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ABSTRACT

Electronic medical records are increasingly used to store patient information in hospitals and other clinical set-

tings. There has been a corresponding proliferation of clinical natural language processing (cNLP) systems

aimed at using text data in these records to improve clinical decision-making, in comparison to manual clinician

search and clinical judgment alone. However, these systems have delivered marginal practical utility and are

rarely deployed into healthcare settings, leading to proposals for technical and structural improvements. In this

paper, we argue that this reflects a violation of Friedman’s “Fundamental Theorem of Biomedical Informatics,”

and that a deeper epistemological change must occur in the cNLP field, as a parallel step alongside any techni-

cal or structural improvements. We propose that researchers shift away from designing cNLP systems indepen-

dent of clinical needs, in which cNLP tasks are ends in themselves—“tasks as decisions”—and toward systems

that are directly guided by the needs of clinicians in realistic decision-making contexts—“tasks as needs.” A

case study example illustrates the potential benefits of developing cNLP systems that are designed to more di-

rectly support clinical needs.

Key words: artificial intelligence, natural language processing, clinical decision support, clinical judgment, intersectoral collabo-

ration

BACKGROUND

Electronic Health Records (EHR) have been rapidly adopted by hos-

pitals and health clinics worldwide, with the intent of storing and

collating data to support clinicians in making decisions at the point

of care.1 However, it can be difficult to extract knowledge from the

multiple data formats in EHR, in particular from unstructured texts.

Consequently, Natural Language Processing (NLP) has been

deployed for automated extraction, decoding, and analysis of free-

text EHR data. Since the 1960s, clinical NLP (cNLP) research has

led to advances in areas such as clinical note summarization,2,3 iden-

tifying diagnoses,4,5 and adverse drug reactions.6,7 However, the

cNLP field has experienced an ongoing lack of deployed NLP sys-

tems in healthcare settings,1,8–12 and this problem is arguably grow-

ing despite—or possibly because—the increasing sophistication of

cNLP systems. It is important that we now work to address the fac-

tors preventing the translation of cNLP applications into real-world

clinical contexts. In this paper, we survey the cNLP landscape to un-

derstand these factors and propose a way forward.

To date, several NLP researchers have explored the factors and

circumstances surrounding this lack of cNLP system implementa-

tion. Researchers have focused on flaws from the perspective of defi-

ciencies in data (eg, scalability, insufficient standardization),13,14
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models (eg, overfitting, biases),15–17 study designs (eg, simplifying

assumptions, evaluation limitations),16,18 and software usability.19

All these concerns remain valid and continue to be addressed

through development of suitable cNLP frameworks, standards, pub-

lic datasets, and so on. However, we propose that it is the epistemo-

logical constraints within the cNLP field that most heavily detract

from the intended clinical need and ultimately, deployment into clin-

ical settings.12,20

Some cNLP models have been successfully deployed, where they

were tasked with simple goals that directly complement clinical deci-

sion-making.21–24 In those few cases of successful (clinically useful)

NLP deployments, the models typically targeted the “low hanging

fruit,” such as efficient disease detection from explicit mentions, or

identifying a family history of a disease.12,22,25 However, there are

more numerous examples of as-yet-unadopted NLP systems, often

developed within the framework of clinical decision-support systems

(CDSS)8 that attempt to provide clinical recommendations, to use

limited data to make predictions about future patient behavior or

prognoses, or to audit clinical workflows.26–31 In short, they aim to

make clinical decisions automatically. This includes our own work

on early prediction of diagnostic-related group classification for

patients,32 which has yet to find practical application.

These cNLP decision systems are designed under the assumption

that their advanced logical or predictive power and far greater ac-

cess to available clinical information, as well as the capability to syn-

thesize this information, should facilitate more effective decisions

than clinicians can make alone. It can even be said that these systems

are based on an even stronger assumption, that is, that they facilitate

more effective decisions than clinicians—thereby pushing the clini-

cian outside of the decision-making. This then directly violates

Friedman’s “Fundamental Theorem of Biomedical Informatics,”33

which states that “A person working in partnership with an infor-

mation resource is ‘better’ than that same person unassisted,” and

from which it follows that tools that seek to be independently more

effective than a person unassisted violate a core principle of infor-

matics research.

A chief example of the failed adoption of cNLP-based systems

is IBM’s Watson Health platform. After the platform’s announce-

ment in 2011, IBM invested at least $5 billion into its AI health-

care initiatives and it announced over 50 partnerships with

healthcare providers to develop new AI-enabled clinical tools.20

Yet, nearly the entirety of these projects failed to lead to any use-

ful clinical outcomes or platform deployments, often at great cost

to healthcare organizations in terms of time, effort, and funds.20

It is important to ask why this project failed, especially given the

apparent large-scale access the organization had to clinicians.

