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BACKGROUND

Nanoparticles	 have	 distinct	 properties	 that	 make	 them	
unique	in	their	applications	 in	nanomedicine	partly	due	
to	the	high	surface	area-	to-	volume	ratios	which	allow	for	
functionalization	of	drug	nanocarriers.	For	instance,	me-
tallic	nanoparticles,	 such	as	 iron	oxide	or	gold	nanopar-
ticles,	can	be	used	in	medical	imaging.1–	3	This	rise	in	the	
use	of	nanotechnology	in	medicine	has	crossed	paths	with	
pharmacology	 resulting	 in	 the	 need	 for	 understanding	
of	 biodistribution	 (distribution	 throughout	 the	 body)	 of	
drugs	and	their	carriers.

There	are	a	number	of	different	nanocarriers	that	have	
been	used	in	the	development	of	nano	drug	delivery	sys-
tems.	 Hossen	 et	 al.	 reviewed	 several	 different	 nanocar-
rier	 drug	 delivery	 systems	 for	 cancer	 therapy,	 including	

colloidal	 nanoparticles	 and	 liposomes.4	 These	 nanocar-
riers	 have	 different	 roles	 in	 how	 they	 carry	 the	 associ-
ated	 drugs	 throughout	 the	 body.	 For	 example,	 colloidal	
nanoparticles,	 such	 as	 gold	 nanoparticles,	 are	 a	 good	
candidate	for	a	drug	carrier	because	they	have	good	bio-
compatibility	and	can	be	conjugated	to	different	molecu-
lar	species.5	Further,	their	optical	properties	as	a	result	of	
surface	plasmon	resonance	make	 it	possible	 for	 them	to	
be	used	in	imaging	purposes.6	Liposomes	can	be	function-
alized	 to	 recognize	cancer	cells	while	carrying	cargos	of	
hydrophilic	drugs	 that	 can	be	 released	upon	activation.4	
Other	 drugs	 are	 turned	 into	 their	 nanocrystalline	 form	
to	 overcome	 the	 low	 solubility	 in	 both	 water	 and	 oil.7	
Such	 nanocrystal	 drugs	 have	 a	 dissolution	 rate	 constant	
that	 must	 be	 taken	 into	 account	 during	 modeling	 and	
simulation.
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Abstract
Physiologically-	based	pharmacokinetic	(PBPK)	modeling	for	nanoparticles	eluci-
dates	the	nanoparticle	drug’s	disposition	in	the	body	and	serves	a	vital	role	in	drug	
development	and	clinical	studies.	This	paper	offers	a	systematic	and	tutorial-	like	
approach	to	developing	a	model	structure	and	writing	distribution	ordinary	dif-
ferential	equations	based	on	asking	binary	questions	involving	the	physicochemi-
cal	nature	of	the	drug	in	question.	Further,	by	synthesizing	existing	knowledge,	
we	summarize	pertinent	aspects	in	PBPK	modeling	and	create	a	guide	for	build-
ing	 model	 structure	 and	 distribution	 equations,	 optimizing	 nanoparticle	 and	
non-	nanoparticle	 specific	 parameters,	 and	 performing	 sensitivity	 analysis	 and	
model	validation.	The	purpose	of	this	paper	is	to	facilitate	a	streamlined	model	
development	process	for	students	and	practitioners	in	the	field.
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Biodistribution	 of	 nanoparticles	 can	 be	 modeled	 in	
silico	using	pharmacokinetics	modeling.	Physiologically-	
based	 pharmacokinetic	 (PBPK)	 modeling	 takes	 into	
account	more	physiological	processes	compared	to	tradi-
tional	one-	compartment	pharmacokinetics	modeling	and	
is	 important	 in	 the	 field	 of	 pharmacology.	The	 US	 Food	
and	Drug	Administration	 (FDA)	 regulates	PBPK	model-
ing	for	regimenting	drug	dosages	in	order	to	safely	predict	
efficacious	therapeutic	indices	for	drugs.8	Moreover,	PBPK	
modeling	is	also	important	in	the	field	of	environmental	
science	and	engineering	due	to	the	risk	of	exposure	to	toxic	
nanoparticles	and	the	need	for	rational	design	of	nanopar-
ticles,	respectively.	PBPK	modeling	may	be	further	applied	
in	areas	relating	to	diagnostics,	for	example,	predicting	the	
biodistribution	of	monoclonal	antibodies.9–	11

PBPK	modeling	is	a	powerful	tool	used	in	the	research	
and	development	of	drugs	partly	due	to	the	ability	to	pre-
dict	and	understand	drug	behavior.	PBPK	modeling	may	
be	used	both,	a	priori,	to	mechanistically	predict	drug	dis-
position,	as	well	as,	a	posteriori,	to	empirically	understand	
drug	behaviors	by	estimating	parameters.12	Empirical	data	
may	also	be	used	to	validate	model	predictions	(Figure 1).	
PBPK	modeling	has	been	used	to	study	the	biokinetics	of	
nanoparticle	drugs	in	terms	of	modeling	past	experimen-
tal	data	as	well	as	predicting	appropriate	dosages	through	
simulations.13–	17	However,	one	major	 limitation	that	has	
been	 ascribed	 to	 PBPK	 modeling	 of	 nanoparticles	 is	 the	
application	 of	 the	 resulting	 model	 for	 only	 one	 type	 of	
nanoparticle	at	a	 time.18	Every	new	nanoparticle	 formu-
lation	 would	 require	 reparameterization	 due	 to	 changes	
in	 the	 physicochemical	 properties	 of	 the	 particles	 being	
used	in	the	model	as	well	as	how	certain	factors	such	as	
cell	 permeability	 and	 macrophage	 uptake	 rate	 may	 be	
affected.	 This	 limitation	 results	 in	 a	 shortage	 of	 models	
that	can	keep	up	with	the	demands	of	different	 types	of	
nanoparticle	drugs	being	developed	 in	 the	pharmaceuti-
cal	 industry.	This	paper	 focuses	on	providing	a	 unifying	
framework—	to	understand	how	to	develop	a	nanoparticle	
PBPK	model	via	a	systematic	approach	where	major	pa-
rameters,	model	compartments,	and	physiological	factors	
are	considered.

COMPARTMENTAL MODEL 
STRUCTURE

PBPK	models	can	consist	of	many	compartments,	for	ex-
ample,	including	the	venous	blood,	arterial	blood,	lungs,	
heart,	 muscle,	 brain,	 kidneys,	 liver,	 gut,	 spleen,	 adipose	
tissue,	 skin,	 and	 bones.19	 Some	 of	 these	 compartments	
may	be	grouped	together	depending	on	their	influence	on	
biodistribution.20	Venous	and	arterial	blood	are	sometimes	

considered	as	one	compartment	called	the	plasma	or	blood	
circulation.21	However,	other	slightly	different	combina-
tions	 of	 compartments,	 including	 the	 lymph	 nodes	 and	
thymus,	may	also	be	included,	for	example.22,23	Most	other	
PBPK	models	 incorporate	a	miscellaneous	or	 remainder	
compartment	that	may	include	tissues	either	insignificant	
or	not	sampled	to	further	account	for	the	total	amount	of	
mass	of	the	administered	dose.24–	27

PBPK	model	design	often	consists	of	both	arterial	blood	
as	well	as	venous	blood	compartments	in	order	to	account	
for	the	lag	in	drug	distribution	when	an	i.v.	dose	is	admin-
istered.28	On	the	other	hand,	in	a	single	blood	circulation	
compartment,	any	i.v.	dose	administered	will	take	on	the	
presumption	that	the	drug	will	travel	directly	to	all	the	or-
gans,	 in	other	words,	having	100%	biodistribution	much	
quicker.29,30	More	accurately,	 in	a	dual	blood	circulation	
compartment,	an	i.v.	injection	will	typically	take	place	on	
the	accessory	cephalic	vein,	which	is	located	on	the	back	
of	the	arm,	delivering	the	drug	at	the	site	of	the	vein	carry-
ing	deoxygenated	blood.28	In	experiments	involving	mice,	
for	example,	the	tail	vein	is	the	place	of	injection	into	the	
venous	blood.

