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BACKGROUND

Nanoparticles have distinct properties that make them 
unique in their applications in nanomedicine partly due 
to the high surface area-to-volume ratios which allow for 
functionalization of drug nanocarriers. For instance, me-
tallic nanoparticles, such as iron oxide or gold nanopar-
ticles, can be used in medical imaging.1–3 This rise in the 
use of nanotechnology in medicine has crossed paths with 
pharmacology resulting in the need for understanding 
of biodistribution (distribution throughout the body) of 
drugs and their carriers.

There are a number of different nanocarriers that have 
been used in the development of nano drug delivery sys-
tems. Hossen et al. reviewed several different nanocar-
rier drug delivery systems for cancer therapy, including 

colloidal nanoparticles and liposomes.4 These nanocar-
riers have different roles in how they carry the associ-
ated drugs throughout the body. For example, colloidal 
nanoparticles, such as gold nanoparticles, are a good 
candidate for a drug carrier because they have good bio-
compatibility and can be conjugated to different molecu-
lar species.5 Further, their optical properties as a result of 
surface plasmon resonance make it possible for them to 
be used in imaging purposes.6 Liposomes can be function-
alized to recognize cancer cells while carrying cargos of 
hydrophilic drugs that can be released upon activation.4 
Other drugs are turned into their nanocrystalline form 
to overcome the low solubility in both water and oil.7 
Such nanocrystal drugs have a dissolution rate constant 
that must be taken into account during modeling and 
simulation.
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Abstract
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development and clinical studies. This paper offers a systematic and tutorial-like 
approach to developing a model structure and writing distribution ordinary dif-
ferential equations based on asking binary questions involving the physicochemi-
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Biodistribution of nanoparticles can be modeled in 
silico using pharmacokinetics modeling. Physiologically-
based pharmacokinetic (PBPK) modeling takes into 
account more physiological processes compared to tradi-
tional one-compartment pharmacokinetics modeling and 
is important in the field of pharmacology. The US Food 
and Drug Administration (FDA) regulates PBPK model-
ing for regimenting drug dosages in order to safely predict 
efficacious therapeutic indices for drugs.8 Moreover, PBPK 
modeling is also important in the field of environmental 
science and engineering due to the risk of exposure to toxic 
nanoparticles and the need for rational design of nanopar-
ticles, respectively. PBPK modeling may be further applied 
in areas relating to diagnostics, for example, predicting the 
biodistribution of monoclonal antibodies.9–11

PBPK modeling is a powerful tool used in the research 
and development of drugs partly due to the ability to pre-
dict and understand drug behavior. PBPK modeling may 
be used both, a priori, to mechanistically predict drug dis-
position, as well as, a posteriori, to empirically understand 
drug behaviors by estimating parameters.12 Empirical data 
may also be used to validate model predictions (Figure 1). 
PBPK modeling has been used to study the biokinetics of 
nanoparticle drugs in terms of modeling past experimen-
tal data as well as predicting appropriate dosages through 
simulations.13–17 However, one major limitation that has 
been ascribed to PBPK modeling of nanoparticles is the 
application of the resulting model for only one type of 
nanoparticle at a time.18 Every new nanoparticle formu-
lation would require reparameterization due to changes 
in the physicochemical properties of the particles being 
used in the model as well as how certain factors such as 
cell permeability and macrophage uptake rate may be 
affected. This limitation results in a shortage of models 
that can keep up with the demands of different types of 
nanoparticle drugs being developed in the pharmaceuti-
cal industry. This paper focuses on providing a unifying 
framework—to understand how to develop a nanoparticle 
PBPK model via a systematic approach where major pa-
rameters, model compartments, and physiological factors 
are considered.

COMPARTMENTAL MODEL 
STRUCTURE

PBPK models can consist of many compartments, for ex-
ample, including the venous blood, arterial blood, lungs, 
heart, muscle, brain, kidneys, liver, gut, spleen, adipose 
tissue, skin, and bones.19 Some of these compartments 
may be grouped together depending on their influence on 
biodistribution.20 Venous and arterial blood are sometimes 

considered as one compartment called the plasma or blood 
circulation.21 However, other slightly different combina-
tions of compartments, including the lymph nodes and 
thymus, may also be included, for example.22,23 Most other 
PBPK models incorporate a miscellaneous or remainder 
compartment that may include tissues either insignificant 
or not sampled to further account for the total amount of 
mass of the administered dose.24–27

PBPK model design often consists of both arterial blood 
as well as venous blood compartments in order to account 
for the lag in drug distribution when an i.v. dose is admin-
istered.28 On the other hand, in a single blood circulation 
compartment, any i.v. dose administered will take on the 
presumption that the drug will travel directly to all the or-
gans, in other words, having 100% biodistribution much 
quicker.29,30 More accurately, in a dual blood circulation 
compartment, an i.v. injection will typically take place on 
the accessory cephalic vein, which is located on the back 
of the arm, delivering the drug at the site of the vein carry-
ing deoxygenated blood.28 In experiments involving mice, 
for example, the tail vein is the place of injection into the 
venous blood.

