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A B S T R A C T

Vulnerable atherosclerotic plaques of the artery wall that pose a significant risk of cardio-cerebral vascular ac-
cidents remain the global leading cause of morbidity and mortality. Thus, early delineation of vulnerable
atherosclerotic plaques is of clinical importance for prevention and treatment. The currently available imaging
technologies mainly focus on the structural assessment of the vascular wall. Unfortunately, several disadvantages
in these strategies limit the improvement in imaging effect. Nanoparticle technology is a novel diagnostic strategy
for targeting and imaging pathological biomarkers. New functionalized nanoparticles that detect hallmarks of
vulnerable plaques are promising for advance further control of this critical illness. The review aims to address the
current opportunities and challenges for the use of nanoparticle technology in imagining vulnerable plaques.
1. Introduction

Atherosclerosis, characterized by the formation of plaques causing
progressive degeneration of the vessel wall, is the primary pathogenic
basis underlying coronary and cerebrovascular diseases [1]. In general,
the phenotypes of most atherosclerotic plaques are stable. On the one
hand, one may experience a long symptom-free period or just mild ste-
nosis in the bloodstream. On the other hand, the vulnerable plaque
phenotype can trigger sudden and life-threatening events, including
myocardial infarction or stroke, the leading cause of mortality world-
wide. This imposes an enormous burden on society [1–4]. Despite widely
promoting remediation interventions, the cardiovascular episodes
continually yield substantial consequences [5]. Thus, advanced in-
terventions before the clinical manifestation are necessary and the role of
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imaging of vulnerable plaques must be highlighted in this context.
The role of routine imaging platforms for the detection of athero-

sclerotic plaques, including computed tomography (CT), magnetic reso-
nance imaging (MRI), ultrasound and so on, has been evaluated. their
ability to distinguish the vulnerable from the stable plaques remains
unsatisfactory. Theoretically, the reason can be attributed to the fact that
the existing imaging methods essentially rely on the presence of struc-
tural abnormalities. However, most commonly, many plaques with sus-
picious structural abnormalities might not lead to rupture. In addition,
there are some limitations to the current imaging platforms, including
invasiveness, insufficient coverage breadth, and spatial resolution, which
should be considered. Therefore, in the future, a new imaging technology
to identify vulnerable plaques warrants attention. It is expected to bring
substantial improvements to the protocols of screening, follow-up, and
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clinical intervention.
In addition to the structural imaging, molecular imaging is increas-

ingly playing an innovative role in the early diagnoses of several diseases.
Given that typical pathogenic processes occur during the formation of
vulnerable plaque, probes targeting specific biological features are ex-
pected to provide additional information on the suspected plaques.
Thanks to that, breakouts may advance our ability to diagnosis vulner-
able plaques.

Nanotechnology is rapidly evolving in imaging science domain. The
detectable characteristics, targeting capability and pharmaceutical sta-
bility of nanoparticles confer them with properties of exceptional
contrast agents. Over the past decades, advancements in medicine based
on nanoparticles have received tremendous attention, especially for the
treatment and diagnosis of cancer. Recently, the application of nano-
particles and their promising value for imaging atherosclerotic plaques
has been brought forth. Numerous high-quality studies using various
bioengineering designs are employed. However, only a few studies
emphasize their peculiar function in distinguishing the vulnerable from
the stable atherosclerotic plaques, wherein, the design principle is to
target and visualize the specific features of the vulnerable plaques. In this
review, we focus on the strengths and current challenge in nanoparticle-
mediated vulnerable plaque imaging based on the specific hallmarks
(Fig. 1).
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2. Basic conception of vulnerable plaque

The formation of atherosclerotic plaques arises from cholesterol
deposition and lipoprotein retention, gradually evolving into progressive
inflammation. Other multifaceted mechanisms include leukocyte
recruitment, foam cell transformation, programmed cell death, and
smooth muscle cell proliferation [6]. The complex and uneven devel-
opment of these mechanisms yields heterogeneous hallmarks and func-
tional outcomes in these plaques.

A vulnerable plaque is described as a special phenotype of athero-
sclerotic plaques associated with a high risk. Unlike stable plaques, the
vulnerable plaques are not limited to stenosis, even though they can
contribute to more than 60% stenosis area of the lumen [7]. The
vulnerable plaques located in the unobstructed lumen can also rupture or
activate thrombosis suddenly, resulting in the majority of the acute
cardiovascular and cerebrovascular episodes [8,9]. Thus far, most evi-
dence on the biological features of vulnerable plaques is from the
rupture-prone plaques owing to their distinctive features [10].

3. The hallmarks of vulnerable plaque

Consensus on the concept indicates that the basic morphological
hallmarks of vulnerable plaques focus on the fibrous cap and the necrotic
Fig. 1. Schematic representation of nanoparticle
technology in the imaging of vulnerable athero-
sclerotic plaques. Several pathological factors
contribute to the thinning of the fibrous cap and the
enlargement of the necrotic core, thereby leading to
the formation of vulnerable plaque in the vessel wall.
These include infiltration of macrophages, release of
hydrolytic enzymes (matrix metalloproteins, MMPs),
collagen alterations, apoptosis of macrophages, calci-
fication, intraplaque hemorrhage, neo-angiogenesis
and activation of the endothelium. Synthetic nano-
particles enter the plaques and bind to the afore-
mentioned pathological factors. Using magnetic
resonance and other equipment, nanoparticles accu-
mulate resulting in the imaging of the suspected
plaque.
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core [11], the essence of which causes the imbalance in forces in
vulnerable plaques. If the resistance of the fibrous cap is overcome by the
outward expansion of the necrotic core, the probability of rupture be-
comes considerably high. The underlying mechanism is attributed to the
thinning of the fibrous cap or/and an enlargement in the necrotic core.
Accumulating evidence suggests that several cells and molecules
contribute to fibrous cap thinning or necrotic core enlargement. These
have been documented as the biological hallmarks for assessing the
vulnerable plaques [12].