Figure  2	 shows	 the	 structures	 of	 a	 typical	 multicom-
partment	 PBPK	 model	 currently	 used	 across	 the	 litera-
ture	for	modeling	disposition	of	nanoparticle	drugs.	The	
multicompartment	 model	 structure	 containing	 separate	
venous	 and	 arterial	 blood	 compartments	 can	 be	 slightly	
modified	to	describe	whether	the	model	is	flow-	limited	or	
membrane-	limited,	or	whether	or	not	it	contains	phagocy-
tizing	subcompartments,	for	instance.

In	all	parts	 in	Figure 2,	 the	multicompartment	PBPK	
model	structure	utilizes	both	the	venous	and	the	arterial	
blood	 compartments	 instead	 of	 only	 one	 plasma	 com-
partment.	 However,	 a	 model	 structure	 that	 utilizes	 one	
plasma	compartment	for	colloidal	nanoparticles	has	also	
been	demonstrated	to	be	effective.21	Such	a	model	struc-
ture	would	experience	latency	in	the	calculated	distribu-
tion	 time	accounting	 for	blood	 flowing	 to	 the	 lungs	and	
arterial	blood	before	going	to	peripheral	organs.28	In	dis-
solvable	 nanoparticle,	 membrane-	limited	 structures,	 a	
structure	similar	to	that	of	Figure 2d	could	be	used	with	
the	presence	of	capillary	compartments	similar	to	that	of	
Figures 2b	and	c.

The	organ	compartments	involved	in	the	hepatic	por-
tal	circulation	 in	Figure 2	are	 summarized	 in	one	com-
partment	 for	 the	 purpose	 of	 illustrating	 a	 simplified	
model	 structure.	 However,	 these	 different	 organs	 have	
their	 own	 designated	 compartment	 because	 they	 have	
different	 parameters	 such	 as	 blood	 flow,	 organ	 volume,	
permeability	 coefficients,	 and	 partition	 coefficients.	 On	
the	other	hand,	compartments	not	involved	in	the	phar-
macokinetic	study	will	be	grouped	together	in	the	model	
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F I G U R E  1  The	10 nm	PEG	2000	
colloidal	gold	nanoparticle	biodistribution	
in	mice	after	an	i.v.	injection.	Data	
adapted	from	Takeuchi	et	al.	The	plots	
shown	here	are	in	%ID	(percent	of	initial	
doses)	versus	time	drug	disposition	plots
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F I G U R E  2  Multicompartment	PBPK	model	structures	for	different	hypothetical	scenarios.	(a)	Non-	nanoparticle,	flow-	limited	structure	
(with	specific	examples	found	in	refs.	25,90);	(b)	nondissolvable,	colloidal-	nanoparticle,	and	membrane-	limited	structure;	(c)	nondissolvable,	
colloidal-	nanoparticle,	and	membrane-	limited	structure,	with	phagocytizing	cell	subcompartments	(with	specific	examples	found	in	
refs.	20,31,48);	and	(d)	dissolvable	nanoparticle,	flow-	limited	structure	(with	specific	example	found	in	ref.	7).	GI,	gastrointestinal;	PBPK,	
physiologically-	based	pharmacokinetic
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structure	as	the	remainder	compartment.	The	total	organ	
volume	of	the	remainder	compartment	will	be	the	differ-
ence	between	the	organism’s	body	weight	and	the	weight	
of	the	organs	already	accounted	for,	including	the	venous	
and	arterial	blood.	The	blood	flow	to	the	remainder	com-
partment	 should	be	 similar	because	 they	are	 lowly	per-
fused	 organs,	 hence	 a	 reason	 for	 their	 lack	 of	 attention	
in	pharmacokinetic	studies.	As	far	as	colloidal	nanoparti-
cles	are	concerned,	their	distribution	between	organs	and	
the	 blood	 circulation	 is	 not	 a	 reflection	 of	 the	 thermo-
dynamic	equilibrium	between	 two	 immiscible	 liquids.31	
Therefore,	 the	 “partition”	 coefficient	 may	 be	 the	 same	
for	similar	nanoparticles	between	the	blood	and	similar	
tissues.

Mathematical framework

Building	 upon	 traditional	 pharmacokinetic	 frameworks,	
PBPK	 models	 for	 nanoparticles	 would	 also	 incorporate	
specific	physiological	processes	such	as	macrophage	up-
take.7,21,32,33	Distribution	equations	are	used	to	account	for	
the	drug’s	location	within	the	body	after	a	given	amount	
of	 time.	 Depending	 on	 whether	 nanoparticles	 undergo	
certain	transitional	states,	the	differential	equations	gov-
erning	 a	 PBPK	 model	 can	 be	 affected.	 For	 instance,	 for	
nanoparticles	 undergoing	 dissolution,	 the	 distribution	
equation	will	need	 to	 include	a	 term	 to	account	 for	 this	
drug	release	process.

The	 construction	 of	 the	 mathematical	 distribution	
equations	depends	on	our	knowledge	of	the	physicochem-
ical	nature	of	the	drug.	In	order	to	build	a	model	that	best	
reflects	the	underlying	biodistribution	processes,	the	mod-
eler	should	ask	questions	pertaining	to	their	understand-
ing	of	the	drug	formulation,	such	as:

•	 Whether	it	is	a	hydrophilic	or	hydrophobic	substance;
•	 Whether	it	is	a	small	or	large	molecule;
•	 Whether	the	nanoparticles	in	the	formulation	will	un-

dergo	dissolution	or	not;	and
•	 Whether	there	is	macrophage	uptake	of	the	nanoparti-

cles	or	not.

Imposing	these	questions	as	a	systematic	approach	to	
developing	a	PBPK	model	can	streamline	the	model	struc-
ture	development	process.

The	flow	diagram	in	Figure 3	can	be	used	to	construct	
a	PBPK	model	structure	that	is	consistent	with	published	
models	 reflecting	 the	 physicochemical	 characteristics	 of	
a	 drug.	 For	 example,	 in	 a	 model	 for	 SNX-	2112,	 a	 poorly	
soluble	 molecular	 anticancer	 drug	 that	 was	 formulated	
into	dissolvable	nanocrystals	for	evaluating	its	disposition	
in	 rats,	 used	 a	 release	 constant	 (krel)	 in	 the	 distribution	
equations,	and	adopted	a	 flow-	limited	 structure	with	no	
phagocytizing	cell	compartment.7	In	the	case	of	colloidal	
nanoparticles,	nondissolvable	nanoparticles	are	described	
using	membrane-	limited	model	structures	with	phagocy-
tizing	cell	subcompartments.31,34	Equation 1	begins	with	