Figure  2 shows the structures of a typical multicom-
partment PBPK model currently used across the litera-
ture for modeling disposition of nanoparticle drugs. The 
multicompartment model structure containing separate 
venous and arterial blood compartments can be slightly 
modified to describe whether the model is flow-limited or 
membrane-limited, or whether or not it contains phagocy-
tizing subcompartments, for instance.

In all parts in Figure 2, the multicompartment PBPK 
model structure utilizes both the venous and the arterial 
blood compartments instead of only one plasma com-
partment. However, a model structure that utilizes one 
plasma compartment for colloidal nanoparticles has also 
been demonstrated to be effective.21 Such a model struc-
ture would experience latency in the calculated distribu-
tion time accounting for blood flowing to the lungs and 
arterial blood before going to peripheral organs.28 In dis-
solvable nanoparticle, membrane-limited structures, a 
structure similar to that of Figure 2d could be used with 
the presence of capillary compartments similar to that of 
Figures 2b and c.

The organ compartments involved in the hepatic por-
tal circulation in Figure 2 are summarized in one com-
partment for the purpose of illustrating a simplified 
model structure. However, these different organs have 
their own designated compartment because they have 
different parameters such as blood flow, organ volume, 
permeability coefficients, and partition coefficients. On 
the other hand, compartments not involved in the phar-
macokinetic study will be grouped together in the model 
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F I G U R E  1   The 10 nm PEG 2000 
colloidal gold nanoparticle biodistribution 
in mice after an i.v. injection. Data 
adapted from Takeuchi et al. The plots 
shown here are in %ID (percent of initial 
doses) versus time drug disposition plots
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F I G U R E  2   Multicompartment PBPK model structures for different hypothetical scenarios. (a) Non-nanoparticle, flow-limited structure 
(with specific examples found in refs. 25,90); (b) nondissolvable, colloidal-nanoparticle, and membrane-limited structure; (c) nondissolvable, 
colloidal-nanoparticle, and membrane-limited structure, with phagocytizing cell subcompartments (with specific examples found in 
refs. 20,31,48); and (d) dissolvable nanoparticle, flow-limited structure (with specific example found in ref. 7). GI, gastrointestinal; PBPK, 
physiologically-based pharmacokinetic
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structure as the remainder compartment. The total organ 
volume of the remainder compartment will be the differ-
ence between the organism’s body weight and the weight 
of the organs already accounted for, including the venous 
and arterial blood. The blood flow to the remainder com-
partment should be similar because they are lowly per-
fused organs, hence a reason for their lack of attention 
in pharmacokinetic studies. As far as colloidal nanoparti-
cles are concerned, their distribution between organs and 
the blood circulation is not a reflection of the thermo-
dynamic equilibrium between two immiscible liquids.31 
Therefore, the “partition” coefficient may be the same 
for similar nanoparticles between the blood and similar 
tissues.

Mathematical framework

Building upon traditional pharmacokinetic frameworks, 
PBPK models for nanoparticles would also incorporate 
specific physiological processes such as macrophage up-
take.7,21,32,33 Distribution equations are used to account for 
the drug’s location within the body after a given amount 
of time. Depending on whether nanoparticles undergo 
certain transitional states, the differential equations gov-
erning a PBPK model can be affected. For instance, for 
nanoparticles undergoing dissolution, the distribution 
equation will need to include a term to account for this 
drug release process.

The construction of the mathematical distribution 
equations depends on our knowledge of the physicochem-
ical nature of the drug. In order to build a model that best 
reflects the underlying biodistribution processes, the mod-
eler should ask questions pertaining to their understand-
ing of the drug formulation, such as:

•	 Whether it is a hydrophilic or hydrophobic substance;
•	 Whether it is a small or large molecule;
•	 Whether the nanoparticles in the formulation will un-

dergo dissolution or not; and
•	 Whether there is macrophage uptake of the nanoparti-

cles or not.

Imposing these questions as a systematic approach to 
developing a PBPK model can streamline the model struc-
ture development process.

The flow diagram in Figure 3 can be used to construct 
a PBPK model structure that is consistent with published 
models reflecting the physicochemical characteristics of 
a drug. For example, in a model for SNX-2112, a poorly 
soluble molecular anticancer drug that was formulated 
into dissolvable nanocrystals for evaluating its disposition 
in rats, used a release constant (krel) in the distribution 
equations, and adopted a flow-limited structure with no 
phagocytizing cell compartment.7 In the case of colloidal 
nanoparticles, nondissolvable nanoparticles are described 
using membrane-limited model structures with phagocy-
tizing cell subcompartments.31,34 Equation 1 begins with 