3.1. The hallmarks of fibrous cap thinning

The thinning of the fibrous cap reduces the tolerance of plaque, thus
increasing the possibility of a rupture. Thus, the exposure of the necrotic
core lying beneath the fibrous cap to blood leads to thrombus and
ischemia [13]. At least three mechanisms underlying the thinning of the
fibrous cap have been confirmed.

First, macrophages are recruited into the lesion, which is the primary
mechanism for the thinning of the fibrous cap [14]. Phenotypes may
change due to macrophage polarization, causing pro-inflammatory ef-
fects [15,16]. It has been postulated that inflammation favors the for-
mation of vulnerable plaque and is also associated with clinical outcomes
[17]. As a proof of principle, pathological studies confirm the abundance
of macrophages in the ruptured or rupture-prone plaques [18,19].

Second, the proteolytic enzymes secreted by the recruitment of im-
mune cells directly affect fibrous cap thinning. In particular, matrix
metalloproteinases (MMPs), can degenerate and hydrolyze the compo-
nents of the matrix in a neutral pH environment [20,21]. Increasing
evidence supports that despite differences in MMPs among species and
animal models, the important role of these enzymes is executed [21].
Indeed, the level of MMPs that destabilized the coronary plaque may
result in acute coronary syndrome [22].

Lastly, the inward resistance of apical cap in plaques is mainly
dependent on the tight connective tissues of the arterial intima [23].
Collagen belongs to a classic family of proteins whereby long stretches
unfold in fibrous formatio [24]n. During plaque progression, the con-
nective tissue often adaptively thickens [23]. The collagen-rich tissue,
mainly enriched with collagen type I, and the proliferation of smooth
muscle cells facilitates plaque stabilization. Conversely, a reduction in
fiber collagen is a hallmark of plaque vulnerability [25]. Therefore,
assessing the expression or amount of collagen during fibrous formation
is representative of the thickness of the fibrous cap. In addition, another
member of the collagen family, type IV collagen, is known to be the most
abundant component occupying half of the area of the vascular basement
membrane [24]. The exposure of collagen IV indicates increased
permeability during plaque formation [26]. Thus, a change of collagen
thickness or its exposure is an interesting hallmark for accessing the
plaque.

Taken together, the morphological and molecular features of fibrous
cap thinning, including macrophages recruitment, overexpression of
MMPs, and changes of in collagen are implicated as potential biomarkers
of a vulnerable plaque.

3.2. The hallmarks of necrotic core enlargement

The expansion of necrotic core inside vulnerable plaque is also known
to be responsible for the rupture. A necrotic core is defined as the
accumulation of lipid and foam cells in the intima. The enlargement of
the necrotic core irreversibly destroys the tight tissues, leaving behind a
loose gruel of lipids. Several following factors contribute to the
enlargement of the necrotic core.

First, the theory of necrotic core development supports that apoptosis
in macrophages and smoothmuscle cells plays play important roles. At an
early stage during plaque formation, apoptosis inhibits cell trans-
formation into foam cells as an endogenous protective mechanism [27].
However, further enrichment of lipid and lipoprotein cause excessive
3

apoptosis, leaving too many remnants in the lesion, due to the defective
efferocytosis, eventually exacerbating necrosis and enlargement of the
necrotic core [28,29]. Indeed, previous studies address that regulation of
macrophage apoptosis prevents plaque rupture [30]. Beside, several
pieces of evidence suggest apoptosis as a hallmark to evaluate the
vulnerability of plaques [31].

Second, calcification is a common component in the advanced pla-
ques, especially among the elderly [32]. According to histological re-
ports, owing to the accumulation in the matrix and necrotic core, lumps
and plates of calcium deposits increase the volume in the intima [33].
Furthermore, the localization of calcium deposits is positively correlated
with vulnerability [34]. Although studies evaluating the pivotal role of
the calcification as a hallmark mainly focus on the coronary artery and
aortic diseases, nevertheless, they confirm its involvement in elevating
cardiovascular risk [35].

Third, the reason underlying enhanced plaque vulnerability due to
intraplaque hemorrhage is the rapid increase in the volume of plaque
[36]. In addition, the extravasation of the blood into plaque also results
in the accumulation of iron, cholesterol, and hemoglobin, which in turn,
promotes the development of plaque due to reactive oxygen species and
inflammation [37]. According to a recently published meta-analysis, the
presence of intraplaque hemorrhage increases the risk of future stroke
regardless of gender and stenosis area [38]. Thus, this is among the most
reliable morphological hallmarks associated with the potential risk of
cerebrovascular events.

Finally, neo-angiogenesis is another independent risk factors for the
vulnerability of plaques. These deficient blood vessels which originate
from the adventitia and extend to the base of plaque are more susceptible
to rupture [39]. Moreover, they facilitate the entry of inflammatory cells
because of their loose endothelium [40]. These sequential events result in
hemorrhage and inflammation as outcomes [41]. A clinical study con-
firms increased progression of clinical symptoms in presence of angio-
genesis [42]. Nowadays, the best molecular hallmarks to target
neo-angiogenesis are αvβ3 and vascular endothelial growth factor
(VEFG) [43,44].