F I G U R E  3  Shows	a	flow	diagram	
of	the	basic	decision-	making	process	
in	constructing	a	PBPK	mathematical	
framework.	The	final	mathematical	
formulation	of	the	differential	equation	
describing	the	amount	of	drug	in	a	
particular	organ	compartment	on	the	
physicochemical	properties	of	the	drug	
formulation.	This	process	is	followed	by	
subsequent	steps	in	the	model	building	
process.	PBPK,	physiologically-	based	
pharmacokinetic
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the	basic	components	of	the	differential	equation	utilizing	
the	law	of	mass	action:

where	dM
dt

	is	the	rate	of	change	of	the	amount	of	drug	in	com-
partment	2	at	time	t;	Q,	with	units	of	volume	per	time,	is	the	
blood	flow	from	compartment	1	into	compartment	2;	C1	and	
C2,	with	units	of	amount	per	volume,	are	the	drug	concen-
trations	in	compartments	1	and	2,	respectively;	and	kp,	with	
no	units,	is	the	partition	coefficient.	The	partition	coefficient	
is	the	ratio	of	a	substance	in	two	immiscible	or	slightly	mis-
cible	solvents	in	thermodynamic	equilibrium.	Note	that	the	
distribution	equation	for	 the	plasma	compartment	applies	
the	 partition	 coefficient	 toward	 the	 concentration	 of	 the	
drugs	coming	from	the	lungs	and	not	away	from	the	plasma.	
This	is	because	partition	coefficients	are	applied	to	concen-
tration	of	drugs	leaving	an	organ	compartment	and	into	a	
plasma	compartment.	In	other	words,	there	is	no	partition-
ing	taking	place	when	drugs	enter	an	organ	compartment	
from	the	plasma.	When	applying	this	coefficient	 to	model	
construction	for	colloidal	nanoparticles,	it	is	not	thermody-
namic	equilibrium	between	the	tissue	compartment	and	the	
circulation	 that	 the	 coefficient	 reflects.	Therefore,	 a	 better	
name	for	partition	coefficient	in	such	an	instance	would	be	
distribution	coefficient.31

The	drug	will	ultimately	be	eliminated	from	the	body	
through	 either	 renal	 excretion	 where	 drugs	 will	 be	 ex-
creted	from	the	kidneys	into	the	urine,	or	biliary	excretion	
where	drugs	are	excreted	into	the	feces	by	the	bile.35	The	
clearance	rate	can	vary	depending	on	the	drug.	The	mass	
equation	 ultimately	 includes	 the	 summation	 of	 both	 of	
these	processes.	Thus,	 for	compartments	 involving	renal	
or	biliary	excretion:

where	dMex

dt
	in	units	of	amount	per	time,	is	the	rate	of	excre-

tion	of	drugs;	Ml	is	the	amount	of	nanoparticles	in	the	liver	
tissue;	 Mk	 is	 the	 amount	 of	 nanoparticles	 in	 the	 kidney’s	
capillary	blood;	CLb,	in	units	of	time−1,	is	the	clearance	to	
feces	from	the	liver	tissue;	and	CLr,	in	units	of	time−1	is	the	
clearance	to	urine	from	the	kidney’s	capillary	blood.

Nanoparticle	transitions

In	 oral	 administration,	 whether	 the	 drug	 is	 subject	 to	
quick	 or	 slow	 release,	 it	 is	 only	 the	 bioavailability—	the	

proportion	 of	 drug	 that	 enters	 the	 circulation—	that	 has	
its	active	effect,	which	varies	from	formulation	to	formu-
lation.	It	is	assumed	that	once	the	drug	reaches	the	circu-
lation,	its	biodistribution	does	not	depend	on	dissolution	
kinetics	 inside	the	circulation	because	all	of	 the	dissolu-
tion	has	already	taken	place.	Nanoparticle	formulations,	
where	cargos	of	drugs	are	loaded	or	where	the	drug	mol-
ecules	 form	 nanocrystals	 through	 self-	assembly,	 for	 ex-
ample,	 require	 the	 use	 of	 decomposition	 or	 dissolution	
kinetics	in	formulating	a	PBPK	model,	because	additional	
time	is	needed	for	the	nanoparticle	state	to	decompose	or	
dissolve	into	the	free	drug	state.	Nanoparticle	drug	deliv-
ery	systems	containing	drugs	which	could	later	be	released	
in	 the	 systemic	 circulation	 and	 in	 organ	 compartments,	
would	include	a	term	to	describe	the	transition	between	
the	nanoparticle	and	the	dissolved	states.	This	transition	
may	be	 integrated	 into	PBPK	modeling.	 In	 this	case,	 re-
lease	constants	are	needed	in	the	distribution	equations.	
These	 constants	 may	 be	 measured	 or	 obtained	 from	 the	
literature	via	prior	in	vitro	studies.

One	physiological	phenomenon	that	can	affect	nanopar-
ticle	 states	 is	 the	 formation	 of	 what	 was	 initially	 coined	
as	protein	coronas,	which	has	been	studied	since	at	 least	
2007.36	It	is	a	phenomenon	in	which	a	protein	adsorption	
layer	is	formed	around	a	foreign	colloidal	nanoparticle.36–	39	
The	adsorbed	proteins	may	include	fibrinogen,	vitronectin,	
human	serum	albumin,	and	cytochrome	C.40	A	mechanis-
tic	 study	 has	 shown	 surface	 properties	 of	 nanoparticles	
play	an	important	role	in	determining	interactions	with	the	
host’s	immune	responses	even	more	so	than	nanoparticle	
sizes	when	these	particles	are	initially	introduced	into	the	
circulation.41	 The	 formation	 of	 protein	 coronas	 involves	
both	hetero-		and	homo-	aggregation,	where	nanoparticles	
aggregate	 with	 proteins	 or	 with	 themselves,	 respectively,	
based	on	ionic	concentration	of	the	environment.39	The	ef-
fect	of	protein	coronas	can	act	as	a	confounding	variable	af-
fecting	cell-	specific	targeting	and	uptake	of	nanoparticles,	
for	example.42	The	formation	of	this	corona	layer	around	
nanoparticles	does	beg	the	question	of	whether	or	not	this	
plays	into	the	kinetics	of	dissolution,	and	thus,	the	PBPK	
model	 itself.	 In	 fact,	 some	efforts	do	exist	 in	order	 to	ex-
plain	the	kinetics	of	the	protein	corona.40,43	In	light	of	this	
knowledge,	 the	 pharmacokineticist	 must	 decide	 whether	
or	not	to	take	into	account	the	effects	of	this	protein		corona.	
A	 global	 sensitivity	 analysis	 may	 help	 determine	 the	 in-
fluence	 of	 a	 parameter,	 and,	 in	 this	 case,	 the	 rate	 of	 dis-
solution	of	nanoparticulate	drugs	having	a	protein		corona	
layer.	 Understanding	 that	 the	 state	 of	 nanoparticulate	
drugs	need	to	be	taken	into	account	will	allow	the	pharma-
cokineticist	 to	 incorporate	 dissolution	 equations	 into	 the	
PBPK	 models.	 Additionally,	 nanoparticulate	 drugs	 may	
not	always	decompose	through	dissolution,	as	in	the	case	
of	nanocrystals	of	SNX-	2112.7	Rather,	they	may	be	released	

(1)
dM2

dt
= Q ×

(

C1 −
C2
kp

)

(2)dM

dt
= Q ×

(

C1 −
C2
kp

)

−
dMex

dt

(3)dMex

dt
=
(
Ml × CLb +Mk × CLr

)
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through	other	means.	For	example,	drugs	may	be	packaged	
in	mesoporous	nanoparticles	that	can	released	via	various	
triggering	 mechanisms.44	 Moreover,	 nanoparticles	 may	
be	delivered	 to	 the	circulation	 in	 lipid-	based	vesicles,	via	
functionalized-	gold	nanoparticles	as	carriers,	or	even	in	mi-
celles.45–	47	Thus,	understanding	of	the	drug	release	mech-
anisms	of	the	different	formulations	is	needed	in	order	to	
take	into	account	the	drug	release	term	in	the	PBPK	model.	
Understanding	the	chemicophysical	properties	of	the	drug	
(i.e.,	 dissolvable	 vs.	 colloidal	 and	 membrane-	limited	 vs.	
diffusion-	limited)	is	crucial	in	designing	the	model	struc-
ture	because	these	properties	dictate	the	inclusion	of	addi-
tional	reactions	and	compartments.