F I G U R E  3   Shows a flow diagram 
of the basic decision-making process 
in constructing a PBPK mathematical 
framework. The final mathematical 
formulation of the differential equation 
describing the amount of drug in a 
particular organ compartment on the 
physicochemical properties of the drug 
formulation. This process is followed by 
subsequent steps in the model building 
process. PBPK, physiologically-based 
pharmacokinetic
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the basic components of the differential equation utilizing 
the law of mass action:

where dM
dt

 is the rate of change of the amount of drug in com-
partment 2 at time t; Q, with units of volume per time, is the 
blood flow from compartment 1 into compartment 2; C1 and 
C2, with units of amount per volume, are the drug concen-
trations in compartments 1 and 2, respectively; and kp, with 
no units, is the partition coefficient. The partition coefficient 
is the ratio of a substance in two immiscible or slightly mis-
cible solvents in thermodynamic equilibrium. Note that the 
distribution equation for the plasma compartment applies 
the partition coefficient toward the concentration of the 
drugs coming from the lungs and not away from the plasma. 
This is because partition coefficients are applied to concen-
tration of drugs leaving an organ compartment and into a 
plasma compartment. In other words, there is no partition-
ing taking place when drugs enter an organ compartment 
from the plasma. When applying this coefficient to model 
construction for colloidal nanoparticles, it is not thermody-
namic equilibrium between the tissue compartment and the 
circulation that the coefficient reflects. Therefore, a better 
name for partition coefficient in such an instance would be 
distribution coefficient.31

The drug will ultimately be eliminated from the body 
through either renal excretion where drugs will be ex-
creted from the kidneys into the urine, or biliary excretion 
where drugs are excreted into the feces by the bile.35 The 
clearance rate can vary depending on the drug. The mass 
equation ultimately includes the summation of both of 
these processes. Thus, for compartments involving renal 
or biliary excretion:

where dMex

dt
 in units of amount per time, is the rate of excre-

tion of drugs; Ml is the amount of nanoparticles in the liver 
tissue; Mk is the amount of nanoparticles in the kidney’s 
capillary blood; CLb, in units of time−1, is the clearance to 
feces from the liver tissue; and CLr, in units of time−1 is the 
clearance to urine from the kidney’s capillary blood.

Nanoparticle transitions

In oral administration, whether the drug is subject to 
quick or slow release, it is only the bioavailability—the 

proportion of drug that enters the circulation—that has 
its active effect, which varies from formulation to formu-
lation. It is assumed that once the drug reaches the circu-
lation, its biodistribution does not depend on dissolution 
kinetics inside the circulation because all of the dissolu-
tion has already taken place. Nanoparticle formulations, 
where cargos of drugs are loaded or where the drug mol-
ecules form nanocrystals through self-assembly, for ex-
ample, require the use of decomposition or dissolution 
kinetics in formulating a PBPK model, because additional 
time is needed for the nanoparticle state to decompose or 
dissolve into the free drug state. Nanoparticle drug deliv-
ery systems containing drugs which could later be released 
in the systemic circulation and in organ compartments, 
would include a term to describe the transition between 
the nanoparticle and the dissolved states. This transition 
may be integrated into PBPK modeling. In this case, re-
lease constants are needed in the distribution equations. 
These constants may be measured or obtained from the 
literature via prior in vitro studies.

One physiological phenomenon that can affect nanopar-
ticle states is the formation of what was initially coined 
as protein coronas, which has been studied since at least 
2007.36 It is a phenomenon in which a protein adsorption 
layer is formed around a foreign colloidal nanoparticle.36–39 
The adsorbed proteins may include fibrinogen, vitronectin, 
human serum albumin, and cytochrome C.40 A mechanis-
tic study has shown surface properties of nanoparticles 
play an important role in determining interactions with the 
host’s immune responses even more so than nanoparticle 
sizes when these particles are initially introduced into the 
circulation.41 The formation of protein coronas involves 
both hetero- and homo-aggregation, where nanoparticles 
aggregate with proteins or with themselves, respectively, 
based on ionic concentration of the environment.39 The ef-
fect of protein coronas can act as a confounding variable af-
fecting cell-specific targeting and uptake of nanoparticles, 
for example.42 The formation of this corona layer around 
nanoparticles does beg the question of whether or not this 
plays into the kinetics of dissolution, and thus, the PBPK 
model itself. In fact, some efforts do exist in order to ex-
plain the kinetics of the protein corona.40,43 In light of this 
knowledge, the pharmacokineticist must decide whether 
or not to take into account the effects of this protein corona. 
A global sensitivity analysis may help determine the in-
fluence of a parameter, and, in this case, the rate of dis-
solution of nanoparticulate drugs having a protein corona 
layer. Understanding that the state of nanoparticulate 
drugs need to be taken into account will allow the pharma-
cokineticist to incorporate dissolution equations into the 
PBPK models. Additionally, nanoparticulate drugs may 
not always decompose through dissolution, as in the case 
of nanocrystals of SNX-2112.7 Rather, they may be released 

(1)
dM2

dt
= Q ×

(

C1 −
C2
kp

)

(2)dM

dt
= Q ×

(

C1 −
C2
kp

)

−
dMex

dt

(3)dMex

dt
=
(
Ml × CLb +Mk × CLr

)
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through other means. For example, drugs may be packaged 
in mesoporous nanoparticles that can released via various 
triggering mechanisms.44 Moreover, nanoparticles may 
be delivered to the circulation in lipid-based vesicles, via 
functionalized-gold nanoparticles as carriers, or even in mi-
celles.45–47 Thus, understanding of the drug release mech-
anisms of the different formulations is needed in order to 
take into account the drug release term in the PBPK model. 
Understanding the chemicophysical properties of the drug 
(i.e., dissolvable vs. colloidal and membrane-limited vs. 
diffusion-limited) is crucial in designing the model struc-
ture because these properties dictate the inclusion of addi-
tional reactions and compartments.

