Their
targets were acetylcholinesterase (AChE), prostaglandin-
endoperoxide synthase 2 (PTGS2), peroxisome proliferator
activated receptor γ (PPARγ), IL-1β, glycogen synthase kinase
3 beta (GSK3B), etc. However, these active compounds were
docked with AChE, a target which is less likely to be responsible
for cognitive deficits as observed in clinical studies, which show
Aricept had limited effect on AD (Birks and Harvey, 2018).

3.6 The Bushenyisui decoction
In a rat AD model established by injecting Aβ1–42 to bilateral
hippocampus, it was found that Bushenyisui decoction treatment
for 20 consecutive days increased the level of B-cell lymphoma/
leukemia-2 (Bcl-2) and decreased the number of apoptotic cells.
As expected, learning and memory deficits were ameliorates as
well (Cui et al., 2012). Though this model is different from
classical amyloid and tau transgenic mice, it does show
learning and memory deficits 5 days after bilateral injections of
Aβ1–42. Detailed mechanisms underlying the therapeutic effect of
Bushenyisui decoction are still under investigation.
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Currently, these formulations and patented Chinese medicines
containing AR are under investigation to isolate their bioactive
compounds and to reveal the underlying mechanisms.

4 POTENTIAL MECHANISMS UNDERLYING
THE THERAPEUTIC EFFECT OF BIOACTIVE
COMPOUNDS EXTRACTED FROM
ASTRAGALI RADIX ON ALZHEIMER’S
DISEASE

4.1 Saponins From Astragali radix
It has been reported that there are over 161 saponins isolated
from AR, which can be divided into cycloartane and oleanane
types (Liu Y et al., 2017). Among them, studies have shown that
AS-IV, a quality control marker of AR (Dai et al., 2020), displays a
significant therapeutic effect on AD. In this section, we focused

on a number of saponins which exhibit anti-AD effects through
multiple pathological mechanisms, consisting of preventing the
production and aggregation of Aβ, hyperphosphorylation of tau
protein, anti-apoptosis, anti-inflammation, promoting the
proliferation and differentiation of neural stem cells (NSCs),
and so on (Table 1).

4.1.1 Inhibiting Aβ Production and Aggregation and
Tau Hyperphosphorylation
The amyloid cascade hypothesis pinpoints the central role of
deposition of Aβ in the brain parenchyma as an initial event
during AD pathogenesis (Ghiso and Frangione, 2002). It is well
known that amyloid proteins are produced from the amyloid
precursor (APP), a key biomolecule, through cleavage by β-
secretase (β-APP- cleaving enzyme-1 (BACE1) at the
ectodomain and γ-secretase at intra-membranous sites (Karran
et al., 2011; Scheltens et al., 2016; Knopman et al., 2021; Leng and
Edison, 2021). In addition, autosomal dominant mutations in

TABLE 1 | The effect and mechanisms of saponins from Astragali radix against Alzheimer’s disease.

Saponins Method Inducer Experimental
model

Mechanisms Effects References

AS-IV In vivo / APP/PS1
transgenic mice

PPARγ↑ Inhibit Aβ generation and deposition Wang et al.
(2017)BACE1↓

AS-IV In vivo AβO C57BL/6 mice PPARγ, BDNF, PSD95, SYN, GAP43↑ Inhibit Tau hyperphosphorylation, alleviate
synaptic deficits, neuroinflammation,
pyroptosis

Wang et al.
(2021a)NeuN+ area↑

GFAP, IL-1β, IL-6, TNF-α, NLRP3,
cleaved caspase-1↓

AS-IV In vivo AβO ICRmice ROS, TNF-α, IL-1β, IL-6, NADPH
oxidase subunits (gp91phox, p47phox,
p22phox, p67phox), Iba-1+ area↓

Alleviate cognitive impairment, attenuate
neuroinflammation, neuronal damage

Chen et al.
(2021)

AS-IV In vivo Aβ Sprague-Dawley
rats

immature neurons (BrdU+/Tuj1+),
Notch-1↑

Promote proliferation and differentiation of
NSCs

Hu et al. (2016)

PS-1↓
AS-IV In vitro AβO HT22 cells PPARγ, BDNF, cell viability↑ Inhibit apoptosis and cell injury Wang et al.

(2020)lactate dehydrogenase release, cleaved
caspase-3↓

AS-IV In vivo AβO C57BL/6 mice Population of healthy cells, PPARγ,
BDNF, p-TrkB↑ apoptotic cells, cleaved
caspase-3↓

Inhibit neuronal loss, apoptosis Wang et al.
(2020)

AS-IV In vitro Aβ25–35 PC12 cells SOD↑MDA, ROS, p-p38 MAPK ratio,
caspase-3, BIP/GRP78, GADD153/
CHOP↓

Attenuate oxidative stress, endoplasmic
reticulum stress

Ma and Xiong,
(2019)

AST In vivo AβO Wistar rats p-TrkB, p-Akt, p-GSK3β, β-catenin↑ Prevent neuronal degeneration, apoptosis,
inhibit Aβ accumulation, alleviate altered
microglia polarization and

Wang et al.
(2022)

AST In vitro AβO Primary cortical
neuron

BDNF, TrkB, cathepsin D↑ morphology changes prevent cytotoxicity,
apoptosis, attenuate mitochondria distress,
synaptotoxicity