When	nanoparticle	formulations	are	used,	the	release	
of	 drugs	 through	 dissolution	 can	 occur	 and	 a	 release	
constant	is	needed	in	the	calculation.	However,	colloidal	
nanoparticles	used	as	drug	carriers	or	as	contrast	agents	in	
magnetic	imaging	modalities	do	not	undergo	dissolution	
and	therefore	there	will	not	be	any	inclusion	of	dissolution	
reaction	in	the	model.	This	can	further	affect	whether	the	
particles	 will	 take	 on	 a	 diffusion-	limited	 or	 membrane-	
limited	structure	of	the	model,	for	instance.

Dissolvable	nanoparticles

Dissolvable	nanoparticles	undergo	dissolution	in	the	aque-
ous	 milieu.	 Therefore,	 subsequent	 to	 an	 i.v.	 administra-
tion,	a	first-	order	release	term	with	constant	krel	must	be	
used	to	account	for	this	dissolution	process	in	the	plasma.	
An	example	of	the	utilization	of	krel	is	demonstrated	in	Wu	
et	al.	where	biodistribution	of	nanocrystals	of	an	antican-
cer	 agent	 SNX-	2112	 was	 modeled.7	 Where	 nanoparticle	
dissolution	takes	place,	a	term	must	be	used	to	account	for	
the	change	in	the	amount	of	dissolved	drug	with	respect	
to	 time.	 Therefore,	 the	 distribution	 equation	 describing	
the	nanoparticle	amount	while	considering	dissolution	in	
compartments	 will	 include	−

(
krel × Vt × C

)
	 and	 the	 dis-

tribution	equation	describing	the	corresponding	dissolved	
drug	will	include	+

(
krel × Vt × C

)
	such	that:

where	Vt	 is	 the	volume	of	 the	compartment	where	dis-
solution	 is	 taking	 place	 and	 C	 is	 the	 concentration	 of	
the	 nanoparticle	 drug	 before	 dissolution	 in	 that	 com-
partment	 (either	 compartment	 1	 or	 2).	 Of	 course,	 if	
all	 nanoparticles	 dissolve	 completely	 in	 the	 venous	
blood	compartment	(i.e.,	after	 i.v.	administration),	 then	
nanoparticle	 dissolution	 will	 no	 longer	 apply	 to	 subse-
quent	compartments.	However,	all	of	that	will	depend	on	
the	krel	constant.

Colloidal	nanoparticles

Colloidal	nanoparticles	do	not	dissolve	in	aqueous	milieu	
and	there	is	no	evidence	of	dissolution	in	the	circulation.31	
Therefore,	 the	 release	 constant	 is	 not	 included.	 Thus,	
crossing	the	membrane	into	the	intracellular	fluid	would	
be	a	rate-	limiting	step	and	the	distribution	equation	will	
be	multiplied	by	a	term	describing	permeability	under	the	
membrane-	limited	framework,	as	presented	previously	by	
Li	et	al.48:

Where	X	is	the	unitless	permeability	coefficient.	Notice	
that	 the	 distribution	 equation	 is	 directly	 affected	 by	 the	
derived	term	 X

1+X
.	This	term	is	a	result	of	the	nanoparticle	

residence	time	in	the	capillary	being	small	compared	to	its	
residence	 time	 in	 tissue	 compartments.	 Therefore,	 the	
capillary	 is	 considered	 as	 a	 quasi-	compartment	 and	 not	
taken	 into	 account	 during	 the	 derivation	 process.48	 The	
resulting	term	summarizes	permeability	between	arterial/
venous	and	tissue	compartments.

Perfusion (flow)- limited versus Diffusion 
(membrane)- limited models

Generally,	 the	 PBPK	 model	 is	 either	 a	 diffusion-	limited	
(permeability-	limited)	 or	 a	 perfusion-	limited	 (flow-	
limited)	 model.49–	51	 However,	 in	 certain	 cases,	 it	 can	 be	
both.	 Perfusion-	limited	 models	 are	 utilized	 where	 small	
lipophilic	molecules	can	partition	into	tissues	rapidly	and	
the	 rate	 of	 blood	 flow	 is	 the	 limiting	 rate.	 Compounds	
that	are	 large	and	hydrophilic	have	a	harder	 time	cross-
ing	 the	 cell	 membrane	 and	 therefore	 diffusion-	limited	
(membrane-	limited)	 models	 would	 be	 utilized	 to	 model	
the	disposition	of	those	compounds.18	On	the	other	hand,	
hydrophobic	 or	 small	 compounds	 have	 an	 easier	 time	
crossing	 the	 cell	 membrane	 and	 thus	 perfusion-	limited	
(or	flow-	limited)	models	would	be	utilized.	In	the	case	of	
gold	nanoparticles,	the	proposed	PBPK	framework	will	be	
a	membrane-	limited	model	in	order	to	take	into	account	
the	rate	limiting	effects	of	nanoparticles	crossing	the	cell	
membranes.	Therefore,	the	model	will	describe	the	capil-
lary	blood	and	the	tissue	compartments	separately.48

In	 diffusion-	limited	 (membrane-	limited)	 models,	 the	
rate	of	biodistribution	depends	on	the	permeability	of	the	
membrane	with	respect	to	the	drug.	However,	in	perfusion-	
limited	(flow-	limited)	models,	the	rate-	limiting	step	resides	
in	the	tissue	partitioning	of	the	drug.	Identifying	where	the	
rate-	limiting	step	will	help	 to	determine	the	paradigm	of	
biodistribution	of	drugs.	Further,	the	flow	and	connectivity	

(4)
dM2

dt
= Q ×

(

C1 −
C2
kp

)

±
(
krel × Vt × C

)

(5)dM

dt
= Q ×

(

C1 −
C2
kp

)

×
X

1 + X
−
dMex

dt
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of	the	organs	will	provide	an	overall	picture	of	the	PBPK	
model	where	differential	equations	may	be	applied	to	re-
flect	the	connections	between	organ	compartments.