3.3. Other hallmark of vulnerable plaques

Despite the aforementioned hallmarks, several other molecules may
play a role in the formation of a vulnerable plaque. For instance, endo-
thelial cells are activated and express vascular cell adhesion protein 1
(VCAM-1) in the early stage of vulnerable plaque formation [45].
VCAM-1 binds to the granulocytes and activates intracellular signaling
cascade, thereby inducing changes in the shape of endothelial cells
facilitating granulocyte migration [10]. An analysis of the carotid plaque
specimens demonstrates that the expression of VCAM-1 on the endo-
thelium is indicative of significantly high risk in humans [46]. Similarly,
several potential hallmarks, including hypoxia, lipids and proteases, are
also under evaluation in the context of vulnerable plaques.

4. Current imaging methods and their limitations of vulnerable
plaques

In the light of above-mentioned typical hallmarks, many modalities
have been evaluated to improve the diagnostic efficiency of imaging
vulnerable plaques. To date, most of these investigations are dependent
on the identification of abnormal structures of suspected plaques (Fig. 2).

4.1. Structural imaging and limitations

Traditional platforms, including computed tomographic (CT) scan-
ning and magnetic resonance imaging (MRI) remain the primary
methods for imaging plaque lesions.

Accumulated evidence demonstrates that CT scanning can be used for
the detection of atherosclerotic burden, stenosis degree, and in partic-
ular, plaque calcification of the coronary artery [47,48]. Its advantages



Fig. 2. A figure summarizing the current imaging methods depending on hallmarks of vulnerable plaques. A) A vulnerable atherosclerotic plaque contains a
thin cap and a large necrotic core. Reprinted with permission from ref. 11. Copyright 2014 Wolters Kluwer Health. B) CT angiography and reformation images show
spotty calcification in the plaque of a patient with acute coronary syndrome. Reprinted with permission from ref. 51. Copyright 2009 American College of Cardiology
Foundation. Published by Elsevier Inc. C) A 3T MRI in vivo indicates necrotic core (arrows) with thick fibrous cap (arrow heads). Reprinted with permission from ref.
123. Copyright 2009, Wolters Kluwer Health. D) Imaging the stenting site of coronary artery using PET and CTA. Reprinted with permission from ref. 67. Copyright
2012 Society of Nuclear Medicine and Molecular Imaging. E) OCT image shows a fibrous plaque with homogeneous rich signal band. Reprinted with permission from
ref. 63. Copyright 2006 Elsevier Inc.
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include non-invasiveness and practicality. Thus, it is a widely used
screening method to predict the incidence of atherectomy [49]. Never-
theless, there exist some disadvantages. For example, CT scan utilizes
radiation posing potential medical risks. Further, the contrast agents that
aid in enhanced CT imaging may also cause renal injury [50]. Moreover,
due to limited imaging resolution, CT scanning fails to report the fibrotic
and lipid components in the plaque, thereby exhibiting a low sensitivity
4

for the identification of a vulnerable plaque [51]. Taken together, CT
scanning is often used for the evaluation of coronary artery calcification
despite an insufficient spatial resolution for imaging all the microstruc-
tures of the lesion.

MR is considered the gold standard for the non-invasive examination
of substantive structure [52]. Generally, paramagnetic metallic agents,
such as gadolinium reduce the T1 relaxation property, while



Fig. 3. An examples of nanoparticles functionalized for targeting macrophages the imaging of vulnerable plaques. A) Scheme illustration of the synthesis of
multifunctional pathological mapping of theranostic nanoparticles targeting macrophages. B) Treatment of thrombus using nanoparticles. C) Release of Fe for MRI and
PFP for US imaging triggered by ultrasound. D) T2-weighted MRI scans by T2W of nanoparticles at various Fe concentrations. E) Scheme illustration of interaction
between the nanoparticles and macrophages. F) The images of nanoparticles in macrophages as detected by transmission electron microscopy. Reprinted with
permission from ref. 104. Copyright 2021 Royal Society of Chemistry.
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super-paramagnetic metallic agents influence the T2 relaxation proper-
ties. Owing to these contrast agents, shortened T1 and T2 result in
improved signals in the MR scans. Higher resolution for soft tissues as
compared to CT scan, yield greater information of vascular structure
including necrotic core, fibrous cap, and intraplaque hemorrhage from
MRI scans. Moreover, contrast-enhanced MRI further improves the effi-
ciency for the identification of plaque microvasculature, markedly
greater than the non-enhanced T-weight imaging [53]. Data from a
recent study of vulnerable carotid plaques suggest that MR offers a
high-quality comparison in the lesion. However, the direct value of MR
for predicting subsequent stroke requires further investigation [54].
Additionally, there are some disadvantages of MRI. First, MRI scans
typically take more time, and the imaging procedure for large regions or
multiple vessels is difficult, especially due to the dynamical motion ar-
tifacts of small vessels [55]. Second, special coils or protocols of vascular
scanning are expensive for non-specialized operators or centers [56].
Third, metal implants, often being employed for patients with cardio-
vascular problems, limit MRI [57]. In general, MR a promising
non-invasive modality having a higher resolution for the identification of
typical structure of vulnerable plaques.