Wang et al.
(2022)

AST In vivo / 5xFAD mice Aβ↓ Inhibit Aβ aggregation Zhou P et al.
(2016)

AST In vivo Aβ25–35 Sprague-Dawley
rats

Population of healthy neurons↑ p-Tau↓ Alleviate memory impairments, neuronal
degeneration, inhibit cortical Tau
hyperphosphorylation

Chang et al.
(2016)

AST In vitro Aβ25–35 Primary cortical
neuron

Synaptophysin, Cell viability↑ Prevent cytotoxicity, apoptosis,
synaptotoxicity, and mitochondrial
dysfunction

Chang et al.
(2016)DNA fragmentation, caspase-3, pTau↓

Cycloastragenol In vivo AβO C57BL/6N mice Nrf2, HO-1, BDNF, p-TrkB, p-CREB,
NeuN, p-ERK, Bcl-2↑

Ameliorate oxidative stress, neurotrophic
processes, neuroinflammation, apoptosis

Ikram et al.
(2021)

ROS, LPO, p-JNK, p-p38, Iba-1, GFAP,
TNF-α, IL-1β, Bax, Casp-3, Bim,
Caspase-3↓
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presenilin 1 and presenilin 2 also could alter Aβ homeostasis,
leading to misfolding of proteins, aggregation, and deposition of
Aβ in the brain parenchyma (Jack et al., 2018). This hypothesis
posits that the increased level of Aβ results in subsequent
pathological changes in AD. Studies have shown that the
activity of BACE1 gene promoter could be inhibited by
peroxisome proliferator activated receptor γ (PPARγ) agonists
(Sastre et al., 2006). Administration of a PPARγ antagonist
increased the level of BACE1 and subsequently increased the
level of Aβ (Gu et al., 2018). Wang et al. (2017) conducted
experiments in cultured SH-SY5Y cells which were transfected
with pEGFP-N1-BACE1 and in APP/PS1 mice, both of which
were treated with AS-IV. They found that AS-IV in vitro activated
PPARγ and suppressed the level of BACE1, leading to a
significantly decreased level of Aβ. Consistently, AS-IV could
significantly suppress the formation of plaques and downregulate
the expression of Aβ in the APP/PS1 mouse brain. Interestingly,
they also observed that GW9662, an antagonist of PPARγ, could
dramatically block the effect of AS-IV. Collectively, these
evidences suggested that AS-IV could reduce the production
of Aβ through inhibiting BACE1 as a natural PPARγ agonist.
In 5xFAD mice, astragaloside was found to decrease the
expression of Aβ, but in vitro study did not find the level of
BACE1 significantly suppressed (Zhou N et al., 2016). In cultured
hippocampal neurons, it was found that amyloid β protein
fragment 1–42 oligomers (AβO) inhibited the expression of
PPARγ and brain derived neurotrophic factor (BDNF), and
the phosphorylation of tyrosine receptor kinase B (TrkB). AS-
IV significantly reversed the expression of PPARγ and BDNF.
Inhibition of PPARγ attenuated the effect of AS-IV on BDNF,
suggesting that AS-IV could increase the expression of BDNF. In
vivo experiments confirmed the positive effect of AS-IV on BDNF
and restored the cognitive function of mice injected with AβO
(Wang et al., 2020). These studies focused on the production of
Aβ, but few studies have examined the effect of saponin from AR
on the clearance of Aβ, which may also impact the therapeutic
effect of these saponins.

Tau is a microtubule-associated protein that contributes to
stabilization of microtubules, axonal outgrowth, and maintaining
DNA structure (Leng and Edison, 2021). Pathological alterations
of tau might be associated with detachment of tau from
microtubules, aggregation of tau, synaptic damage, and
consequent cognitive deficits. Recent studies have shown that
intrahippocampal infusion of AβO leads to appearance of AD-
like phenotypes in mice, such as tau hyperphosphorylation,
neuroinflammatory reaction, loss of neurons, synaptic
impairment, and fear memory deficits (Jack et al., 2010; Cline
et al., 2018). In primary cortical neurons, Chang et al. (2016)
observed that astragalosides (AST) could inhibit Aβ25–35-induced
apoptosis through suppressing tau hyperphosphorylation. This
therapeutic effect was reversed by a PI3K inhibitor, suggesting
that the PI3K/AKT/GSK-β/β-catenin pathway might be the
therapeutic target of astragalosides. Wang et al. (2021a) also
found that intrahippocampal infusion of AβO suppressed the
expression of PPARγ in the hippocampus of AD model mice.
Whereas, AS-IV could reverse the increased production of
phosphorylated tau in AβO infused mice, accompanied with

improvement of AD-like phenotypes through regulation of
PPARγ. Therefore, AS-IV has dual roles in combating AD
partially through activating the PPARγ signaling pathway.
However, whether this compound decreases tau
phosphorylation through other signaling pathways remains to
be elucidated.