SUBCOMPARTMENTALIZATION

Anatomic subcompartmentalization

It	is	beneficial	to	consider	anatomic	subcompartmentaliza-
tion	 in	 some	 instances.	 For	 example,	 an	 intestinal	 model	
can	 anatomically	 break	 down	 the	 gut	 into	 subcompart-
ments	 because	 enterocytes—	which	 are	 intestinal	 absorp-
tive	 cells—	can	 line	 the	 walls	 of	 the	 stomach	 all	 the	 way	
to	 the	colon.52–	55	This	subcompartmentalization	 is	 impor-
tant	 because	 the	 ultimate	 possible	 routes	 where	 the	 drug	
ends	up	after	an	oral	administration	may	not	only	be	ex-
cretion	 through	 the	 colon,	 but	 also	 absorption	 through-
out	 the	 different	 anatomic	 subcompartments	 within	 the	
gut	where	the	drug	can	travel	into	the	hepatic	portal	vein.	
Subcompartmentalization	 details	 several	 different	 other	
compartments	that	exist	within	a	main	compartment	of	the	
PBPK	model	and	thus	helps	to	improve	results	 leading	to	
better	model	validation.	Subcompartmentalization	in	PBPK	
modeling	has	also	been	performed	in	the	lungs,	dermal,	and	
nasal	tissue.50,56,57	In	one	instance,	modeling	of	pulmonary	
drug	 biodistribution	 where	 detailed	 subcompartments	 of	
different	regions	of	 the	 lungs,	 including	the	right	and	 left	
lungs,	and	lower	and	upper	airways	have	been	considered.50

Physiological subcompartmentalization

Colloidal	nanoparticles	do	not	dissolve	 in	 the	aqueous	
milieu	and	therefore	will	encounter	the	body’s	immune	
response	 via	 macrophage	 uptake.	 Macrophage	 uptake	
may	also	be	taken	into	account	in	the	PBPK	model	with	
a	phagocytizing	cell	 (PC)	compartment,	which	will	ac-
count	 for	 clearance	 of	 nanoparticle	 drugs.	 Currently,	
macrophage	uptake	 is	composed	of	 two	basic	different	
steps,	 which	 include	 absorption	 governed	 by	 the	 rate	
constant	 kab	 and	 desorption	 governed	 by	 the	 rate	 con-
stant	kde	via	the	law	of	mass	action34	(shown	in	Figure 4).	
Absorbed	 nanoparticles	 are	 ultimately	 released	 by	 the	
macrophage.	 The	 resident	 amount	 of	 time	 that	 any	

foreign	substance	possesses	in	a	particular	organ	tissue	
is	 reflected	 in	 the	 equilibrium	 between	 the	 absorption	
and	desorption	rates.

Figure  4	 shows	 the	 PCs	 being	 used	 as	 a	 physiologi-
cal	subcompartment.	In	these	instances,	the	distribution	
equation	for	a	compartment	with	high	concentrations	of	
macrophages,	such	as	in	the	liver	where	there	is	high	oc-
currence	of	Kuppfer	cells,	will	need	to	account	for	the	ab-
sorption	and	desorption	processes:

where	V2	is	the	volume	of	organ	in	compartment	2;	C2	is	
the	concentration	of	nanoparticles	in	organ	compartment	
2;	kab	is	the	uptake	rate	of	nanoparticles	by	phagocytizing	
cells	 in	 organ	 compartment	 2;	 kde	 is	 the	 desorption	 rate	
of	nanoparticles	by	phagocytizing	cells	in	organ	compart-
ment	2;	and	M2,m	is	the	amount	of	nanoparticles	captured	
by	 phagocytizing	 cells	 in	 organ	 compartment	 2.	 Organ	
compartment	2	was	used	 in	 this	example	 for	absorption	
and	 desorption	 because	 it	 represents	 the	 compartment	
containing	the	nanoparticle	drugs	being	calculated.

Whereas	 some	 compartmental	 models	 currently	 used	
in	the	literature	for	PBPK	modeling	do	account	for	macro-
phage	uptake,	these	models	may	not	account	for	the	exis-
tence	of	confounding	variables	in	the	phagocytizing	events.	
For	instance,	they	may	not	consider	the	effects	of	adsorption	
and	internalization,	which	can	affect	the	maximum	uptake	
constant.	 The	 importance	 of	 considering	 adsorption	 and	
internalization	of	nanoparticles	when	it	comes	to	cellular	
uptake	was	demonstrated	by	Yeo	and	colleagues	where	dif-
ferential	labeling	using	electron	microscopy	revealed	three	
different	processes,	including	“attachment,”	“in	between,”	
and	“internalized.”58	Wilhelm	and	colleagues	have	further	
approached	the	topic	using	superparamagnetic	iron	oxide	
nanoparticle’s	 (SPIONS’s)	 interactions	 with	 macrophages	
and	built	a	mathematical	framework	around	their	adsorp-
tion	and	internalization	kinetics.59	The	progression	of	the	
macrophage	 uptake	 process,	 including	 both	 adsorption	
and	 internalization,	 was	 validated	 further	 by	 epifluores-
cence	microscopy.58	Development	of	the	subcompartmen-
talization	of	macrophage	uptake	can	further	be	validated	
with	 semiqualitative	 data	 from	 the	 literature.58	 Much	 of	
the	literature	shows	macrophage	uptake	data	that	includes	
consideration	for	absorption	and	desorption.	For	example,	
Liu	 et	 al.	 discusses	 a	 quantitative	 approach	 to	 obtaining	
absorption	(kin)	and	desorption	(kout)	hepatic	constants.60	
The	current	inclusion	of	macrophages	as	a	“compartment”	
within	PBPK	modeling	makes	several	assumptions,	includ-
ing	homogeneity	of	macrophages’	uptake	rate.	Additional	
consideration	 regarding	 what	 affects	 adsorption	 and	

(6)

dM2

dt
= Q ×

(

C1 −
C2
kp

)

×
X

1 + X
+
[(
kde ×M2,m

)
−
(
kab × V2 × C2

)]

F I G U R E  4  Phagocytizing	cells	as	a	physiological	sub-	
compartment	within	compartments	with	high	concentrations	of	
macrophage
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internalization	may	be	helpful	to	understanding	the	overall	
phagocytizing	process.	Qie	et	al.	have	shown	that	surface	
modification	 of	 nanoparticles	 can	 influence	 phagocytic	
clearance.61

PARAMETERS

Non- nanoparticle specific parameters

Input	 parameters	 are	 key	 for	 PBPK	 model	 simulations.	
Input	parameters	describe	three	types	of	properties:	physic-
ochemical	properties;	drug-	biological	properties;	and	ana-
tomic	and	physiological	properties.62	Parameters	that	come	
from	physicochemical	properties	are	drug-	dependent	and	
include	the	partition	coefficient,	pH-	dependent	partition	
coefficient,	membrane	affinity,	molecular	weight,	equilib-
rium	constants,	and	solubility.49,62	Parameters	that	come	
from	drug-	biological	properties	depend	on	both	drug	and	
organism	properties.	These	parameters	include	fraction	of	
unbound	drugs,	Michaelis-	Menten	constant,	dissociation	
constant,	and	maximum	velocity.	Because	drug-	biological	
properties	depend	not	only	on	the	organism	but	also	the	
drugs,	partition	coefficients	and	permeability	of	drugs	are	
also	considered	as	drug-	biological	properties	for	they	de-
pend	on	both	the	organism	and	the	physicochemical	prop-
erties	of	the	drug.	Parameters	deriving	from	anatomic	or	
physiological	 properties	 (organ-	specific)	 include	 organ	
volume,	 surface	 areas,	 tissue	 composition,	 blood	 flow	
rates,	 and	 expression	 levels.63	 Some	 of	 these	 parameters	
are	 used	 in	 PBPK	 modeling	 to	 predict	 the	 pharmacoki-
netic	 disposition	 for	 different	 populations.	 For	 example,	
expression	levels	can	help	determine	the	gene	expression	
for	a	group	of	metabolizing	enzymes	 in	different	organs	
for	different	populations.62,64–	69	Gene	expression	data	may	
be	represented	as	a	normalized	relative	value	with	respect	
to	the	tissue	or	organ	with	the	highest	expression.62	Thus,	
with	 different	 metabolizing	 enzyme	 expressions,	 results	
for	 clearance	 will	 be	 reflected	 in	 different	 populations	
having	different	 levels	of	expression.	Using	gene	expres-
sion	data	can	aid	the	PBPK	model	in	achieving	resolution	
in	the	amount	of	metabolizing	enzymes	as	well	as	other	
physiological	parameters	that	aid	in	determining	the	dos-
ing	regimen.64,65

Nanoparticle- specific parameters

PBPK	 models	 built	 for	 nanoparticles	 will	 also	 include	
nanoparticle-	specific	 parameters,	 which	 may	 include	
nanoparticle	 release	 constant,	 maximum	 uptake	 rate	 in	
phagocytic	cells,	Hill	coefficient,	and	phagocytic	cells	re-
lease	constant	(desorption).	Tables 1	and	2	show	examples	

of	important	organ-	specific	and	nanoparticle-	specific	pa-
rameters	used	in	nanoparticle	PBPK	modeling.