To overcome the flaws of CT scans and MRI, two technical solutions
have been proposed. One of them aims to further enhance spatial
5

resolution. Great efforts have been made in this direction.
To pursue enhanced spatial resolution and the ability to distinguish

the plaque volume and structure, some invasive approaches have been
designed considering the risk of tolerable complications. Intravascular
ultrasound (IVUS) and optical coherence tomography (OCT) are the main
platforms among these attempts, are the main leading platforms among
these attempts, characterized by catheter-based invasive methods [58].
With regard to the deep penetrating imaging capability, IVUS can offer a
real-time and two-dimensional image portrait to identify the necrotic
core. In addition, it is a valuable tool to compare volume of plaques in
vivo because of its quantification and reproducibility [59]. However, the
resolution of IVUS is limited to 100–200 μm, which still limits the im-
aging of micro biomarkers in the vulnerable plaques, including the thin
fibrous cap, micro-calcification, and inflammation [58]. More advanced
and specified applications with IVUS, such as virtual histology (VH)-IVUS
based on the radiofrequency analysis of ultrasound signals, can detect the
presence of calcification [60]. Fluorescence lifetime images (FLIM)-IVUS
based on fluorescence spectroscopy technique may enhance the ability to
distinguish the thin fibrous cap [61]. Another promising invasive mo-
dality, OCT, improves the resolution at 10–20 μm. It can detect thin
fibrous caps, micro-calcification, inflammation, and neo-angiogenesis
formation, allowing for a reliable evaluation of plaque vulnerability.



Table 1
Summary of the advantages and limitations of different clinical imaging
modalities.

Imaging Modality Advantages limitations

Structural
imaging

Computed
tomography

High specificity.
Detection of
atherosclerotic burden,
stenosis degree and
plaque calcification.

Low spatial
resolution to
distinguish soft
tissue.

High reproducibility. Risk of exposure to
radiation and
iodinated contrast
agents.

Magnetic
resonance
imaging

Greater morphological
information, including
necrotic core and
hemorrhage.

Long scanning time
with artifacts due to
motion of small
vessels.

No radiation. Metal implants are
limited.

Intravascular
ultrasound

Deeper penetration. Low spatial
resolution.
Invasiveness.

Ability to distinguish
luminal dimensions and
plaque burden.

Dependence on
operator
technology.

Optical
coherence
tomography

High resolution. Low penetration.
Fast data acquisition rate. Invasiveness.
Visualization of the
adjacent tissue.

Dependence on
operator
technology.

Molecular
imaging

positron
emission
tomography

Distinguishing micro-
calcification,
angiogenesis, vascular
cell adhesion, and
collagen loss.

Not used widely and
expensive.

High sensitivity. Risk of radiation
exposure.
Severe loss of
structural
information.
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Unfortunately, there are some limitations to OCT imaging as well. The
major limitation is its low penetration depth which is only 2–3 mm [62].
This implies that OCT imaging in vivo tends to be blocked by the sur-
rounding blood and vessels, making it difficult to obtain an ideal
large-scale image. In addition, the OCT imaging often confuse the pres-
ence of calcium deposits and lipid pools [63,64]. Therefore, reliable
clinical trials are rarely performed to validate if IVUS and OCT constitute
a qualified evaluation strategy for vulnerable plaques.

In general, structural imaging is still depending on improving spatial
resolution to directly visualize the plaque. Current modalities including
MRI and intravascular imaging are well developed for assessing plaque
volume or massive structures, such as the necrotic core. However,
insufficient resolution and non-specific signal imaging limit their
discriminating abilities, along with their respective inadequacies.
Therefore, to make microstructures easily identifiable, molecular imag-
ing modalities for vulnerable plaques are evolving rapidly.

4.2. Molecular imaging and limitations

As mentioned previously, the other technical solution to overcome
the shortcomings of structural imaging is molecular imaging. In past
decades, molecular diagnostic technology has been gaining popularity. It
becomes a new trend allowing for characteristically tracing in vivo as a
noninvasive method [65,66]. Emerging platforms of molecular imaging
are providing a biological evaluation of the ongoing functional status for
assessing vulnerability-prone regions.

For molecular imaging, positron emission tomography (PET) is an
eligible platform, based on the positron signals emitted from the radio-
labeled tracers. Recently, for a series of molecules as markers for
vulnerable plaque formation, including inflammation, micro-
calcification, angiogenesis, vascular cell adhesion, and collagen loss, it
has been demonstrated that these can be traced by PET [67–71]. To
better assess vascular inflammation, systems for quantitative assessment
using PET has been developed. For example, a perivascular attenuation
index is a promising tool for the evaluation of vascular inflammation of
human coronary arteries [72]. In addition, novel contrast agents such as
68Ga-labeled somatostatin receptor ligand are in early stage of human
studies [73]. Nevertheless, the use of PET for imaging vulnerable plaques
remains in the preclinical stage. The following disadvantages are the
main causes of concern. First, a low spatial resolution implies that the
PET image loses structural information, especially for the tiny blood
vessels such as coronary arteries [74]. Second, the undesirable attenua-
tion of signal imposed by the dynamics of cardiac and respiratory affect
the observation of subtle lesions [75]. Third, the radiation, cost, equip-
ment maintenance, and other matters should also be taken into consid-
eration [76]. Taken together, it is difficult for PET as a single modality to
popularize vulnerable imaging.

Therefore, additional work is required due to the limitations of both
structural and molecular imaging platforms. Some advantages and limi-
tations of clinical imaging modalities have been summarized in Table 1.
Developing systems drawing on the advantages of both imaging plat-
forms, also referred to as hybrid multimodal imaging, is a potential so-
lution, that is expected to provide the most comprehensive information
from imaging of vulnerable plaques [77]. As such, PET/CT and PET/MR
facilitating this hypothesis have been purposed for applications. Unfor-
tunately, only very few medical centers implement such instruments.
Relatively, the usual MRI or CT scan devices combined with novel
contrast agents which are functionalized for molecular tracing have
broader impacts [78].