When nanoparticle formulations are used, the release 
of drugs through dissolution can occur and a release 
constant is needed in the calculation. However, colloidal 
nanoparticles used as drug carriers or as contrast agents in 
magnetic imaging modalities do not undergo dissolution 
and therefore there will not be any inclusion of dissolution 
reaction in the model. This can further affect whether the 
particles will take on a diffusion-limited or membrane-
limited structure of the model, for instance.

Dissolvable nanoparticles

Dissolvable nanoparticles undergo dissolution in the aque-
ous milieu. Therefore, subsequent to an i.v. administra-
tion, a first-order release term with constant krel must be 
used to account for this dissolution process in the plasma. 
An example of the utilization of krel is demonstrated in Wu 
et al. where biodistribution of nanocrystals of an antican-
cer agent SNX-2112 was modeled.7 Where nanoparticle 
dissolution takes place, a term must be used to account for 
the change in the amount of dissolved drug with respect 
to time. Therefore, the distribution equation describing 
the nanoparticle amount while considering dissolution in 
compartments will include −

(
krel × Vt × C

)
 and the dis-

tribution equation describing the corresponding dissolved 
drug will include +

(
krel × Vt × C

)
 such that:

where Vt is the volume of the compartment where dis-
solution is taking place and C is the concentration of 
the nanoparticle drug before dissolution in that com-
partment (either compartment 1 or 2). Of course, if 
all nanoparticles dissolve completely in the venous 
blood compartment (i.e., after i.v. administration), then 
nanoparticle dissolution will no longer apply to subse-
quent compartments. However, all of that will depend on 
the krel constant.

Colloidal nanoparticles

Colloidal nanoparticles do not dissolve in aqueous milieu 
and there is no evidence of dissolution in the circulation.31 
Therefore, the release constant is not included. Thus, 
crossing the membrane into the intracellular fluid would 
be a rate-limiting step and the distribution equation will 
be multiplied by a term describing permeability under the 
membrane-limited framework, as presented previously by 
Li et al.48:

Where X is the unitless permeability coefficient. Notice 
that the distribution equation is directly affected by the 
derived term X

1+X
. This term is a result of the nanoparticle 

residence time in the capillary being small compared to its 
residence time in tissue compartments. Therefore, the 
capillary is considered as a quasi-compartment and not 
taken into account during the derivation process.48 The 
resulting term summarizes permeability between arterial/
venous and tissue compartments.

Perfusion (flow)-limited versus Diffusion 
(membrane)-limited models

Generally, the PBPK model is either a diffusion-limited 
(permeability-limited) or a perfusion-limited (flow-
limited) model.49–51 However, in certain cases, it can be 
both. Perfusion-limited models are utilized where small 
lipophilic molecules can partition into tissues rapidly and 
the rate of blood flow is the limiting rate. Compounds 
that are large and hydrophilic have a harder time cross-
ing the cell membrane and therefore diffusion-limited 
(membrane-limited) models would be utilized to model 
the disposition of those compounds.18 On the other hand, 
hydrophobic or small compounds have an easier time 
crossing the cell membrane and thus perfusion-limited 
(or flow-limited) models would be utilized. In the case of 
gold nanoparticles, the proposed PBPK framework will be 
a membrane-limited model in order to take into account 
the rate limiting effects of nanoparticles crossing the cell 
membranes. Therefore, the model will describe the capil-
lary blood and the tissue compartments separately.48

In diffusion-limited (membrane-limited) models, the 
rate of biodistribution depends on the permeability of the 
membrane with respect to the drug. However, in perfusion-
limited (flow-limited) models, the rate-limiting step resides 
in the tissue partitioning of the drug. Identifying where the 
rate-limiting step will help to determine the paradigm of 
biodistribution of drugs. Further, the flow and connectivity 

(4)
dM2

dt
= Q ×

(

C1 −
C2
kp

)

±
(
krel × Vt × C

)

(5)dM

dt
= Q ×

(

C1 −
C2
kp

)

×
X

1 + X
−
dMex

dt
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of the organs will provide an overall picture of the PBPK 
model where differential equations may be applied to re-
flect the connections between organ compartments.

SUBCOMPARTMENTALIZATION

Anatomic subcompartmentalization

It is beneficial to consider anatomic subcompartmentaliza-
tion in some instances. For example, an intestinal model 
can anatomically break down the gut into subcompart-
ments because enterocytes—which are intestinal absorp-
tive cells—can line the walls of the stomach all the way 
to the colon.52–55 This subcompartmentalization is impor-
tant because the ultimate possible routes where the drug 
ends up after an oral administration may not only be ex-
cretion through the colon, but also absorption through-
out the different anatomic subcompartments within the 
gut where the drug can travel into the hepatic portal vein. 
Subcompartmentalization details several different other 
compartments that exist within a main compartment of the 
PBPK model and thus helps to improve results leading to 
better model validation. Subcompartmentalization in PBPK 
modeling has also been performed in the lungs, dermal, and 
nasal tissue.50,56,57 In one instance, modeling of pulmonary 
drug biodistribution where detailed subcompartments of 
different regions of the lungs, including the right and left 
lungs, and lower and upper airways have been considered.50

Physiological subcompartmentalization

Colloidal nanoparticles do not dissolve in the aqueous 
milieu and therefore will encounter the body’s immune 
response via macrophage uptake. Macrophage uptake 
may also be taken into account in the PBPK model with 
a phagocytizing cell (PC) compartment, which will ac-
count for clearance of nanoparticle drugs. Currently, 
macrophage uptake is composed of two basic different 
steps, which include absorption governed by the rate 
constant kab and desorption governed by the rate con-
stant kde via the law of mass action34 (shown in Figure 4). 
Absorbed nanoparticles are ultimately released by the 
macrophage. The resident amount of time that any 

foreign substance possesses in a particular organ tissue 
is reflected in the equilibrium between the absorption 
and desorption rates.