Some	 of	 the	 parameters,	 such	 as	 liver	 transporter	 ki-
netic	data,	metabolic	enzymes	(CYPs),	permeability	data,	
and	transporter-	mediated	uptake,	can	be	determined	via	
in	vitro	experiments	and	then	applied	to	different	stages	
of	absorption,	distribution,	metabolism,	and	excretion	of	
the	PBPK	model	to	obtain	simulated	in	vivo	data.50,51,70,71	
More	 specifically,	 nanoparticle-	related	 parameters,	 such	
as	macrophage	uptake	rate	and	desorption	rate	constants,	
may	be	determined	in	vitro	and	then	applied	to	a	nanopar-
ticle	PBPK	model.

Parameter estimation

Predicting	biodistribution	requires	accurate	 input	param-
eters.	Although	many	parameters	may	be	obtained	through	
established	literature	sources,	some	cannot	be	relied	upon	

T A B L E  1 	 Typical	organ-	specific	parameters	used	in	both	
nanoparticle	and	non-	nanoparticle	PBPK	modeling

Organ specific parameters Unit Value

Organ	volumes	based	on	%	of	body	weighta

Lungs Liter 0.0001

Heart Liter 9.5E−5

Brain Liter 0.00017

Spleen Liter 0.0001

Kidneys Liter 0.00034

Liver Liter 0.0013

Pancreas Liter 0.00013

Stomach Liter 0.00011

Arterial	blood Liter 0.000228182

Venous	blood Liter 0.000524818

Blood	flowb

Lungs l/min 5.47E−3

Heart l/min 2.80E−4

Brain l/min 1.30E−4

Spleen l/min 9.00E−5

Kidneys l/min 1.30E−3

Liver l/min 3.50E−4

Pancreas l/min 5.20E−5

Stomach l/min 1.10E−4

Portal	vein l/min 1.75E−3

Abbreviation:	PBPK,	physiologically-	based	pharmacokinetic.
aCan	also	be	calculated	by	taking	the	percentage	of	the	weight	of	a	mouse	
in	(g)	to	give	the	organ	volume	in	(ml).	Other	sources	in	the	literature	
include.28,48,91–	93	However,	these	values	are	based	on	20 g	mouse	calculated	
by	PK-	Sim	8	database.
bBased	on	values	obtained	by	PK-	Sim	8	database	for	the	mouse.
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for	 predicting	 biodistribution.	 When	 nanoparticle	 phar-
macokinetic	disposition	 is	needed	for	a	new	formulation,	
prior	parameter	estimates	and	some	assumptions	may	be	
used.	For	example,	blood	 flow	may	be	obtained	 from	the	
literature.	Uptake	capacity	values	may	be	recycled	from	PK	
parameters	of	nanoparticles	with	similar	physical	proper-
ties.	 However,	 one	 must	 use	 some	 caution	 in	 relying	 on	
predetermined	 nano-	specific	 parameters	 when	 dealing	
with	nanoparticles	even	with	a	slight	change	in	the	surface	
chemistry	which	can	affect	their	interactions,	for	example,	
with	macrophages	or	membranes,	and	thus	can	ultimately	
affect	 the	macrophage	uptake	rate	or	permeability	coeffi-
cients.	Therefore,	to	obtain	a	good	model	fit	to	biodistribu-
tion	data,	a	parameter	optimization	process	is	needed.	For	
parameter	optimization,	only	a	select	group	of	parameters	
would	be	required	to	be	optimized.	Because	organ-	specific	
parameters	 (Table  1)	 can	 readily	 be	 obtained	 from	 data-
bases	 as	 well	 as	 being	 values	 of	 minimal	 variation,	 these	
parameters	can	be	exempt	from	optimization.	If	we	know	
the	 range	 of	 plausible	 values	 for	 a	 parameter	 being	 opti-
mized,	constraints	may	be	added	to	the	parameters	being	
optimized.	A	variety	of	local	and	global	optimization	tech-
niques	can	be	found	in	the	literature	and	implemented	on	
MATLAB,	for	example.72,73	Optimizing	parameters	will	not	
only	provide	the	best-	fit	model,	it	also	allows	the	researcher	
to	 compare	 parameters	 under	 different	 nanoparticle	 for-
mulations.	 Thus,	 providing	 a	 way	 to	 study	 the	 effects	 of	

different	engineered	nanoparticles	on	their	corresponding	
estimated	parameters.

Sensitivity analysis

Sensitivity	 analysis	 (SA)	 generates	 sensitivity	 indices	
for	each	of	 the	parameters	 to	gauge	the	effects	on	model	
output	when	input	parameters	are	varied.	The	difference	
between	global	and	local	SAs	is	that	local	SA	assesses	vari-
ation	in	model	output	based	on	the	changes	of	one	parame-
ter	at	a	time	(while	all	other	parameters	are	held	constant),	
whereas	global	SA	examines	not	only	the	overall	model	re-
sponse	based	on	variation	in	all	input	parameters	but	also	
the	variance	in	model	output	due	to	interactions	between	
parameters.	SA	tests	can	help	to	reduce	model	complexity	
and	 elucidate	 highly	 sensitive	 parameters.	 Conceptually,	
SA	tests	for	nanoparticle	PBPK	models	should	be	the	same	
as	for	non-	nanoparticle	ones.	Nanoparticle-	specific	param-
eters,	such	as	macrophage	uptake	absorption	and	desorp-
tion	constants,	may	be	of	interest.