Contributing factors to this failure appear to be that the system

was unable to provide information that was not already easily ac-

cessible to clinicians,34 as well as lack of interoperability with

EHR systems.35 In short, the cNLP system did not satisfy the ba-

sic needs of the clinicians who would work with it; that is, they

were not working in partnership.

A validating example of this problem appears in a case study of a

failed AI-based clinical cognitive agent in a hospital in Germany.36

The authors find “the cognitive agent had been given medical

cocompetence with physicians, which meant that the agent wasn’t

just a support tool but an autonomous operator. For the physicians,

this was a step too far.”

We propose that the way to improve this situation is for cNLP

researchers and clinicians to align in answering the following

question:

How can clinical decision-making best be supported through

clinical NLP?

By addressing this question, we are implicitly asking about the

nature of rational clinical decision-making.37 The question reveals a

set of underlying epistemological misalignments between cNLP

designers and medical clinicians. For instance, cNLP systems that

aim to predict outcomes or provide recommendations may offer an

unrealistic quantification of real-world uncertainty,38 or they may

aim for fixed forms of utility (ie, pre-established, stable outcomes)

when these do not reflect the dynamic, real-world outcomes of the

task at hand.16 In contrast, clinicians use a variety of complex rea-

soning methods39 and heuristics40 adapted to complex, dynamic

environments, and they may purposefully ignore nonsalient infor-

mation when making predictions, understanding the importance of

trade-offs where there are known uncertainties.41 We argue that a

deeper alignment on the objective of supporting clinical decision-

making and identification of the relevant implications for cNLP sys-

tems would reduce these epistemological differences and ease the

barriers to cNLP system adoption in the context of clinical decision

support.

KEY DIFFERENCES BETWEEN NLP AND
CLINICIAN-LED DECISION-MAKING

Over 70 years ago, Herbert Simon, a founder of the Carnegie School

of business management, introduced a scientific approach to busi-

ness decision-making. He developed the now well-established pre-

cept of “unbounded rationality,” which states that an “ideal”

decision-maker gathers, assesses, and weighs all relevant informa-

tion according to some criterion, to maximize the likelihood of

achieving their goal(s).42–44 cNLP researchers such as those that de-

veloped IBM Watson appear to have similarly assumed that com-

puters are better positioned than clinicians to achieve unbounded

rationality and should (eventually) set the standard for medical

decision-making quality.20 Such claims have already been made for

diagnostic imaging applications.45

However, individual clinician interpretation of narrowly defined

language understanding tasks—rather than ideal decisions—is typi-

cally used as the “gold standard” for cNLP system development. For

instance, numerous cNLP systems address information extraction of

specific patient attributes, such as a patient’s smoking status,46 car-

diovascular risk factors47 or social determinants of health,48 or focus

on normalization of clinical data such as medication prescription

details.49–51 While the information targeted by these tasks clearly is

relevant to clinical decision-making, the tasks themselves are never-

theless distant from higher-level clinical tasks such as estimating

prognoses or selecting treatments. This then ultimately impedes ef-

fective translation of these systems into practical clinical use.

While cNLP researchers often motivate model development in

terms of the potential clinical utility of the tools (ie, savings of time

and cognitive savings, reduction in human error), this utility often

only applies to a small, quantifiable, and simplified portion of the

overall clinical problem and clinicians may not see benefits from

the small gains obtained there. We are not suggesting that data ex-

traction or standardization of clinical narratives is a practically fu-

tile endeavor, but that the research focus should aim to enhance

clinical practice, rather than (only) solving narrowly defined NLP

problems.10

Still our primary concern is not with “low hanging fruit” of diag-

nostic or simple information extraction tasks within cNLP, with all
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of their inherent limitations. Rather, the assumption of unbounded

rationality is leading NLP (and other AI researchers)52,53 researchers

too hastily toward the “high hanging fruit”: NLP used directly to

draw clinical conclusions and make useful recommendations.27,54–57

In aiming high, these tools appear to be jumping right over the sweet

spot of utility for clinical users.