Figure  4 shows the PCs being used as a physiologi-
cal subcompartment. In these instances, the distribution 
equation for a compartment with high concentrations of 
macrophages, such as in the liver where there is high oc-
currence of Kuppfer cells, will need to account for the ab-
sorption and desorption processes:

where V2 is the volume of organ in compartment 2; C2 is 
the concentration of nanoparticles in organ compartment 
2; kab is the uptake rate of nanoparticles by phagocytizing 
cells in organ compartment 2; kde is the desorption rate 
of nanoparticles by phagocytizing cells in organ compart-
ment 2; and M2,m is the amount of nanoparticles captured 
by phagocytizing cells in organ compartment 2. Organ 
compartment 2 was used in this example for absorption 
and desorption because it represents the compartment 
containing the nanoparticle drugs being calculated.

Whereas some compartmental models currently used 
in the literature for PBPK modeling do account for macro-
phage uptake, these models may not account for the exis-
tence of confounding variables in the phagocytizing events. 
For instance, they may not consider the effects of adsorption 
and internalization, which can affect the maximum uptake 
constant. The importance of considering adsorption and 
internalization of nanoparticles when it comes to cellular 
uptake was demonstrated by Yeo and colleagues where dif-
ferential labeling using electron microscopy revealed three 
different processes, including “attachment,” “in between,” 
and “internalized.”58 Wilhelm and colleagues have further 
approached the topic using superparamagnetic iron oxide 
nanoparticle’s (SPIONS’s) interactions with macrophages 
and built a mathematical framework around their adsorp-
tion and internalization kinetics.59 The progression of the 
macrophage uptake process, including both adsorption 
and internalization, was validated further by epifluores-
cence microscopy.58 Development of the subcompartmen-
talization of macrophage uptake can further be validated 
with semiqualitative data from the literature.58 Much of 
the literature shows macrophage uptake data that includes 
consideration for absorption and desorption. For example, 
Liu et al. discusses a quantitative approach to obtaining 
absorption (kin) and desorption (kout) hepatic constants.60 
The current inclusion of macrophages as a “compartment” 
within PBPK modeling makes several assumptions, includ-
ing homogeneity of macrophages’ uptake rate. Additional 
consideration regarding what affects adsorption and 

(6)

dM2

dt
= Q ×

(

C1 −
C2
kp

)

×
X

1 + X
+
[(
kde ×M2,m

)
−
(
kab × V2 × C2

)]

F I G U R E  4   Phagocytizing cells as a physiological sub-
compartment within compartments with high concentrations of 
macrophage
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internalization may be helpful to understanding the overall 
phagocytizing process. Qie et al. have shown that surface 
modification of nanoparticles can influence phagocytic 
clearance.61

PARAMETERS

Non-nanoparticle specific parameters

Input parameters are key for PBPK model simulations. 
Input parameters describe three types of properties: physic-
ochemical properties; drug-biological properties; and ana-
tomic and physiological properties.62 Parameters that come 
from physicochemical properties are drug-dependent and 
include the partition coefficient, pH-dependent partition 
coefficient, membrane affinity, molecular weight, equilib-
rium constants, and solubility.49,62 Parameters that come 
from drug-biological properties depend on both drug and 
organism properties. These parameters include fraction of 
unbound drugs, Michaelis-Menten constant, dissociation 
constant, and maximum velocity. Because drug-biological 
properties depend not only on the organism but also the 
drugs, partition coefficients and permeability of drugs are 
also considered as drug-biological properties for they de-
pend on both the organism and the physicochemical prop-
erties of the drug. Parameters deriving from anatomic or 
physiological properties (organ-specific) include organ 
volume, surface areas, tissue composition, blood flow 
rates, and expression levels.63 Some of these parameters 
are used in PBPK modeling to predict the pharmacoki-
netic disposition for different populations. For example, 
expression levels can help determine the gene expression 
for a group of metabolizing enzymes in different organs 
for different populations.62,64–69 Gene expression data may 
be represented as a normalized relative value with respect 
to the tissue or organ with the highest expression.62 Thus, 
with different metabolizing enzyme expressions, results 
for clearance will be reflected in different populations 
having different levels of expression. Using gene expres-
sion data can aid the PBPK model in achieving resolution 
in the amount of metabolizing enzymes as well as other 
physiological parameters that aid in determining the dos-
ing regimen.64,65

Nanoparticle-specific parameters

PBPK models built for nanoparticles will also include 
nanoparticle-specific parameters, which may include 
nanoparticle release constant, maximum uptake rate in 
phagocytic cells, Hill coefficient, and phagocytic cells re-
lease constant (desorption). Tables 1 and 2 show examples 

of important organ-specific and nanoparticle-specific pa-
rameters used in nanoparticle PBPK modeling.