5. Nanotechnology-based imaging of vulnerable plaques

Nanotechnology is another promising technology platform for mo-
lecular imaging [79,80]. Knowledge of the several advantages of this
technology for novel contrast agents is well documented. First, the
nanoparticles can be used to image the lesions of interest with
6

conventional equipment, whereby metallic elements are synthesized into
superparamagnetic or paramagnetic particles. Non-invasive imaging
devices that are widely used, including MRI or CT scans, can simulta-
neously yield structural and molecular information [81]. Second, the
surface functionalization and synthesis methods have been highly
improved in recent years. The size, shape and electronic charge of
nanoparticles are effectively controlled, which directly affect the
non-specific uptake, bio-distribution of nanoparticles. PEG or zwitter-
ionic polymers are the most common materials one can use to modify the
nanoparticle surfaces [82–84]. Over decades, several
nanoparticles-based formulations have been developed, such as poly-
meric, chitosan, nanogels, nanocapsules and solid lipid nanoparticles and
so on [85]. Furthermore, specific peptide can be engineered and coated
onto the surface of the nanoparticles. These properties offer high pene-
tration into to the lesion and bonding affinity towards the biomarkers
[86].

Third, limited toxicity and the absence of radioactivity further
encourage the development of nanotechnology [87]. Taken together, the
physical and biological advantages make nanoparticles attractive can-
didates for molecular imaging.

In recent times, emerging research of nanotechnology in the field of
imaging of vulnerable plaque imaging has attracted attention [88].
Nanoparticles have been designed to target a wide range of hallmarks of
vulnerable plaques, barely less than the radio-labeled platforms. Since
the 2000s, given the optimistic results, the disagreement and interest
remain focused on the most appropriate selection of signature for tar-
geting [89]. In the following sections, we review the current advances in
diagnostic imaging techniques using nanoparticles based on different
characteristics of vulnerable plaques.



Table 2
Summary of recently published studies on nanoparticles targeting macrophages
in imaging of vulnerable plaques.

Target Nanoparticles Results Years

Phagocytosis
Phagocytosis Ultrasmall

superparamagnetic iron
oxide

Reduction in standard
signal intensity in T2WI
MRI is associated with
plaque stability

2020
[100]

Phagocytosis Very small
superparamagnetic iron
oxide nanoparticles and
Gd-BOPTA

Contrast agent based on
Gd indicates arterial
calcification and
characterizes plaque
vulnerability.

2020
[101]

Phagocytosis Ultrasmall
superparamagnetic iron
oxide with rhodamine

T2 signal loss and
spontaneous fluorescence
appeared in the aortic
plaque.

2019
[102]

Phagocytosis Very small iron oxide
particles using acids

Nanoparticles developed
for MR were allowed for
plaque identification

2015
[103]

Surface molecular of macrophages
Scavenger
receptors
(SR-A)

Nanoparticles capsuling
Fe3O4 and
perfluoropentane

Nanoparticles show good
imaging properties in
ultrasound and MRI.
Apoptosis of
macrophages and
disaggregation of
platelets are observed
(Fig. 3).

2021
[104]

SR-AI Magnetic mesoporous
silica nanoparticles

particles target and
quantify macrophage
enrichment in the plaque

2021
[105]

CD36 Hydrogel nanoparticles
encapsulating Gd-DTPA

Ex vivo electron
microscopy indicates
atherosclerotic plaque
associated macrophages
targeted by
nanoparticles.

2021
[106]

CD44 Single-dispersed iron
oxide nanoparticles

An intelligent in vivo
switch in T1-T2
enhancement modes
shows that the vulnerable
plaques exhibit

2021
[107]

SR-AI Gadolinium-integrated
gold nanoclusters

In vivo MR/fluorescence
images demonstrated
robust and prolonged
contrast enhancement of
signal.

2019
[108]

Osteopontin Nanoparticles containing
perfluorooctyl bromide
and Cy5.5

Ultrasound and optical
imaging reveal
nanoparticles are
accumulated in vivo.

2019
[109]

MARCO Upconversion
nanoparticles by
conjugating MARCO
antibody

High signal intensity on
T1-weighted MR images
are determined by 7.0T
MRI.

2019
[110]

SR-A Nanoparticles combined
with the phase transitional
material

Nanoparticles reduce the
T2 signal in MRI scans
and phase transition
treatment leads to the
apoptosis of
macrophages.

2019
[111]

CD68 Fe-doped hollow silica
nanoparticles

US/MRI platform
indicates that the
contrast agent is
beneficial for identifying
the macrophages in
aorta.

2018
[112]

Osteopontin An osteopontin specific
MRI/optical dual-
modality probe

MR displays T2
enhancement after
injection.

2017
[113]

Osteopontin Upconversion
nanoparticles

The signals of
vulnerability induced by
lowered shear stress
presented different signal
intensities.

2017
[114]
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5.1. Imaging by targeting the thin fibrous cap

The thinning of the fibrous cap is one of the main hallmarks of a
vulnerable plaque. Autopsy-based studies indicate that the rupture of
plaque often occurs at the margin or shoulder spot of the cap thinner than
65 μm [90]. Some published reports also conclude that the thickness of
cap reaching less than 200 μm is a red flag [91]. Based on the preliminary
evaluation by T1-weighted imaging, gadolinium-based contrast agents
further improve the efficiency of structural visualization of the athero-
sclerotic lesions [92]. Nevertheless, limited by the resolution, identifi-
cation of the microstructures of the plaque by MRI is undesirable. The
measurement of cap thickness remains challenging in clinical settings.