Local	SA

Every	 PBPK	 model	 developed	 that	 reflects	 the	 spe-
cific	 virtual	 population	 as	 well	 as	 the	 nanoparticulate/

T A B L E  2 	 An	example	of	colloidal	nanoparticle	specific	parameters	taking	into	account	the	reticulo-	endothelial	system	(macrophage	
uptake)	of	nanoparticles

Description Lungs Heart Liver Kidneys Spleen Pancreas Brain Stomach

Nanoparticle	specific	parameters

Unitless Partition	
(distribution	
coefficient)a

0.15 0.15 0.08 0.15 0.15 0.15 0.15 0.15

Unitless Permeability	
coefficient	
between	blood	
and	tissueb

0.001 0.000001 0.001 0.001 0.03 0.000001 0.000001 0.000001

h−1 Max	uptake	rate	
constant	for	PCb

Generic Generic Generic Generic 0.112	±		
0.000990

Generic Generic Generic

h−1 PC	release	
(desorption)	
rate	constantb

Generic Generic Generic Generic Generic Generic Generic Generic

L/h Excretion	rate	
constantc

N/A N/A 1.18	×	10–	2		
±	2.92	×	10–	4

6.56	×	10–	3		
±	5.35	×	10–	5

N/A N/A N/A N/A

Note: According	to	Li	and	other	sources	in	the	literature,	arterial	and	venous	blood	take	up	20%	and	80%	of	the	total	body	blood,	respectively.31,48

aTaken	from	the	table	in	ref.	31	which	also	come	from	other	sources.	Source	provides	data	for	the	liver,	spleen,	kidneys,	lungs,	brain,	and	the	rest	of	the	body.	
Therefore,	any	organ	compartment	not	directly	provided	by	source,	rest	of	the	body	values	are	used.
bValues	obtained	from	ref.	83.	Some	assumptions	were	made	since	these	values	were	used	for	rats	under	different	colloidal	nanoparticles.	Generic	values	are	
equal	to	16.1 ± 0.306	for	absorption	and	4.90 × 10−19 ± 7.26 × 10−17	for	desorption.
cValues	obtained	from	ref.	83
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nonparticulate	 drug	 system	 used	 will	 have	 a	 unique	
concentration-	time	 curve	 for	 any	 particular	 compart-
ment	based	on	the	input	parameters.	The	degree	of	influ-
ence	of	a	parameter	on	the	concentration-	time	curve	may	
not	be	obvious	without	an	SA.	Typically,	two	approaches	
have	been	used	for	local	PBPK	SA	tests.	One	approach	is	
to	multiply	or	divide	each	parameter	by	a	predetermined	
value	and	observe	the	concentration	output	or	amount	of	
nanoparticles	 in	each	of	 the	compartment	with	respect	
to	time.	Another	approach	is	to	measure	the	change	in	
the	area	under	the	curve	(AUC)	after	a	1%	change	in	the	
parameter	value.34,74	More	specifically:

where	AUC	is	the	area	under	the	concentration-	time	curve	
in	a	compartment	and	dAUC	is	the	change	in	AUC	of	that	
compartment	 reflecting	 a	 1%	 change	 in	 the	 parameter	
dp/p = 0.01.34,74,75	When	conducting	a	sensitivity	analysis,	
the	 higher	 the	 sensitivity	 coefficient	 for	 a	 parameter,	 the	
larger	the	influence	of	that	parameter	on	the	model	output	
for	a	particular	compartment.	However,	the	equation	above	
only	 gives	 the	 local	 sensitivity	 coefficient.	 A	 more	 global	
and	systematic	approach	to	sensitivity	analysis	is	needed	to	
show	the	 influence	of	a	parameter	over	a	set	of	all	possi-
ble	input	parameters.76	Further,	local	sensitivity	analysis	is	
only	appropriate	when	interactions	between	parameters	are	
negligible.76

Global	SA

Global	 sensitivity	 analysis	 (GSA)	 falls	 into	 one	 of	 two	
categories,	 which	 are	 elementary	 effect	 and	 variance-	
based	 GSA	 methods.77	 Two	 GSA	 methods	 have	 been	
used	 in	 PBPK	 modeling	 are	 the	 Morris	 screening	 (an	
elementary	 effect	 method)	 and	 the	 extended	 Fourier	
Amplitude	 Sensitivity	 Test	 (eFAST;	 a	 variance-	based	
method),	 which	 can	 be	 used	 to	 study	 the	 effects	 of	
input	parameters	on	pharmacokinetic	outputs.77–	79	The	
Morris	 test	 is	a	qualitative	 test	 to	 identify	noninfluen-
tial	input	parameters	in	PBPK	modeling,	which	can	be	
fixed	without	consequences	on	output	uncertainty.	It	is	
a	preliminary	test	typically	used	as	a	first	step	in	some	
PBPK	 global	 sensitivity	 analyses	 within	 a	 GSA	 work-
flow	giving	rough	estimations	with	a	limited	number	of	
calculations.76–	78	 The	 Morris	 method	 gives	 two	 meas-
ures	 of	 sensitivity	 consisting	 of	 (μ)	 which	 measures	 a	
variable’s	overall	influence	and	(σ)	which	approximates	
the	nonlinear	effects	of	the	variables	in	the	model	which	
are	then	plotted	on	a	σ	versus	μ	plot.80	Using	the	Morris	
method	(Figure 5),	simulations	that	yield	low	measures	

of	μ	and	low	measures	of	σ	 indicate	that	the	input	pa-
rameter	 has	 a	 negligible	 effect;	 simulations	 that	 yield	
high	μ	 but	 low	σ	 indicate	 that	whereas	 the	parameter	
is	sensitive,	it	still	has	very	little	interaction	with	other	
parameters,	or	that	it	has	linear	effects;	and	simulations	
that	yield	both	high	μ	and	high	σ	 indicate	parameters	
that	 are	 both	 sensitive	 and	 either	 interact	 with	 other	
parameters	or	are	nonlinear.81

On	the	other	hand,	the	eFAST	method	is	a	quantita-
tive	method	for	a	subset	of	explanatory	selected	parame-
ters.	These	selected	parameters	may	be	chosen	from	the	
previously	discussed	Morris	method.	McNally	and	col-
leagues	demonstrated	the	use	of	Lowry	plots	to	display	
how	 much	 variances	 may	 be	 accounted	 for	 in	 model	
outputs	if	all	parameters	are	included	up	a	certain	point	
within	the	plot	as	well	as	discusses	the	calculation	of	the	
upper	and	lower	bounds	of	the	variances.76	More	com-
mon	GSA	methods	may	also	be	applied	to	nanoparticle	
PBPK	model	development	to	assess	outlier	or	counterin-
tuitive	effects	of	certain	parameters	on	the	model.	Good	
practice	in	GSA	application	includes	applying	multiple	
methods,	 reiterating	 choices	 made,	 and	 graphically	 vi-
sualizing	results	for	effective	communication	of	param-
eter	influences.82

MODEL VALIDATION

Model	 validation	 takes	 place	 after	 key	 parameters	 have	
been	determined	by	either	performing	parameter	estima-
tion	or	obtained	through	previous	literature	findings.	This	

(7)Sensitivity Coefficient =
dAUC∕AUC

dp∕p

F I G U R E  5  Results	of	the	Morris	method,	a	qualitative	test,	
can	be	visualized	on	a	σ	versus	μ	plot.	Only	simulations	that	yield	
both	high	σ	and	μ	indicate	parameters	are	both	sensitive	and	either	
interact	with	other	parameters	or	are	nonlinear
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essentially	means	 that	validation	requires	a	different	 set	
of	empirical	data	in	order	to	validate	the	model	built	on	
previous	findings	or	assumptions.

The	 R2	 analysis	 is	 typically	 used	 to	 evaluate	 a	 model	
which	is	based	on	the	deviation	from	the	line	of	unity	be-
tween	 log10	of	measured	and	predicted	values.	Geometric	
standard	deviations	(GSD2)	may	also	be	used	to	further	val-
idate	a	model.	A	GSD2	 less	 than	10	will	 indicate	 that	 the	
accuracies	of	prediction	of	individual	data	points	are	of	max-
imum	one	order	of	magnitude,	for	instance.83	Additionally,	
results	 of	 PBPK	 models	 may	 also	 be	 validated	 based	 on	
either	looking	at	the	percent	(%)	errors	or	fold	errors.	The	
AUC	 and	 maximum	 concentrations	 (Cmax)	 and	 clearance	
(CL)	are	all	model	outputs	that	can	be	used	in	the	validation	
discussion.	Percent	error	is	the	measure	of	the	difference	in	
predicted	and	actual	values	over	the	predicted	values.	These	
values	may	be	 lowered	after	optimization	of	a	model.	For	
example,	 Mavroudis	 and	 colleagues	 showed	 that	 in	 three	
different	formulations	of	paracetamol,	by	lowering	the	gas-
tric	 emptying	 time	 (GET)	 and	 dissolution	 time	 (DT),	 and	
by	altering	the	dissolution	shape	(DS)	parameter,	they	were	
able	 to	 decrease	 the	 percent	 error	 of	 results	 which	 were	
previously	obtained	by	a	different	group.84	Optimization	of	
models	is	a	way	to	further	elucidate	our	understanding	of	
the	impact	of	our	parameters.