Some of the parameters, such as liver transporter ki-
netic data, metabolic enzymes (CYPs), permeability data, 
and transporter-mediated uptake, can be determined via 
in vitro experiments and then applied to different stages 
of absorption, distribution, metabolism, and excretion of 
the PBPK model to obtain simulated in vivo data.50,51,70,71 
More specifically, nanoparticle-related parameters, such 
as macrophage uptake rate and desorption rate constants, 
may be determined in vitro and then applied to a nanopar-
ticle PBPK model.

Parameter estimation

Predicting biodistribution requires accurate input param-
eters. Although many parameters may be obtained through 
established literature sources, some cannot be relied upon 

T A B L E  1   Typical organ-specific parameters used in both 
nanoparticle and non-nanoparticle PBPK modeling

Organ specific parameters Unit Value

Organ volumes based on % of body weighta

Lungs Liter 0.0001

Heart Liter 9.5E−5

Brain Liter 0.00017

Spleen Liter 0.0001

Kidneys Liter 0.00034

Liver Liter 0.0013

Pancreas Liter 0.00013

Stomach Liter 0.00011

Arterial blood Liter 0.000228182

Venous blood Liter 0.000524818

Blood flowb

Lungs l/min 5.47E−3

Heart l/min 2.80E−4

Brain l/min 1.30E−4

Spleen l/min 9.00E−5

Kidneys l/min 1.30E−3

Liver l/min 3.50E−4

Pancreas l/min 5.20E−5

Stomach l/min 1.10E−4

Portal vein l/min 1.75E−3

Abbreviation: PBPK, physiologically-based pharmacokinetic.
aCan also be calculated by taking the percentage of the weight of a mouse 
in (g) to give the organ volume in (ml). Other sources in the literature 
include.28,48,91–93 However, these values are based on 20 g mouse calculated 
by PK-Sim 8 database.
bBased on values obtained by PK-Sim 8 database for the mouse.
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for predicting biodistribution. When nanoparticle phar-
macokinetic disposition is needed for a new formulation, 
prior parameter estimates and some assumptions may be 
used. For example, blood flow may be obtained from the 
literature. Uptake capacity values may be recycled from PK 
parameters of nanoparticles with similar physical proper-
ties. However, one must use some caution in relying on 
predetermined nano-specific parameters when dealing 
with nanoparticles even with a slight change in the surface 
chemistry which can affect their interactions, for example, 
with macrophages or membranes, and thus can ultimately 
affect the macrophage uptake rate or permeability coeffi-
cients. Therefore, to obtain a good model fit to biodistribu-
tion data, a parameter optimization process is needed. For 
parameter optimization, only a select group of parameters 
would be required to be optimized. Because organ-specific 
parameters (Table  1) can readily be obtained from data-
bases as well as being values of minimal variation, these 
parameters can be exempt from optimization. If we know 
the range of plausible values for a parameter being opti-
mized, constraints may be added to the parameters being 
optimized. A variety of local and global optimization tech-
niques can be found in the literature and implemented on 
MATLAB, for example.72,73 Optimizing parameters will not 
only provide the best-fit model, it also allows the researcher 
to compare parameters under different nanoparticle for-
mulations. Thus, providing a way to study the effects of 

different engineered nanoparticles on their corresponding 
estimated parameters.

Sensitivity analysis

Sensitivity analysis (SA) generates sensitivity indices 
for each of the parameters to gauge the effects on model 
output when input parameters are varied. The difference 
between global and local SAs is that local SA assesses vari-
ation in model output based on the changes of one parame-
ter at a time (while all other parameters are held constant), 
whereas global SA examines not only the overall model re-
sponse based on variation in all input parameters but also 
the variance in model output due to interactions between 
parameters. SA tests can help to reduce model complexity 
and elucidate highly sensitive parameters. Conceptually, 
SA tests for nanoparticle PBPK models should be the same 
as for non-nanoparticle ones. Nanoparticle-specific param-
eters, such as macrophage uptake absorption and desorp-
tion constants, may be of interest.

Local SA

Every PBPK model developed that reflects the spe-
cific virtual population as well as the nanoparticulate/

T A B L E  2   An example of colloidal nanoparticle specific parameters taking into account the reticulo-endothelial system (macrophage 
uptake) of nanoparticles