The integrity of fibrin is critical for the vulnerability of plaque in vivo
[93]. Several authors have used nanotechnology to further assess the
fibrin content in cap tissue based on which the nanoparticles targeting
fibrin have been designed in animal and human studies. For example,
Flacke et al. demonstrate the sensitivity of detection for a thin layer of
fiber over the clot surface of plaque using paramagnetic nanoparticles
targeting fibrin through an MRI scan [89]. In another study comprising
20 patients with carotid stenosis, a greater signal drop in asymptomatic
cases suggests stability in vulnerability using ultra-small super--
paramagnetic iron oxide [94]. What is more, gold nanoparticles, owing to
their biocompatibility, modification ability, and superior optical prop-
erties, have been used to amplify the signal in MRI as ultrasmall
metal-based contrast agents [95]. Jeong-Yeon et al. published an
example of fibrin-targeting imaging using glycol-chitosan-coated gold
nanoparticles for the detection of cerebrovascular thrombi, showing a
signal enhancement after injection of nanoparticles [96]. Herein, these
data suggest that the designed magnetic nanoparticles detected by MR
can identify fibrous caps for the detection of vulnerable plaques.

Recruitment of massive macrophages in the plaque is another hall-
mark linked to fibrous cap thinning. Owing to its important role in the
formation of plaques, along with the technical facility for binding, this
has been favorable for researchers [97]. Years ago, nanoparticles are
designed for targeting macrophages mainly by phagocytosis effect [98].
To reduce the non-specific interception by other immune organs, the use
of nanoparticles designed to bind specific receptors on the cellular sur-
face has received traction in the last five years [99]. Some recent and
representative work emphasized on imaging vulnerability plaques are
summarized in Table 2.

As mentioned earlier, MMP levels in vivo represent the enzymatic
changes in the weak fibrous cap. Although the number of relative studies
assessing MMP expression is unremarkable, some of them suggest that
the nanotechnology platform can be used as a promising tool. For
instance, Kiyuk et al. have constructed an MMP-targeting nanoparticle
for a carotid plaque, wherein a sensor activated by MMP was tracked by
fluorescence microscopy [115]. In addition, some proteins involved in
the processing of MMP is also used as a biomarker. For example, a pre-
vious study suggests that gadolinium paramagnetic nanoparticles incor-
porating a binding peptide, targeting an inducer of MMP, EMMPRIN,
qualifies for plaque evaluation [116]. The magnetic resonance sequences
were allowed in the imaging when the signals in plaques significantly
reduced (Fig. 4).

Given the association between the hallmark of collagen and vulner-
able plaques, some research groups have established that nanoparticles
targeting collagen are a vulnerable fiber in mice. For instance, a previous
study on high-density lipoprotein nanoparticles reports a strong affinity
for binding collagen. There is a significant increase in the MRI signal in
the regression plaque [117] (Fig. 5A1, A2). Likewise, a new type of
organic nanoparticle coating the platelet membrane also interacts with
collagen [118]. Its live detection demonstrates its utility in MRI of
atherosclerotic plaque. Alternatively, several studies suggest that the
exposure of collagen IV facilitates nanoparticles to target the athero-
sclerosis plaques [119]. In a comparative study that evaluated different
potential targets, nanoparticles conjugated by collagen IV-targeting
peptides were found to enhance the image, though lower efficiency
7



Fig. 4. An examples of nanoparticles functionalized for targeting matrix metalloproteinases for imaging vulnerable plaques. A) Scheme illustration of
synthesis of nanoparticles with NAP9 peptides to visualize EMMPRIN. B) Confocal microscopy-based detection of EMMPRIN (green) and NAP9 (red). C) MRI images of
gadolinium-enriched nanoparticles in the atherosclerotic aortic arch. D) Oil Red O staining in the atherosclerotic specimen. Reprinted with permission from ref. 116.
Copyright 2018 Multidisciplinary Digital Publishing Institute.
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was observed in the early stages of atherosclerosis [120]. Additional
particulate studies of nanoparticles targeting collagen IV for drug deliv-
ering have been reported [121,122].
5.2. Imaging by targeting necrotic core enlargement

The large necrotic core is a morphological hallmark of a vulnerable
plaque. The size and volume of the necrotic core are key predictors of
prognosis [123]. Although there is no valid study that evaluates the role
of nanotechnology for the assessment of the necrotic core, the MRI
platform, widely used for nanoparticles, yields satisfactory images. This
establishment is especially reliable for suspected blood vessels located in
a certain position, such as the carotid artery, based on hypo-intense T2w
images or CE-T1w images [124]. Recently, considerable efforts have
been made to determine the threshold for defining a large necrotic core.
According to a clinical study consisting of 120 carotid plaque subjects,
the necrotic core with a volume larger than 40%was found to more likely
rupture during the three-year follow-up [125]. In contrast, others suggest
a volume greater than 10% of the necrotic core as a high-risk factor
[126].

Additionally, intraplaque hemorrhage is emerging as another feature
of necrotic core enlargement and vulnerable plaques [127]. Based on
existing knowledge, MRI scans with standard coils and procedures can
detect the existing intraplaque hemorrhage, the value of which has been
determined by high-grade evidence [38]. The T1 weighted or hyper-T1
contrast weighted MRI procedure is performed depending on the
oxidative state of hemoglobin [128,129]. Taken together, the current
desire to examine novel applications of nanoparticles targeting large
necrotic core or intraplaque hemorrhage is relatively low.

Annexin V representing apoptosis in the plaque, especially in the
shoulder region of the fibrous cap, increases the vulnerability of plaque
[130]. A high expression of annexin V is emerging as a hallmark for
targeting. For instance, Burtea et al. have designed an ultrasmall
8

superparamagnetic iron oxide nanoparticle targeting apoptosis in mac-
rophages and show that it can localize to the vulnerable plaques [131].
This result has been confirmed in a similar study, wherein a hybrid
nanoparticle targeting annexin V in macrophages has been constructed
[132] (Fig. 6). Findings from a previous study on high-density lipopro-
tein mimicking nanoparticles support that stimulating apoptosis through
the mitochondrial membrane potential facilitates the detection of
vulnerable plaques [133]. Gold nanoparticles with enhanced targeting
ability for annexin V have also been successfully synthesized to image
vulnerable plaques [134].