4.1.2 Anti-Apoptosis
To clarify the anti-apoptosis effect of AST on AD, Chang et al.
(2016) established an AD model through infusing amyloid β-
protein fragment 25–35 (Aβ25–35) into the lateral ventricle of the
rat brain. They found that AST inhibited Aβ25–35-induced
neuronal degeneration and memory deficits in AD model rats.
As stated above, AST could inhibit Aβ25–35-induced apoptosis
through suppressing tau hyperphosphorylation and DNA
fragmentation as well as elevating the level of caspase-3. The
anti-apoptosis effect of AST weas suppressed by LY294002, an
inhibitor of PI3K-dependent protein kinase B (AKT). U0126, an
inhibitor of extracellular protein kinase (ERK), displayed the
same anti-apoptosis property as AST. These evidences
suggested that AST could protect neurons against apoptosis
through inhibiting the PI3K/AKT and ERK pathways.
Whether AST could suppress apoptosis through increasing the
level of anti-apoptosis molecules like Bcl-2 and Bax is unknown.

It is well known that ROS generation elevates cytochrome-c
release, activates the expression of caspase proteins, and
aggravates mitochondrial swelling at the early stage of
apoptosis (Obulesu and Lakshmi, 2014). A study has revealed
that the brief opening of mitochondrial permeability transition
pore (mPTP) is associated with Aβ-induced apoptosis and ROS
release (Zorov et al., 2014). Another study indicated that, in the
presence of Aβ1–42, AS-IV dramatically suppressed the
generation of intracellular ROS and mitochondrial
superoxide, blocked the opening of mPTP. Therefore,
mitochondrial membrane potential was preserved and the
production of ATP restored. The nearly normal supply of
ATP maintained the activity of cytochrome c oxidase and
suppressed cytochrome c release from mitochondria.
Consistent with results of Zorov et al., decreased ROS
production by AS-IV significantly reduced the level of
cleaved caspase-3, inhibited the expression of Bax, and
increased the level of Bcl-2, an anti-apoptosis molecule, in
the presence of Aβ1–42. These results have proven that AS-IV
prevents Aβ-induced apoptosis of SK-N-SH cells by suppressing
the opening of mPTP, the production of intracellular ROS, and
increasing the level of anti-apoptosis molecules (Sun et al.,
2014). In vivo study by Ikram et al. (2021) showed similar
results. Increased oxidative stress was observed in Aβ injected
mice, accompanied by significant neuronal loss and increased
levels of Bax, casp-3, and Bim. These indicate that neuronal loss
might be attributed to augmented apoptosis. Cycloastragenol, a
triterpenoid saponin, significantly improved the cognitive
performance of this mouse model and attenuated the changes
in apoptosis related molecules as well as neuroinflammation.

During stress, the level of the corticosteroid is increased and
this correlates with dementia progression in AD patients. Based
on this, Li et al. (2011) injected dexamethasone to 12-month old
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mice to mimic learning and memory impairment. They found
significant increase of casp-3 and -9, increased activities of these
proteins, and neuronal apoptosis. Consequently, learning and
memory impairment was observed. Extract of AR reversed the
behavioural and molecular changes. But which bioactive
ingredient was responsible for this therapeutic effect was
unknown. It is known that endoplasmic reticulum stress (ERS)
is involved in AD progression. In an in vitro cell culture model,
Aβ25–35 significantly increased levels of ERS-specific proteins,
BIP/GRP78 and GADD153/CHOP in PC12 cells, as well as casp-
3. AS-IV significantly reversed these changes, suggesting that it
can regulate ERS induced cell apoptosis (Ma and Xiong, 2019).

4.1.3 Anti-Neuroinflammation
Chen et al. (2021) used AβO-infused mice to explore the anti-
neuroinflammation activity of AS-IV. They found that injection
of AβO significantly upregulated expression of ROS, IL-1β, IL-6,
and TNF-α, which are biomarkers of inflammation. AS-IV could
significantly attenuate the increase of these cytokines as shown by
the enzyme linked immunosorbent assay. In addition,
immunohistochemical staining showed that AS-IV was able to
suppress AβO-induced microglial activation and neural injury.
Importantly, Western blotting revealed that AS-IV suppressed
the up-regulation of NADPH oxidase subunits p22phox,
p47phox, p67phox, and gp91phox induced by AβO.
Consistent with molecular changes, behavioral tests showed
that AS-IV could significantly improve the cognitive
performance of mice that received AβO-infusion. Collectively,
AS-IV could attenuate AβO-induced AD-like behaviours and
molecular changes through suppressing the activation of
microglial cells and decreasing the level of NADPH oxidase.

Wang et al. (2021a) found that infusion of AβO dramatically
increased the number of astroglia, and this astroglial response
was observed in the hippocampus of mice as detected by
immunofluorescence staining. AS-IV (20 mg/kg) could
effectively decrease the number of astrocytes. Consistently,
immunoblotting assay detected that AS-IV suppressed the
expression of GFAP in AβO-infused mice. Furthermore, AS-
IV significantly decreased pyroptosis, synaptic loss, and the level
of proinflammatory cytokines, like IL-1β, IL-6, and TNF-α.
Surprisingly, GW9662, an inhibitor of PPARγ, could block
the therapeutic effect of AS-IV. These data suggest that the
PPARγ signaling pathway is the key target of AS-IV in
suppressing the inflammatory reaction as well as other
molecular changes in the hippocampus. In another study by
Ikram et al. (2021), Aβ was stereotaxically injected into the
lateral ventricle of mice to induce the Alzheimer’s disease
model, followed by 6 weeks treatment of cycloastragenol, a
triterpenoid saponin present in AR. It was found that Aβ
injection reduced the number of neurons, levels of BDNF,
phosphorylated receptor tropomyosin receptor kinase B
(p-TrKB), nuclear factor erythroid 2-related factor 2 (Nrf-2),
hemo oxygenase-1 (HO-1), and increased oxidative stress
markers, which might be mediated by the MAP kinases
(MAPK) as expression levels of p-JNK, p-P-38, p-Erk were
increased. Additionally, activation of microglia was increased
accompanied by increased levels of proinflammatory cytokines,