Description Lungs Heart Liver Kidneys Spleen Pancreas Brain Stomach

Nanoparticle specific parameters

Unitless Partition 
(distribution 
coefficient)a

0.15 0.15 0.08 0.15 0.15 0.15 0.15 0.15

Unitless Permeability 
coefficient 
between blood 
and tissueb

0.001 0.000001 0.001 0.001 0.03 0.000001 0.000001 0.000001

h−1 Max uptake rate 
constant for PCb

Generic Generic Generic Generic 0.112 ± 	
0.000990

Generic Generic Generic

h−1 PC release 
(desorption) 
rate constantb

Generic Generic Generic Generic Generic Generic Generic Generic

L/h Excretion rate 
constantc

N/A N/A 1.18 × 10–2 	
± 2.92 × 10–4

6.56 × 10–3 	
± 5.35 × 10–5

N/A N/A N/A N/A

Note: According to Li and other sources in the literature, arterial and venous blood take up 20% and 80% of the total body blood, respectively.31,48

aTaken from the table in ref. 31 which also come from other sources. Source provides data for the liver, spleen, kidneys, lungs, brain, and the rest of the body. 
Therefore, any organ compartment not directly provided by source, rest of the body values are used.
bValues obtained from ref. 83. Some assumptions were made since these values were used for rats under different colloidal nanoparticles. Generic values are 
equal to 16.1 ± 0.306 for absorption and 4.90 × 10−19 ± 7.26 × 10−17 for desorption.
cValues obtained from ref. 83
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nonparticulate drug system used will have a unique 
concentration-time curve for any particular compart-
ment based on the input parameters. The degree of influ-
ence of a parameter on the concentration-time curve may 
not be obvious without an SA. Typically, two approaches 
have been used for local PBPK SA tests. One approach is 
to multiply or divide each parameter by a predetermined 
value and observe the concentration output or amount of 
nanoparticles in each of the compartment with respect 
to time. Another approach is to measure the change in 
the area under the curve (AUC) after a 1% change in the 
parameter value.34,74 More specifically:

where AUC is the area under the concentration-time curve 
in a compartment and dAUC is the change in AUC of that 
compartment reflecting a 1% change in the parameter 
dp/p = 0.01.34,74,75 When conducting a sensitivity analysis, 
the higher the sensitivity coefficient for a parameter, the 
larger the influence of that parameter on the model output 
for a particular compartment. However, the equation above 
only gives the local sensitivity coefficient. A more global 
and systematic approach to sensitivity analysis is needed to 
show the influence of a parameter over a set of all possi-
ble input parameters.76 Further, local sensitivity analysis is 
only appropriate when interactions between parameters are 
negligible.76

Global SA

Global sensitivity analysis (GSA) falls into one of two 
categories, which are elementary effect and variance-
based GSA methods.77 Two GSA methods have been 
used in PBPK modeling are the Morris screening (an 
elementary effect method) and the extended Fourier 
Amplitude Sensitivity Test (eFAST; a variance-based 
method), which can be used to study the effects of 
input parameters on pharmacokinetic outputs.77–79 The 
Morris test is a qualitative test to identify noninfluen-
tial input parameters in PBPK modeling, which can be 
fixed without consequences on output uncertainty. It is 
a preliminary test typically used as a first step in some 
PBPK global sensitivity analyses within a GSA work-
flow giving rough estimations with a limited number of 
calculations.76–78 The Morris method gives two meas-
ures of sensitivity consisting of (μ) which measures a 
variable’s overall influence and (σ) which approximates 
the nonlinear effects of the variables in the model which 
are then plotted on a σ versus μ plot.80 Using the Morris 
method (Figure 5), simulations that yield low measures 

of μ and low measures of σ indicate that the input pa-
rameter has a negligible effect; simulations that yield 
high μ but low σ indicate that whereas the parameter 
is sensitive, it still has very little interaction with other 
parameters, or that it has linear effects; and simulations 
that yield both high μ and high σ indicate parameters 
that are both sensitive and either interact with other 
parameters or are nonlinear.81

On the other hand, the eFAST method is a quantita-
tive method for a subset of explanatory selected parame-
ters. These selected parameters may be chosen from the 
previously discussed Morris method. McNally and col-
leagues demonstrated the use of Lowry plots to display 
how much variances may be accounted for in model 
outputs if all parameters are included up a certain point 
within the plot as well as discusses the calculation of the 
upper and lower bounds of the variances.76 More com-
mon GSA methods may also be applied to nanoparticle 
PBPK model development to assess outlier or counterin-
tuitive effects of certain parameters on the model. Good 
practice in GSA application includes applying multiple 
methods, reiterating choices made, and graphically vi-
sualizing results for effective communication of param-
eter influences.82

MODEL VALIDATION

Model validation takes place after key parameters have 
been determined by either performing parameter estima-
tion or obtained through previous literature findings. This 

(7)Sensitivity Coefficient =
dAUC∕AUC

dp∕p

F I G U R E  5   Results of the Morris method, a qualitative test, 
can be visualized on a σ versus μ plot. Only simulations that yield 
both high σ and μ indicate parameters are both sensitive and either 
interact with other parameters or are nonlinear
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essentially means that validation requires a different set 
of empirical data in order to validate the model built on 
previous findings or assumptions.

The R2 analysis is typically used to evaluate a model 
which is based on the deviation from the line of unity be-
tween log10 of measured and predicted values. Geometric 
standard deviations (GSD2) may also be used to further val-
idate a model. A GSD2 less than 10 will indicate that the 
accuracies of prediction of individual data points are of max-
imum one order of magnitude, for instance.83 Additionally, 
results of PBPK models may also be validated based on 
either looking at the percent (%) errors or fold errors. The 
AUC and maximum concentrations (Cmax) and clearance 
(CL) are all model outputs that can be used in the validation 
discussion. Percent error is the measure of the difference in 
predicted and actual values over the predicted values. These 
values may be lowered after optimization of a model. For 
example, Mavroudis and colleagues showed that in three 
different formulations of paracetamol, by lowering the gas-
tric emptying time (GET) and dissolution time (DT), and 
by altering the dissolution shape (DS) parameter, they were 
able to decrease the percent error of results which were 
previously obtained by a different group.84 Optimization of 
models is a way to further elucidate our understanding of 
the impact of our parameters.