WHERE TO FROM HERE? A NEW
EPISTEMOLOGICAL MODEL FOR CNLP

We propose a more straightforward approach to address the barriers

to deployment. Clinicians tend to use a “top-down” methodology to

decision-making, where they fulfill the context-driven needs of rele-

vant stakeholders using their reasoning, experience, heuristics, or

protocols.40,41 Conversely, cNLP has generally taken a “bottom-

up” approach due to inherently data-driven methods, where the sys-

tem’s task is to optimally carry out predefined language analysis

functions.58 In the current model (seen in Figure 1A), the NLP task

is seen as an end in itself, often entirely distinct from clinician needs,

and divorced from the wider clinical context. We refer to this model

as the “task as decision” model, because NLP tasks and their evalua-

tion remain intrinsically motivated, tied directly to a narrowly de-

fined modeling objective, and not intended to work in concert with

a clinician. An alternative model (captured in Figure 1B), the “task

as need” model, implies that NLP tasks are designed to interact

with, and directly address clinical needs in making decisions. Thus,

assessing system utility by whether it answers a “what” question

with strong reliability only leads to inadvertent utility. Rather, to en-

sure adoptability, researchers need to shift to addressing how reli-

ably the system answers “why” and “how” questions.59

We take the use case of 2 systems that address modeling of hos-

pital readmission of patients with cardiovascular disease31,60 as an

example of a “task as decision” framing that can be reframed via

the “task as need”, reflecting on what NLP tools would be needed

to support the clinical decision of discharging a heart-failure patient.

There are numerous cNLP works that have addressed hospital read-

mission that could be considered for this purpose61; the 2 works we

focus on are transparent in defining the clinical concepts they target

with NLP and therefore are arguably well-suited to this reframing.

Topaz et al31 analyzed clinical notes using a rule-based (regex-

driven) NLP model. At the cohort level, they were able to success-

fully differentiate between re-admitted and nonreadmitted patients

through an aggregated measure known as “ineffective self-man-

agement,” itself derived from the presence of terms such as

“difficulties with outpatient adherence,” “excessive fluid intake,”

and “skips medicines.” Navathe et al60 target several social risk fac-

tors by identifying terms related to drug abuse, housing instability,

and poor social support in a patient’s clinical notes. Both systems

are based on the Medical Text Extraction, Reasoning and Mapping

System,62 utilizing dictionary-based term matching and context rules

for disambiguation.

In their studies, the authors start with the factors extracted from

the notes of patients, and use regression to model readmission out-

comes based on these factors. While the identification of relevant

patient factors is a seemingly valuable use of cNLP, and arguably in

line with the “Tasks as Needs” framing, there are 2 concerns. First,

the systems were not designed to fully address the real-world causes

of re-admission in heart failure patients, or the full range of clinical

factors relevant to making discharge decisions. A cursory review of

the health services literature highlights the factors affecting hospital

readmissions including the patient conditions these systems primar-

ily target, such as congestive heart failure, chest pain, anxiety and

depression, but also hospital operational factors such as nurse staff-

ing care quality, staff responsiveness, length of stay, posthospital

care coordination, and medication-related events.63–67 Many of

these factors are entirely ignored by the cNLP systems, and arguably

may not even be observable from a patient’s data, highlighting the

need to design a system that allows a clinician to bring such factors

to bear. Second, and critically, the systems are designed to produce a

single number (eg, probability of readmission) or to make a recom-

mendation (eg, safe to discharge) rather than explicitly surfacing

and presenting the information that will support a clinician to make

an informed decision within the broader context. They therefore ex-

emplify the “Task as Decision” framing of cNLP, where the over-

arching aim of the system is to leverage text processing directly to

make decisions.

Clinicians on the ward are likely to ask a number of “why” and

“how” questions:

“Why should I keep this patient in this ward bed, when there are

four in the ER?”67

“How can I ensure this patient’s condition will be better at dis-

charge than when she entered eight days ago?”63,68

Clinicians might use heuristics to weigh up and compare the fac-

tors above (patient’s physical state and attitude, length of stay, fam-

ily support, likely postdischarge care) when answering these

questions.40,41 Using these heuristics, they can ignore the inherent

uncertainty created by the idiosyncrasies of the individual patient

and the complex, changing hospital environment.41,69

Therefore, we suggest that the cNLP tools should focus on those

evidence-based factors, deemed relevant by clinicians, to assist the

clinical reasoning rather than replace it. This requires both a cross-

disciplinary research focus and stronger collaboration with clini-

cians in codesign of systems. The use of a cNLP system to detect

mental health, attitudinal, or social variables deemed relevant by

clinicians—and explicitly presented to them—would better support

clinicians to consider the questions that they may ask at discharge.

In Figure 2, we illustrate a sample CDSS tool based on this sce-

nario that aims to help clinicians manage a discharge decision for a

chronic heart failure patient in a rehabilitation hospital. The clini-

cian explicitly visualizes a clinical heuristic (here, a tally heuristic

but other approaches may better suit specific clinical contexts) to

answer “How” and “Why” questions such as those posed above.