such as TNF-α, IL-1β, and apoptosis related molecules Bax,
casp-3, Bim. Cycloastragenol significantly attenuated these
alterations observed in this model mouse and improved the
cognitive performance of these mice. The NF-κB mediated
signaling pathway is a classical one in producing
proinflammatory cytokines in glial cells, whether it is
activated by AS-IV or other saponins remains to be investigated.

4.1.4 Promoting Neural Stem Cells Proliferation and
Differentiation
Hu et al. (2016) investigated the effect of AS-IV on the proliferation
and differentiation of NSCs. In this study, cultured NSCs from the
hippocampus of rat embryos were used. NSCs were treated with AS-
IV, and then transplanted into the hippocampus of AD model rats.
AS-IV could induce NSCs to differentiate into GFAP+ and β-tubulin
III+ cells in vitro. In in vivo experiments, transplantation of NSCs
into AD model rats contributed to the amelioration of AD-like
phenotype. AS-IV could augment this beneficial effect. In addition,
AS-IV increased the number of β-tubulin III+ cells in the
hippocampus of AD model rats. Both in vivo and in vitro
experiments showed that AS-IV suppressed presenilin 1
expression, the active subunit of γ-secretase. Paradoxically, AS-IV
at both 10–5 and 10–6 M increased the expression of Notch-1, but
AS-IV at 10–5 M decreased the level of the Notch intracellular
domain-NICD which is cleaved by γ-secretase. In summary, AS-
IV facilitated the proliferation and differentiation of NSCs through
the Notch signaling pathway and consequently ameliorated AD.
Whether AS-IV can regulate NSC proliferation and differentiation
through other key regulators is still unknown. Neural stem cell
migration is an important step in replenishing dying neurons, this
has not been studied with the assistance of saponins.

In another study, A β25–35 was injected into the lateral ventricle
to induce memory deficits. They found prominent axonal atrophy
and synaptic loss in the hippocampus and the cortex. Aqueous
extract of AR significantly prevented axonal atrophy, neuronal
loss, and increased the outgrowth of axons as well as the
formation of synapses in the cortex (Tohda et al., 2006). A
study by Cheng et al. (2006) examined the effect of
astragaloside at different concentrations on the regeneraton of
axons in the periphery. They found that 50 μmol could sigficantly
increase the regeneration of axons, and 200 μmol inhibit the
growth of axons. This suggests that proper use of bioactive
compounds isolated from AR is important.

4.2 Flavonoids From Astragali radix
Flavonoids are the largest group of polyphenolic compounds
isolated from AR, accounting for 4.34% ethanol extract of AR (Xu
et al., 2013). Up to now, studies have reveal that several subclasses
of flavonoids from been identified from AR, such as quercetin,
calycosin, formononetin, sphaemphyside SB, isomucronulatol,
formononetin-7-O-β-D-glycoside, methylnissolin, (6aR, l 1aR)
9,10-dimethoxypterocarpan-3-O-β-D-glycoside, 7,2′-dihydroxy-
3′,4′-dimethoxy-isoflavane-7-O-β-D-glycoside (Zhang et al.,
2012; Wang B et al., 2016). Biological activities of flavonoids
vary between each other because of their differences in action
mode, and bioavailability (Ullah et al., 2020). The therapeutic
effect of well studied compounds were listed in Table 2.
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Quercetin (3,30,40,5,7-pentahydroxyflavone) isolated from
AR is a potent flavonoid. It has anti-inflammatory, anti-
oxidant, anti-tumor, anti-proliferation properties. ROS are
produced in the progression of AD, quercetin can react with
these oxygen radicals in the presence of peroxidase to form
hydrogen peroxide and semiquinone radical, which are
detrimental to proteins, lipid, and DNA of vulnerable neurons
(Ademosun et al., 2016). Semiquinone can also react with
glutathione to produce stable 6-glutathionyl-Qu to enhance its
antioxidant activity (Robaszkiewicz et al., 2007). In addition, it
inhibits xanthine oxidase, nitric oxide synthase, and suppresses
oxidative stress induced neuronal damage by activating the Nrf-2
antioxidant responsive element, which subsequently increases the
production of glutathione (Arredondo et al., 2010). Quercetin has
been reported to increase the production of paraoxygenase in
astrocytes, neurons, and macrophages, which exerts
neuroprotective effects (Boesch-Saadatmandi et al., 2009). An
in vitro study has shown that this compound suppresses the
activity of AchE and consequently increases the level of
acetylcholine (Abdalla et al., 2014).