Over the last decades, calcification in the vascular system is referred
to as a significant gauge of fibrous cap rupture [135]. Mechanistically,
the orientation, location, and size of spotty calcification are related to the
rigid stress of the lesion [136]. However, there is still no reliable imaging
method for a detailed evaluation of calcification due to the limited res-
olution of non-invasive instruments and the risk of invasive inspection
[137]. Hence, several studies on nanoparticles targeting calcium or hy-
droxyapatite, a calcium phosphate mineral found in calcified vessels,
have been evaluated. For example, several in vivo studies have high-
lighted novel nanoparticles functionalized with
bisphosphonate-derivatizing. They can be used to visualize the osteo-
genic activity and provide a possible solution for the identification of
micro-calcifications [138]. In another recent study with gold nano-
particles which allows for the evaluation of plaque calcification, the
image is also found to be enhanced [139].

Neo-angiogenesis in the plaque contributes to its potential rupture.
The present clinical evidence for neo-vascularization detection is typi-
cally based on the contrast-enhanced ultrasound method [140]. An or-
dinary MRI scan is not advantageous unless preceded by a specialized
technique like dynamic contrast enhancement perfusion [55]. The
nanoparticles targeting neo-vascularization have been energized by some
authors. A study using rabbits, whereby they were injected with para-
magnetic nanoparticles targeting αvβ3, a signature of neo-angiogenesis,



Fig. 5. Examples of nanoparticles functionalized for targeting collagen for imaging vulnerable plaques. A1) Scheme illustration of nanoparticles based on high-
density lipoprotein functionalized with collagen-specific with peptides (EP3553). A2) MRI of abdominal aorta by injection of collagen-specific nanoparticles (EP3533).
Reprinted with permission from ref. 117. Copyright 2013 American College of Cardiology Foundation. Published by Elsevier Inc. B1) Schematic illustration of platelet
membrane-coated nanoparticles targeting collagen and multiple hallmarks. B2) MRI of ApoE KO mice after administration of nanoparticles (orange arrows: positive
contrast in aorta). Reprinted with permission from ref. 118. Copyright 2018 American Chemical Society.
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suggests an increased and heterogeneous distribution of positive signals
along the longitudinal and transverse planes [43]. A recent study shows
that the iron oxide nanoparticles conjugated with peptides that bind to
αvβ3 are more efficient relative to those targeting collagen in the early
stages of atherosclerosis [120] (Fig. 7). Thus, neo-angiogenesis is another
potential biomarker that can be targeted using nanoparticle technology.
5.3. Imaging by targeting the activated endothelium

An important adhesion molecule that mediates leukocyte adhesion
response, VCAM-1, is found to be overexpressed when the endothelium is
activated in atherosclerosis. Thus, in numerous studies, VCAM-1 has
been the target of nanoparticles. For example, Carmen et al. have eval-
uated the ultra-small superparamagnetic iron oxide nanoparticles con-
jugated to VCAM-1 and report that these can be effectively used to image
the vulnerable plaques [131]. Likewise, in a previous study using lipo-
somes conjugated with antibodies against cell adhesion molecules, the
authors have detected atherosclerotic potentially vulnerable plaques in
the early stage [141]. Interestingly, using plant viral nanoparticles to
target VCAM-1, the findings indicate that the cargo raises the detection
limit of atherosclerotic plaques [142] (Fig. 8).

6. The preclinical challenges to the application of nanoparticles

Over the past decades, great efforts have been made to promote the
transformation of nanotechnology in clinical settings. However, the
exciting findings using nanotechnology are just mainly staying at the
preclinical stage for animal species. Only a few pioneering products have
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been approved by the FDA or other authorities after being evaluated for
their safety in humans [143]. In addition, most of these pioneering
products have focused on the diagnosis or treatment of tumors, and some
for the treatment of patients with iron-deficient anemia [144,145]. While
only a limited number of clinical trials for imaging atherosclerosis using
nanotechnology have been underway, these suggest their safety and
feasibility [146–149]. There are also some have been registered and are
underway (such as NCT05032937).

There are many vascular similarities between humans and experi-
mental animal, however, a huge gap may exist [150]. Thus, the necessity
of determining the practical feasibility of nanotechnology through trials
for imaging human plaque has emerged. The continuous discovery from
these trials will aid the evolution of nanoparticle synthesis and imaging
technologies. To date, several major challenges in clinical transformation
remain unaddressed.

The first of them is the safety of nanoparticles for atherosclerotic
vessels. For nanoparticles, the notion of toxicity has been initially
investigated based on environmental exposure [151]. Some studies
reveal the influence of various newly designed nanoparticles on the
human body, but the inferences have not yet been fully elucidated [152].
In contrast to the nanoparticles used in cancer treatment, those targeting
vascular structures need better biological adaptability, especially as their
deposition can cause vascular inflammation [153]. Moreover, for clinical
follow-up, there may arise a need for injecting the nanoparticles
repeatedly in the same individual, which may cause a higher dose of
deposition and serious complications. Thus, these newly designed
nanoparticles must be strictly evaluated for toxicity. The solution to this
challenge is contingent on engineering developments and innovations.