Tally heuristics have been found to be both fast and effective in

complex clinical situations when compared to more complex pre-

diction tools.40,70 The tally heuristic categorizes factors for and

against a given clinical decision and then tallies them together to

help the clinician determine a course of action. In this hypothetical

tool, the system determines whether the patient is performing better

or worse than the average patient over a set of typical benchmarks.

The cNLP system could then support this by searching the clinical

narrative for each evidence point (ie, each “What” and “How

many” question, such as number of social visits, patient progress,

and health). The clinician can then make an informed patient care

decision.

The tally heuristic used in this example is admittedly very simple.

This approach does not preclude more sophisticated modeling, in-

cluding statistical or predictive modeling that makes use of the same

(or additional) variables that are surfaced in the CDSS system. In-

deed, data visualization methods could be used to support clinician

exploration of surfaced patient characteristics in the record in a
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comparative or correlative manner, or statistical weighting could be

added to make the CDSS more robust.

The key points here are to identify the factors that are relevant to

the clinical decision, to surface them from the notes or other patient

data (using cNLP as required), and to present them concisely, pro-

viding the information that a clinician needs to make a decision. In

short, we have transformed an end-to-end readmission prediction

tool into a clinical tool supporting a discharge decision, and shifted

the use of NLP as a feature extractor or end-to-end recommendation

model in a fully automated tool to targeted evidence gathering, sup-

porting human decisions. We emphasize that this is only a sketch of

the concept; codesign with health care professionals is required to

determine how such data-supported decision-making technologies

can best support specific usage contexts, including identifying spe-

cific information needs and defining scenarios of use.71

In fact, early examples of cNLP systems exist that illustrated this

approach, including the use of cNLP to populate a “Structured Nar-

rative Database” consisting of specific fields extracted from clinical

texts to support clinical audits,72 or to enable identification of infec-

tious patients or establish the need for inhaled anti-inflammatory

agents in asthma patients73 utilizing cNLP to encode reports.24 The

methods utilized by these systems were perhaps overly simplistic (eg,

the highly literal rule [If strings “normal,” “good,” or “clear” occur

BEFORE term “breath sounds,” score¼0] from73) and they were

not typically designed for active clinical use due to lack of appropri-

ate electronic health record systems23 or a need for retrospective sur-

veillance or quality assurance. Nevertheless, they prioritized

collaboration between medical practitioners and informaticians in

defining fine-grained concepts relevant to a given clinical scenario.

As methods have increased in sophistication, our sights have shifted

from improving findability and organization of information to full

automation of decision-making. Perhaps it is time to revisit these

earlier scenarios.

DISCUSSION

Our proposal is in line with recent commentary from thought lead-

ers in AI in Medicine. Eric Topol and colleagues have observed that

“deployment of medical AI systems in routine clinical care presents

an important yet largely unfulfilled opportunity.”74 They cite not

only the need for systems that leverage multiple sources of medical

data, including clinical texts, but also the need for human-in-the-

loop setups that consider how AI can assist decision-making most ef-

fectively. While we focus here on cNLP, much of what we say is also

applicable to other AI or machine learning systems. We single out

cNLP for discussion here because of the clear opportunity in the

context of medical texts to define (sub)tasks that enable alignment

between the information that is needed for clinical decisions, and

the information targeted by cNLP. In particular, the terms and con-

cepts that constitute clinical texts, and the relationships between

them, may correspond to precisely the patient details needed to as-

sist clinical decision-making.

There are several key recognized issues that constrain the clinical

utility of cNLP that merit discussion in the context of our proposal.

These are elaborated below:

Figure 1. (A) Task as decision. The current model (deduced from the literature), where an NLP task (eg, classification, entity recognition) serves a discrete function

that relates to a modeling objective, but is not explicitly designed to assist clinician decision-making. Dotted lines represent permeable boundaries; solid lines im-

permeable. (B) Task as need. The alternative model proposed by this paper, where one or more NLP tasks are directly designed to interact and contribute to pro-

viding evidence to support clinical decision-making. Dotted lines represent permeable boundaries.
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Issue 1: under-performance of cNLP systems on com-

plex language processing tasks
One key reason for the limited cNLP deployment is that the NLP