In the meantime, it inhibits secretase enzymes and reduces
the production of amyloid proteins (Shimmyo et al., 2008;
Khan et al., 2009). This has been confirmed in AD mouse

models where quercetin decreases the level of amyloid proteins
in the extracellular space, inhibits tau phosphorylation, and
ameliorates neuroinflammation evidenced by attenuated
microglial and astrocyte activation (Sabogal-Guáqueta et al.,
2015). It is known that activated microglial cells can secrete
TNF-α, interleukins and interferon-V. Quercetin can not only
suppress the expression of inducible nitric oxide synthase, but
also decrease levels of proinflammatory cytokines as listed
above. One of the target signaling pathways is JNK/Jun
(Qureshi et al., 2011). Like saponins isolated from AR,
quercetin restores mitochondrial membrane potential,
increases ATP production, and inhibits ROS production.
Through increasing the level of a key regulator in energy
metabolism-AMP activated protein kinase, and the activities
of antioxidants, such as superoxide dismutase 2 (SOD-2),
quercetin scanvages ROS, decreases the production of
amylioid proteins, and accelerates their clearance (Wang
et al., 2014).

A recent study has shown that quercetin ameliorates memory
impairment in scopolamine treated mice through protecting
against neurodegeneration and neuroinflammation (Olayinka
et al., 2022). Collectively, quercetin mainly exerts anti-AD
effects through the following pathological mechanisms: 1)

TABLE 2 | The effect and mechanisms of flavonoids from Astragali radix against Alzheimer’s disease.

Flavonoids Method Inducer Experimental model Mechanisms Effects References

Quercetin In vivo / APP/PS1 transgenic
mice

MMP, ATP, pAMPK172↑ Decrease plaque burden, alleviate
mitochondrial dysfunction

Wang et al. (2014)
Thioavine-S positive compact
plaques, ROS production↓

Quercetin In vivo / 3xTg-AD mice C-terminal APP fragments (β),
βA 1–40, βA 1–42, PHF-1, AT-
8, GFAP, Iba-1↓

Decrease extracellular β-amyloidosis,
tauopathy, astrogliosis, microgliosis

Sabogal-Guáqueta
et al. (2015)

Quercetin In vivo Scopolamine Swiss mice Population of healthy cells↑ Inhibit apoptosis, attenuate cell injury, and
neuroinflammation

Olayinka et al. (2022)
IL-6, TNF-α, apoptotic cells↓

Quercetin In vitro / CHO cells
overexpressing wild-
type human APP/SHSY
cells

Aβ1-40, Aβ1-42, sAPPβ,
APP-CTFβ, BACE-1, NFκB↓

Attenuate neuroinflammation, inhibit Aβ
aggregation

Qureshi et al. (2011)

Calycosin In vivo / APP/PS1 transgenic
mice

Ach, GSH↑ amyloid beta, tau
protein, TNF-α, IL-1β,
AChE, MDA↓

Inhibit Aβ aggregation and tau
hyperphosphorylation, attenuate oxidative
stress, and inflammatory response

Song et al. (2017)

FMN In vitro Aβ25–35 HBMEC cells Cell viability, Nrf2↑ Ameliorate vascular inflammation Fan et al. (2022)
VCAM-1, ICAM-1, E-selectin,
NFκB activation, nuclear
translocation↓

FMN In vivo / APP/PS1 transgenic
mice

LRP1, ApoJ↑ Attenuate learning and memory deficit,
inhibit Aβ production and increase
clearance, alleviate oxidative stress injury,
inflammatory response, neuronal cell
death, neuronal injury, and improve
capillary morphology

Fei et al. (2018)
Aβ40, Aβ42, APP, RAGE, NF-
κB p65, IL-6, TNF-α, IL-1β↓

FMN In vitro / Hypoxic N2a-APP cell Cell viability, sAβPPα, CTF-α,
α-secretase activity, ADAM10,
ADAM10 mature/pre-mature
ratio↑

Neuroprotection, attenuate cell damage,
hypoxia-induced apoptosis, inhibit Aβ
aggregation

Sun et al. (2012)

LDH release, caspase-3↓
FMN In vitro Aβ25–35 HT22 cells Cell viability, α-secretase,

sAPPα, p-Erα, p-Akt,
p-GSK3↑

Inhibit apoptosis, Aβ aggregation, and
neuroprotection

Chen et al. (2017)

β-secretase, Bcl-2, cleaved
caspase-3↓

Frontiers in Pharmacology | www.frontiersin.org June 2022 | Volume 13 | Article 9244297

Dong et al. Astragali radix Treats Alzheimer’s Disease

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


inhibition of Aβ production, aggregation and tau
phosphorylation; 2) inhibition of the activity of AChE; 3)
attenuation of oxidative stress and neuroinflammation (Paris
et al., 2011; Qureshi et al., 2011; Abdalla et al., 2013; Sabogal-
Guáqueta et al., 2015; Costa et al., 2016).

Calycosin is the most abundant one among flavonoids
isolated from AR. It has been shown to relieve cognitive
deficits elicited by diabetes mellitus, suggesting that it might
be effective in improving cognitive performance of AD
patients. In an APP/PS1 transgenic mouse study, Song et al.
(2017) found that calycosin could reduce the level of Aβ, tau,
IL-1β, TNF-α, AChE, and malondialdehyde (MDA) in the
hippocampus. Additionally, the increased activity of AchE
was diminished by calycosin. However, the neuroprotective
effect of calycosin could be blocked by calphostin C, an
inhibitor of protein kinase C, suggesting that calycosin
ameliorated cognitive deficits in AD model mice through
the protein kinase C pathway, including suppressing the
production of proinflammatory cytokines, Aβ, tau, and
ROS, as well as the activity of AchE.