Another	method	of	analyzing	the	validity	of	models	is	
through	 the	 use	 of	 average	 fold-	errors,	 which	 are	 ratios	
of	 predicted	 over	 observed	 values.85	This	 method	 is	 typ-
ically	used	in	analyzing	the	validity	of	predicted	CL	and	
other	model	outputs	where	a	2.0	or	less	fold-	error	is	pre-
ferred.85,86	The	absolute	average	fold	error	(AAFE)	is	the	
average	of	all	fold	errors	for	a	particular	model	output87:

where	n	is	the	size	of	the	data.	The	AAFE	value	may	be	plotted	
with	its	SD.	In	one	example,	Zhou	and	colleagues	have	an-
alyzed	the	performance	of	model	in	six	different	age	groups	
under	four	different	drugs	which	yielded	a	0.5–	2.0	fold-	error85:	
The	closer	to	the	predicted/observed	ratio	of	1.0	along	with	
variations	 not	 extending	 beyond	 a	 predetermined	 range,	 in	
this	case,	0.5–	2.0,	the	more	confidence	we	have	in	the	model.	
Other	ways	to	analyze	the	model	based	on	fold-	errors	is	to	plot	
the	percentage	of	data	points	falling	within	a	2.0	fold-	error	or	
plotting	absolute	average	fold-	errors	of	model	outputs	by	var-
ious	model	approaches.87	It	is	important	to	note	the	optimiza-
tion	of	a	model	depends	on	the	reiteration	of	that	model	based	
on	improved	understanding	of	parameter	influences	as	well	
as	error	analysis	results.	Therefore,	effective	PBPK	model	de-
velopment	is	a	workflow	that	relies	on	our	understanding	of:	
how	to	build	the	model	structure	mechanistically,	the	math-
ematical	 framework	 underlying	 the	 biodistribution	 of	 the	
nanoparticles,	the	importance	of	the	contributions	of	each	of	

the	parameters,	and	how	to	evaluate	the	effectiveness	of	the	
model	through	model	validation	methods.

INTERSPECIES EXTRAPOLATION

Although	there	are	a	plethora	of	available	in	vivo	pharma-
cokinetic	data	deriving	from	rodent	studies	that	can	be	used	
as	an	empirical	aspect	to	PBPK	model	development,	there	
remains	 translational	 questions	 regarding	 how	 to	 further	
our	elucidation	of	biodistribution	investigations	and	apply	
that	 in	 the	 clinical	 setting.	 Part	 of	 the	 reason	 for	 PBPK	
modeling	 is	 to	 circumvent	 the	 need	 for	 excessive	 animal	
studies,	and	thereby	reduce	the	resources	needed	to	obtain	
information	 on	 dosing,	 for	 example.	 Mechanistic	 PBPK	
modeling	has	presented	more	of	a	first-	principles	approach	
to	modeling	and	simulating	nanoparticle	drug	biodistribu-
tion.	 Therefore,	 its	 interspecies	 extrapolation	 to	 humans	
also	 requires	 a	 more	 mechanistic	 approach,	 compared	 to	
that	 of	 traditional	 allometric	 scaling.	 Allometric	 scaling	
only	takes	into	account	weight	and	size	factors	but	not	fun-
damental	biochemical	mechanisms,	and	therefore	does	not	
offer	much	more	than	“black	box”	inter-		and	intra-	species	
extrapolation.88	Hall	et	al.	proposed	a	multiscale	biological	
system	model	describing	not	only	the	fate	of	drugs	in	cells,	
tissues,	organs,	and	the	whole	body,	but	also	intra-		and	in-
terspecies	by	scaling:	hepatocytes	to	account	for	metabolic	
activity;	mass	transport	area	to	account	for	mass	transfer	of	
active	transport;	and	remaining	physiological	and	anatomic	
parameters	to	account	for	biodistribution	across	species.88	
Lin	et	al.	also	presented	interspecies	extrapolation	by	scal-
ing	physiological	and	endocytic	parameters	while	keeping	
nanoparticle-	specific	parameters	the	same.89	Whereas	it	is	
possible	 to	scale	endocytic	parameters	based	on	the	mac-
rophage’s	occurrence	within	an	organ	tissue,	their	specific	
kinetic	 parameters	 may	 be	 experimentally	 determined,	
albeit,	 with	 a	 few	 suggestions.	 For	 example,	 primary	 cell	
types	are	preferred	over	immortalized	cell	lines,	and	a	time-	
dependent	study	to	determine	when	the	cells	are	at	maxi-
mum	 uptake	 rate	 as	 well	 as	 a	 concentration-	dependent	
study	to	determine	macrophage	uptake	kinetics.89

CONCLUSION

This	 tutorial	 paper	 gives	 an	 overview	 of	 how	 to	 build	 a	
PBPK	model	for	nanoparticle	drugs	using	a	flow	diagram	
decision-	making	process	which	requires	an	understand-
ing	of	the	nanoparticle	physicochemical	nature.	The	main	
components	of	a	PBPK	model	comprises	the	model	struc-
ture	and	the	pharmacokinetic	mathematical	framework.	
Both	 the	 model	 structure	 and	 the	 mathematical	 frame-
work	 are	 built	 based	 on	 several	 initial	 questions	 which	

Absolute Average Fold Error (AAFE) = 10
1
n

∑���
log
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are:	whether	the	nanoparticle	drugs	are	dissolvable	or	col-
loidal;	and,	if	so,	whether	the	dissolved	nanoparticle	drug	
is	a	large	or	molecular	hydrophilic	drug.	Specifically,	dis-
solvable	nanoparticles	will	need	a	release	term	to	account	
for	 the	 increase	 in	 the	 amount	 of	 drug	 molecules	 from	
nanoparticle	dissolution.	Further,	the	model	for	dissolv-
able	nanoparticles	will	either	take	on	perfusion-	limited	or	
membrane-	limited	structures.	Consequently,	membrane-	
limited	models	do	not	have	a	permeability	term	because	
blood	flow	to	the	organs	are	the	limiting	step	in	the	model.	
Because	colloidal	nanoparticles	do	not	undergo	dissolu-
tion,	a	membrane-	limited	model	is	assumed.	Within	the	
model	 structure,	 anatomic	 and	 physiological	 subcom-
partmentalization	may	be	applied,	and,	thus,	add	further	
complexity	to	the	model.	The	rest	of	the	model-	building	
process	comprises	of	 looking	at	appropriate	general	and	
nanoparticle-	specific	 parameters,	 an	 overview	 of	 sensi-
tivity	analysis	as	well	as	model	validation.	With	a	more	
streamlined	approach	to	building	a	PBPK	model,	as	syn-
thesized	 in	this	paper,	understanding	and	working	with	
pharmacokinetic	modeling	can	be	enhanced.
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