Another method of analyzing the validity of models is 
through the use of average fold-errors, which are ratios 
of predicted over observed values.85 This method is typ-
ically used in analyzing the validity of predicted CL and 
other model outputs where a 2.0 or less fold-error is pre-
ferred.85,86 The absolute average fold error (AAFE) is the 
average of all fold errors for a particular model output87:

where n is the size of the data. The AAFE value may be plotted 
with its SD. In one example, Zhou and colleagues have an-
alyzed the performance of model in six different age groups 
under four different drugs which yielded a 0.5–2.0 fold-error85: 
The closer to the predicted/observed ratio of 1.0 along with 
variations not extending beyond a predetermined range, in 
this case, 0.5–2.0, the more confidence we have in the model. 
Other ways to analyze the model based on fold-errors is to plot 
the percentage of data points falling within a 2.0 fold-error or 
plotting absolute average fold-errors of model outputs by var-
ious model approaches.87 It is important to note the optimiza-
tion of a model depends on the reiteration of that model based 
on improved understanding of parameter influences as well 
as error analysis results. Therefore, effective PBPK model de-
velopment is a workflow that relies on our understanding of: 
how to build the model structure mechanistically, the math-
ematical framework underlying the biodistribution of the 
nanoparticles, the importance of the contributions of each of 

the parameters, and how to evaluate the effectiveness of the 
model through model validation methods.

INTERSPECIES EXTRAPOLATION

Although there are a plethora of available in vivo pharma-
cokinetic data deriving from rodent studies that can be used 
as an empirical aspect to PBPK model development, there 
remains translational questions regarding how to further 
our elucidation of biodistribution investigations and apply 
that in the clinical setting. Part of the reason for PBPK 
modeling is to circumvent the need for excessive animal 
studies, and thereby reduce the resources needed to obtain 
information on dosing, for example. Mechanistic PBPK 
modeling has presented more of a first-principles approach 
to modeling and simulating nanoparticle drug biodistribu-
tion. Therefore, its interspecies extrapolation to humans 
also requires a more mechanistic approach, compared to 
that of traditional allometric scaling. Allometric scaling 
only takes into account weight and size factors but not fun-
damental biochemical mechanisms, and therefore does not 
offer much more than “black box” inter- and intra-species 
extrapolation.88 Hall et al. proposed a multiscale biological 
system model describing not only the fate of drugs in cells, 
tissues, organs, and the whole body, but also intra- and in-
terspecies by scaling: hepatocytes to account for metabolic 
activity; mass transport area to account for mass transfer of 
active transport; and remaining physiological and anatomic 
parameters to account for biodistribution across species.88 
Lin et al. also presented interspecies extrapolation by scal-
ing physiological and endocytic parameters while keeping 
nanoparticle-specific parameters the same.89 Whereas it is 
possible to scale endocytic parameters based on the mac-
rophage’s occurrence within an organ tissue, their specific 
kinetic parameters may be experimentally determined, 
albeit, with a few suggestions. For example, primary cell 
types are preferred over immortalized cell lines, and a time-
dependent study to determine when the cells are at maxi-
mum uptake rate as well as a concentration-dependent 
study to determine macrophage uptake kinetics.89

CONCLUSION

This tutorial paper gives an overview of how to build a 
PBPK model for nanoparticle drugs using a flow diagram 
decision-making process which requires an understand-
ing of the nanoparticle physicochemical nature. The main 
components of a PBPK model comprises the model struc-
ture and the pharmacokinetic mathematical framework. 
Both the model structure and the mathematical frame-
work are built based on several initial questions which 

Absolute Average Fold Error (AAFE) = 10
1
n

∑���
log
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observed
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are: whether the nanoparticle drugs are dissolvable or col-
loidal; and, if so, whether the dissolved nanoparticle drug 
is a large or molecular hydrophilic drug. Specifically, dis-
solvable nanoparticles will need a release term to account 
for the increase in the amount of drug molecules from 
nanoparticle dissolution. Further, the model for dissolv-
able nanoparticles will either take on perfusion-limited or 
membrane-limited structures. Consequently, membrane-
limited models do not have a permeability term because 
blood flow to the organs are the limiting step in the model. 
Because colloidal nanoparticles do not undergo dissolu-
tion, a membrane-limited model is assumed. Within the 
model structure, anatomic and physiological subcom-
partmentalization may be applied, and, thus, add further 
complexity to the model. The rest of the model-building 
process comprises of looking at appropriate general and 
nanoparticle-specific parameters, an overview of sensi-
tivity analysis as well as model validation. With a more 
streamlined approach to building a PBPK model, as syn-
thesized in this paper, understanding and working with 
pharmacokinetic modeling can be enhanced.
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