In another study, similar results were observed. In addition, it
was found that calycosin increased the activities of SOD and
glutathione peroxidase, attenuating the damage of lipid peroxides
to neurons (Yu et al., 2017). Calycosin-7-O-β-D-glucoside has
similar pharmacological activities as calycosin, which is reviewed
in the study by Li and Huang (2020).

As the most enriched flavonoid isolated from AR, other
mechanisms against AD pathogenesis are under investigation.
Currently, the majority of studies focus on ischemia-reperfusion
injury to the brain. It has been shown that calycosin takes
neuroprotective effects against this type of injury through
inhibiting the NF-κB signaling pathway and subsequently
suppressing neuroinflammation (Wang et al., 2018; Yao et al.,
2019), inhibiting autophagy, and increasing the level of Bcl-2,
inhibiting the expression of calpain-1 (Guo et al., 2019), and
facilitating angiogenesis through increasing levels of vascular
endothelial growth factor (VEGF), erythropoietin (EPO),
granulocyte-colony stimulating factor (G-CSF), granulocyte
macrophage-colony stimulating factor (GM-CSF), and stromal
cell-derived factor 1 (SDF-1) (Liu R et al., 2021). These
mechanisms might be the same in AD models or patients,
which remains to be examined.

Formononetin (FMN) is another flavonoid that has been
studied in AD models though more research is focused on its

capability of suppressing cancer. In APP/PS1 mice, FMN
significantly improved cognitive performance through
modulating the function of endothelial cells and the
production of amyloid proteins. FMN suppressed the
production of amyloid protein through APP processing. It also
increased the clearance of amyloid proteins through LRP1. In
addition, it suppressed advanced glycation endproducts and
RAGE mediated inflammation (Fei et al., 2018), which can
indirectly mediate the influx of amyloid proteins into the
brain parenchyma. In cultured human brain microvascular
endothelial cells, FMN significantly ameliorated inflammation
induced by Aβ25–35 through activating the Nrf-2 pathway and
inhibiting the NF-κB pathway, which consequently decreased
the expression of intercellular adhesion molecule 1 (ICAM-1)
and the vascular cell adhesion molecule 1 (VCAM-1). Though
Nrf2 was increased, its association with Keap1 was attenuated
by FMN in a dose dependent manner (Fan et al., 2022). In the
high fat diet induced cognitive impairment mouse model,
FMN not only reduced body weight of mice, but also
improved the cognitive performance through suppressing
tau phosphorylation and neuroinflammation induced by
high fat diet. These might be due to the activation of the
Nrf-2/HO pathway and inhibition of the NF-κB pathway
depending on the upregulation of Peroxisome proliferator-
activated receptor coactivator-1α (PGC-1α) (Fu et al., 2019).
In an in vitromodel of AD, FMNwas shown to protect neurons
by increasing the cell viability and decreasing the level of casp-
3. The latter effect was proven to be mediated by increasing the
activity of α-secretase which produces soluble amyloid
proteins (Sun et al., 2012; Chen et al., 2017). In addition,
the PI3K/AKT pathway was also activated by FMN. Inhibitors
of PI3K or ERα significantly blocked the effect of FMN,
indicating that the PI3K/AKT signaling pathway is
responsible for the therapeutic effect of FMN (Chen et al.,
2017).

Although there are other subtypes of flavonoids isolated from
AR, few studies have investigated their individual
pharmacological effects. They are applied to the target organs
or cultured cells as a total extract. So far, studies have shown that
the these flavonoids have similar effects to calycosin, quercetin. In
addition, they are known to promote neurogenesis after ischemic
stroke (Gao and Li, 2018), but which of them is playing this role is
unclear. Therefore, their therapeutic effects are not elucidated
here in detail.

TABLE 3 | The effect and mechanisms of polysaccharides from Astragali radix against AD.

APS Method Inducer Experimental model Mechanisms Effects References

APS In vivo / APP/PS1 transgenic
mice

Nrf2, SOD, GSH-Px↑ Attenuate oxidative stress, inhibit Aβ
accumulation

Qin et al. (2020)
Keap1, MDA, apoptotic cells, Aβ40 and
Aβ42↓

APS In vivo / APP/PS1 transgenic
mice

Plaque-associated GFAP, plaque-
associated Iba-1↓

Suppress neuroinflammation Huang et al.
(2017)

Microglia activation to M1
TNF-α, iNOS, and IL-12↓
Arg-1 and IL- 10↑

APS In vivo / EAE mousemodel C3, miRNA-155↓ Suppress neuroinflammation Liu X et al. (2021)
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4.3 Astragalus Polysaccharides
Astragalus polysaccharides (APS), a group of bioactive compounds
isolated from AR, possess multifarious effects in the central nervous
system, such as anti-inflammatory, antioxidant, immunomodulating
properties, which entitle this group of compounds with therapeutic
effects on neurodegenerative diseases, particularly AD (Liu Z et al.,
2014; Zhao and Dong, 2016; Huang et al., 2017; Qin et al., 2020; Liu
X et al., 2021), as shown inTable 3. However, only a small number of
studies tested their efficacy in combating AD.