platforms developed so far have fundamental limitations that im-

pede their comprehension of real-world clinical data. Clinical NLP

pipelines generally struggle with linguistic issues such as word or

phrase ambiguity, complex semantic roles (eg, differentiating sub-

ject and object), temporality of events, or information that a clini-

cian would intuitively flag as “missing” and fill in implicitly (eg,

assumption of a positive characteristic due to a lack of documenta-

tion of the absence of that feature75). Furthermore, more basic

challenges such as word misspellings or significant variations be-

tween language used across organizations impact performance.12,20

It has also been observed that many modern NLP systems are “like

a mouth without a brain”76 or “stochastic parrots”77—most par-

ticularly evident in applications such as medical report generation,

where reports have been optimized to “look real rather than to

predict right”78 and are biased toward normal findings.79 cNLP

systems will need to somehow incorporate a certain degree of

pragmatism or “common sense” before the aforementioned issues

can be fixed. Therefore, the linguistic analysis limitations and lack

of pragmatic intelligence of cNLP—commonly referred to as

“weak AI”80—limit its deployment within complex healthcare

environments. Adopting an approach that focuses on more achiev-

A

B

Figure 2. An indicative CDSS relevant to a hospital discharge decision scenario. (A) The treating clinician flexibly selects the heuristic form (in this case, a tally),

with context and task-relevant inputs and data sources, and a relevant comparative baseline. (B) The platform then produces and tallies the scores for all heuristic

factors, leveraging NLP, helping the clinician to determine a suitable course of action.
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able NLP tasks with explicit relevance to a specific clinical deci-

sion task may mitigate against this problem.

Issue 2: simplification of real-world problems
A related concern for cNLP is its simplification of real-world clini-

cal problems. NLP model pipelines generally simplify a real-world

problem into a linear “goal—task—solution” model; that is, a

“task as decision” approach. As discussed above, cNLP systems are

usually in line with the NLP tasks of information extraction, involv-

ing migrating unstructured data to a standardized form,8,81 or clas-

sification of texts into categories such as for disease case

detection.82,83 While cNLP platforms (whether independent, or as

components of CDSS) do not need to “understand” a task as clini-

cians do, they would need deeper sophistication to provide useful

recommendations, predictions, or clinical workflow improve-

ments.20 Furthermore, simplification (at best) leads to an NLP task

and outcome that comprises 1 or 2 components of the many clinical

tasks involved in patient care. Thus, cNLP is typically used for a se-

lect set of simplified “what” questions, but not the more complex,

and clinically useful “how” or “why” questions.59 Additionally,

cNLP models usually produce binary outputs (presence/absence,

true/false) for one or more medical variables often without consid-

ering how they meaningfully associate with other medical condi-

tions or events. Several reviews of clinical information extraction

applications have found that the vast majority of cNLP models in-

volved an attempt to automatically detect the presence or absence

of a disease or injury, adverse medical or treatment events, or pa-

tient characteristics, with a small proportion also extracting nu-

meric values from narrative text.1,84,85 These lend themselves to

“needs,” better than “decisions,” and may find more relevance in a

decision support context.

Issue 3: explainability
What we are proposing is distinct from the current focus in the arti-

ficial intelligence community on explainability and interpretability

of sophisticated black box statistical or machine learning-based

models.86 As Holzinger and colleagues have put it, “Explainability

is at least as old as AI itself and rather a problem that has been

caused by it.”87 While we wholeheartedly support efforts to make

AI model decisions explainable, here, we instead suggest that not ev-

ery decision is suited directly to AI. Perhaps by more carefully scop-

ing the tasks we demand of our AI, and directly engaging powerful

human intelligence capabilities, we can both arrive at more effective

clinical decisions and avoid the need to immediately solve the prob-

lem of explainability.

CONCLUSION: MOVING FROM PROBLEMS TO
SOLUTIONS

We have provided an indicative example that illustrates one of

many possible ways to integrate NLP into existing clinical

decision-making. This system could improve clinician trust by

meeting clinician needs and complementing their judgment, and

such systems may be a good starting point for future cNLP deploy-

ments.

Researchers need to work closely with clinicians to explicitly

and flexibly incorporate and operationalize their needs into CDSS

or other systems, so that cNLP tools can usefully contribute to

decisions in partnership with clinicians. This allows for a shift

from the “task as decision” model to a “task as need” model. Fur-

ther codesign with researchers in other areas including implemen-

tation science, CDSS, user experience and clinical decision analysis

would also support development of more meaningful cNLP sys-

tems.88,89

The “tasks as needs” model represents a paradigm shift in cNLP

to focus on supporting clinicians rather than emulating clinicians,

and to bring cNLP in line with Friedman’s Fundamental Theorem.

Under this approach, cNLP researchers will produce systems that

more effectively integrate into clinical workflows and facilitate a

closer working relationship between clinicians and their decision-

support tools. It is in this way that cNLP researchers can realize im-

mediate clinical gains and can increase the likelihood that clinicians

will benefit from adopting cNLP systems.
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