Fig. 6. A hybrid nanoparticle system verified using a single-photon-emission computed tomography/magnetic resonance imaging multimodal probe
targeting annexin V. A) The protocols preparation of nanoparticles. B) The BSGI images have been confirmed by a corresponding Oil Red O staining in C57 and
ApoE�/� mice. C) The images of nanoparticles targeting annexin V are seen in the aorta of ApoE�/�mice, but not in those of the C57 mice. Reprinted with permission
from ref. 132. Copyright 2015 American Chemical Society.
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The second challenge is to identify a more valuable hallmark for the
vulnerable plaques for clinical decision-making. The majority of the
current positive evidence for vulnerable plaques is based on structural
imaging [154]. On the contrary, the results of animal experiments for
identifying predictive molecular features have not been verified in
long-term follow-up or human trials. In addition, researchers have to
continuously discover new molecular targets in pursuit of novelty. Thus,
there is no persuasive consensus on the best molecular features [155].
Additionally, owing to the complexity of the underlying mechanisms, it
may be difficult to represent the overall state of plaques only based on a
single molecular phenotype [156]. Therefore, biotech companies
employing nanotechnology may not support a clinical trial without a
solid evidence base. To solve this problem, as a starting point, studies
focused on comparative efficacy are expected to provide novel insights.
Furthermore, the nanoparticles targeting multiple properties warrant
consideration [118](Fig. 5 B1, B2).

The third challenge is to acquire sophisticated equipment, which
accommodates the contradiction between a wider screening range and a
higher local resolution. Thus far, the spatial resolution of equipment
based on nanotechnology is inadequate. As with all the other devices
capable of molecular imaging, their expertise primarily deals with the
10
imaging of large blood vessels, including the aorta and carotid arteries
[157]. However, imaging the vessels smaller than the spatial resolution
of cameras, like coronary arteries, poses difficulties, especially when they
are in motion [158]. As for the MRI machines using nanoparticles, the
largest benefits are proven convenience and penetration. However, the
challenge of identifying the microvascular structure remains unad-
dressed, raising the need for improved equipment. In addition,
combining other instruments with an improved local resolution, such as
OCT, may also aid in overcoming this challenge [159].

Lastly, quantification and analysis of results from nanoparticle im-
aging tests pose another challenge. The heterogeneity in vulnerable
plaque may exist, causing an inconsistent level of characteristic expres-
sion in individuals [160]. For example, different amounts of VCAM-1 can
be expressed in stable plaque as well, resulting in the accumulation of
nanoparticles and boosting the signal [161]. Thus, the threshold value
defining these “positive results” are hardly unified depending on
decentralized experimental designs. Meanwhile, imperfect properties of
pharmacodynamics and pharmacokinetics may result in unexpected up-
take by non-target tissues or clearance times in the target tissues, leading
to over-interpretation and distrust in the conclusions [162]. Therefore,
more preclinical studies, along with more sophisticated design, a larger



Fig. 7. An examples of nanoparticles functionalized for targeting neo-angiogenesis for imaging vulnerable plaques. A) Scheme illustration of nanoparticles of
cRGD peptide to bind with the αvβ3 of the neo-vasculature. B) The fluorescence and C) MRI scan of aorta from apoE�/- mice injected with nanoparticles, IONP-cRGD-
NC (targeting neo-angiogenesis), or IONP-NC(control). D) Atherosclerotic plaque staining with Prussian blue in apoE�/- mice. Black arrows indicate IONP nano-carrier.
Reprinted with permission from ref. 120. Copyright 2017 Elsevier BV.

Fig. 8. An example of nanoparticles functionalized for targeting adhesion molecules for imaging vulnerable plaques. A) Scheme illustration of nanoparticle-
based tobacco mosaic virus to target vascular cell adhesion molecule (VCAM-1). B) The MRI scans of the aorta wall in apoE�/- mice injected with nanoparticles
targeting VCAM (1st line) and Gd ions control (2nd line). C) Representative confocal images from ApoE�/�mice injected with PEG-TMV (control) or VCAM-TMV; the
particles are colored green. Reprinted with permission from ref. 142. Copyright 2014 American Chemical Society.
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number of samples, and wider period coverage, are needed to understand
these potential biases.

7. Conclusion and future directions

Atherosclerotic vulnerable plaques have more potential risks than
stable plaques owing to their structural and molecular biology features.
Nanotechnology offers a promising opportunity to identify the hallmarks
representing the vulnerable plaque formation, thereby endowing them as
qualified biological contrast agents. Considering the adaptability and
limitation of different platforms, we believe that MRI enhanced by
nanoparticle contrast is the most practical and comprehensive choice to
date. Although many positive results in support have been demonstrated
in animal studies, the evidence remains insufficient for the trans-
formation of nanotechnology for human use. For example, several studies
highlighted in this review do not point out their disadvantages or specify
the accuracy. Moreover, no valid data are reported in human studies with
sufficiently large sample size. Therefore, more studies are needed to
examine the limitation of these types of biomaterials, their advanced
nature, the terms for safety, biological targets, higher-resolution equip-
ment, and quantitative systems among others. Major efforts are antici-
pated in the pharmaceutical, bioengineering, pathophysiology, and
clinical settings.

Future clinical studies are also needed to elucidate their adaptability
in humans. For example, the predictive value of nanoparticles for plaque
rupture needs to be determined by prospective clinical trials along with a
follow-up. A comprehensive scoring system, similar to coronary scoring,
that considers multiple hallmarks or risk factors should be developed to
improve diagnostic effectiveness [163]. Another potential direction is to
evaluate hybrid imaging methods PET/MR to minimize the limitations of
the equipment. Furthermore, multifunctional nanoparticles that enable
the integration of diagnosis and treatment may expand their scope for
clinical applications [164].
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