Qin et al. (2020) studied the therapeutic effect of APS on APP/
PS1 mice which exhibited increased levels of Aβ, apoptosis, and
impairment in spatial learning and memory. In addition, levels of
Keap1, cytoplasmic Nrf2, and MDA were dramatically increased in
these mice. In contrast, levels of Nrf2 mRNA and intranuclear Nrf2
were remarkably down-regulated, accompanied by decreased levels
of SOD and glutathione peroxidase (GSH-Px). APS significantly
reversed the expression levels of cytoplasmicNrf2, intranuclear Nrf2,
SOD, MDA, and GSH-Px. Furthermore, APS dramatically
suppressed Aβ aggregation and apoptosis, and ameliorated spatial
learning andmemory deficits of APP/PS1mice. These suggested that
APS might improve the cognitive function of AD model mice
through the Nrf2 pathway. This still needs further validation.

In APPswe/PS1dE9 mice, a metabolically stressed AD model,
Huang et al. (2017) reported that body weight, levels of leptin and
insulin were elevated in this model upon metabolic stress. Similar
to other AD mouse models, there are amyloid plaques and
activated microglial cells as well as astrocytes surrounding
them. APS significantly reversed the alteration of body weight,
levels of leptin and insulin, and diminished activated microglial
cells and astrocytes around the plaques. However, APS did not
remarkably decrease the deposition of Aβ. Therefore, APS could
improve behavior performance of APPswe/PS1dE9 mice by
counteracting against metabolic stress and ameliorating
metabolic stress induced neuroinflammation. In the study by
Liu Z et al. (2014), APS was administered to vascular dementia
mice. Behavioral tests showed improved memory shown in
Morris water maze, which might be explained by the increased
level of acetylcholine (an error in this article was noticed, the
reliability of this article is doubted). A similar study also found
increased NMDAR1 in the hippocampus of the vascular
dementia model mouse. Though learning and memory was
improved, the level of acetylcholine was decreased (Zhao and
Dong, 2016), which arouses our doubt of its fidelity. In an
neuroinflammation model, APS inhibited the expression level
of miR-155 both in vivo and in vitro and the polarization of
microglia to the M1 phenotype, accompanied by attenuated
expression of proinflammatory cytokines, like IL-1α, TNF-α,
and C1q (Liu R et al., 2021). Whether APS are involved in
other mechanisms against AD needs further investigations.

5 DIFFERENCES BETWEEN ASTRAGALUS
MEMBRANACEUS AND ASTRAGALUS
MONGHOLICUS
Using LC-UV and MS, it has been shown that the roots of A.
membranaceus had nearly the same types of flavonoids as those of

A. mongholicus, but the content of these flavonoids was much
lower (1/3) in the roots of A. membranaceus (Lin et al., 2000).
Genetic studies revealed that the karyotype of A. membranaceus
was 2n = 2x = 16 = 10 m + 6sm, belonging to type IB, whereas the
karyotype of A. mongolicus was 2n = 2x = 16 = 8 m + 8sm,
belonging to type IC (Yan et al., 2001). A. membranaceus from
different origins in China had conserved sequences when the
internal transcribed spacer 1 (ITS1) of the nuclear ribosomal
RNA gene was tested. ITS1 is 100% identical between A.
membranaceus and A. mongholicus (Yip and Kwan, 2006; Liu
et al., 2011). Arbitrarily primed polymerase chain reaction
(APPCR) demonstrated that samples from Heilongjiang
Province were significantly different from samples from non-
Heilongjiang regions. Samples from Shanxi and Neimenggu can
be differentiated from their unique bands produced fromAPPCR.
Some bands were present only in samples fromNeimengu but not
in Shanxi, and a number of bands were present only in samples
from Shanxi but not from Neimengu and Heilongjiang (Yip and
Kwan, 2006). In the study by Zhang et al. (2018) simple sequence
repetition (SSR) was used to differentiate between these two
varieties. But only 1 SSR was found to be specific for A.
membranaceus, but not found in A. mongholicus. Single
nucleotide polymorphism study showed that ITS/ITS2 can
differentiate between these two varieties, with a base C on the
476th spot of ITS sequence of A. mongholicus and T of A.
membranaceus (Zheng et al., 2019).

A study tested seeds of AR samples from different regions and
cultivated in Hunyuan under the same conditions. Ultra-
performance liquid chromatography (UPLC) coupled with
photodiode array detector and evaporative light scattering
detectors was used to simultaneously determine four major
isoflavonoids and four major saponins. These two AR varieties
were distinguished through principal component analysis, but
samples of the same species from different regions were unable to
be distinguished. These suggest genetic properties appear to be
more important for pharmaceutical activities than environmental
factors (Liu et al., 2011). Another study on leaves of these two
varieties showed 182 variable sites in the chloroplast genome
(Wang X et al., 2016). Proteomic analysis of these two varieties
revealed thatA. membranaceus had 717 specific proteins, whereas
A. mongholicus had 920 specific protein, with 472 shared between
them. There were 21 differentially expressed proteins, such as
plant pathogenesis-related class 10 (PR-10), nucleoside
diaphosphate kinase (NDK-1), glutelin A2, phospholipase D.
A. mongholicus had 14 proteins highly expressed and A.
membranaceus had seven highly expressed (Zhao et al., 2020).

Among 47 sapoins identified from AR, 37 were found in A.
membranaceus with a total content of 19.01 ± 0.87, and 10 in A.
mongholicus with a total content of 21.24 ± 1.06 mg/g (Shao et al.,
2018). Among 85 flavonoids, 40 were found in A. mongholicus
and 31 in A. membranaceus (Liu P et al., 2017). Among the
flavonoids, the content of calycosin-7-glucoside, ononin, and the
total flavonoids was higher in A. mongholicus than in A.
membranaceus, whereas the content of calycosin and
formononetin was higher in A. membranaceus than in A.
mongholicus (Zhou et al., 2016). Six alkaloids were also found
in A. mongholicus (Liu Y et al., 2017). There are studies on the
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content of other flavonoids and polysaccharides, but their results
are not conclusive.

6 PERSPECTIVES

Even though research into the pathogenesis of AD has made
enormous progress, therapeutic strategies targeting the potential
pathogenic mechanisms have hardly succeeded (Breijyeh and
Karaman, 2020). This raises doubt concerning the prevalent
theories of AD.

It is known that decreased cerebral blood flow is the dominant
finding on PET scan (which is the optimal diagnostics to
differentiate AD from other pathologies) Epidemiological,
imaging, and pathologic studies have revealed that AD has the
same risk factors as stroke, and vascular, especially microvascular
changes are prominent in the brain tissue of AD patients
(Iadecola 2013). But few drugs have been developed to restore
the blood flow to the brain. A recent study found that sildenafil, a
drug used to dilate blood vessels, was associated with 69%
reduced risk of AD (Fang et al., 2021). This suggests that
restoration of the cerebral blood flow may prevent cognitive
decline.

Studies in the past decade have also found that pericytes
surrounding the capillaries play an important role in AD
(Nation et al., 2019; Nortley et al., 2019). These cells can
regulate the cerebral blood flow to the microcirculation and
transform to other types of cells in diseased conditions. Hence,

developing therapeutic strategies targeting the pericytes might be
a promising direction for AD research.

Currently, there are a myriad of compounds present in the
natural products. Network pharmacology has the capability of
matching these compounds, with molecular targets in the brains
of AD patients or rodent models. It is very likely that potential
therapeutic agents will be found using these techniques.
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GLOSSARY

Aβ amyloid-β

AβO Aβ (1–42) oligomers

AChE acetylcholinesterase

AD Alzheimer’s disease

AKT phosphoinositide 3-kinase (PI3K)-dependent protein kinase B

APP the amyloid precursor

APPCR arbitrarily primed polymerase chain reaction

APS astragalus polysaccharide

AR Astragali radix

AS-II astragaloside II

AS-IV astragaloside Ⅳ

AST Astragalosides

BACE1 β-APP-cleaving enzyme-1

Bax the BCL-2-associated X protein

Bim Bcl-2 interacting mediator of cell death

BIP/GRP78 immunoglobulin heavy chain binding protein BiP/78-kDa
glucose-regulated protein

BDNF brain derived neurotrophic factor

BHD Buyang Huanwu decoction

BYCNC: Buyuan Congnao decoction

ERα estrogen receptor alpha

ERS endoplasmic reticulum stress

EPO erythropoietin

GADD153/CHOP growth arrest and DNA damage-inducible gene 153/
C/EBP homologous protein

G-CSF granulocyte-colony stimulating factor

GM-CSF granulocyte macrophage-colony stimulating factor

GSH-Px glutathione peroxidase

GSK3B glycogen synthase kinase 3 beta

HO-1 hemo oxygenase-1

HPLC high performance liquid chromatography

HQSJZD Huangqi Sijunzi decoction

ICAM-1 intercellular adhesion molecule 1

IL-1β interleukin-1β

IL-6 interleukin-6

ITS1 internal transcribed spacer 1

JNK c-jun-NH2-terminal kinase

Keap1 Kelch-like ECH-associated protein 1

LRP1 lipoprotein receptor-related protein 1

MAPK mitogen-activated protein kinase

MDA malondialdehyde

mPTP mitochondrial permeability transition pore

NADPH nicotinamide adenine dinucleotide phosphate

NDK-1 nucleoside diaphosphate kinase

NSCs neural stem cells

NXTC Naoxintong capsule

NF-kB nuclear factor-kappa-B

Nrf-2 nuclear factor erythroid 2-related factor 2

PGC-1α Peroxisome proliferator-activated receptor coactivator-1α

PI3K phosphoinositide 3-kinase

PR-10 pathogenesis-related class 10

p-TrKB phosphorylated receptor tropomyosin receptor kinase B

PPARγ peroxisome proliferator activated receptor γ

PTGS2 prostaglandin-endoperoxide synthase 2

RAGE receptor for advanced glycation endproducts

ROS reactive oxygen species

SDF-1 stromal cell-derived factor 1

SOD-2 superoxide dismutase 2

SP senile plaques

SSR simple sequence repetition

TCM Traditional Chinese Medicine

TNF-α tumor necrosis factor α

TrkB tyrosine receptor kinase B

UPLC-MS/MS ultra-performance liquid chromatography-tandem mass
spectrometry

VCAM-1 vascular cellular adhesion molecule-1

VEGF vascular endothelial growth factor
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