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Abstract: This paper investigates a piezoelectric energy harvester that consists of a piezoelectric
cantilever and a tip mass for horizontal rotational motion. Rotational motion results in centrifugal
force, which causes the axial load on the beam and alters the resonant frequency of the system. The
piezoelectric energy harvester is installed on a rotational hub in three orientations—inward, outward,
and tilted configurations—to examine their influence on the performance of the harvester. The
theoretical model of the piezoelectric energy harvester is developed to explain the dynamics of the
system and experiments are conducted to validate the model. Theoretical and experimental studies
are presented with various tilt angles and distances between the harvester and the rotating center.
The results show that the installation distance and the tilt angle can be used to adjust the resonant
frequency of the system to match the excitation frequency.
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1. Introduction

Piezoelectric energy harvesting has attracted great attention in the past decade because of
the demand for self-powered electronics, such as sensors [1–4], pacemakers [5,6], and mobile
devices [7]. Several review papers have examined the development and evaluated the feasibility
of using piezoelectric energy harvesting as an energy source for electronics [8,9]. A conventional
piezoelectric energy harvester (PEH) has a cantilever structure with one or two piezoelectric patches
attached for power generation. Many studies have been conducted to study the cantilevered PEH under
base excitations. The mathematical model has been deeply discussed in the literature [10–14]. Although
a cantilevered PEH has the advantage of simplicity, its resonant frequency needs to be properly tuned to
match the excitation frequency in order to achieve high power output. In order to improve performance,
different techniques have been adopted to achieve frequency tuning for piezoelectric energy harvesting
from rectilinear excitations. Hu et al. [15] and Eichhorn et al. [16] utilized a screw to adjust the axial
preload of a PEH to tune its resonant frequency. Magnetic force [17–19] has also been used to change
the equivalent stiffness of PEHs. Alternatively to mechanical tuning, Moral et al. [20] and Brenes et
al. [21] utilized the synchronized electrical charge extraction technique to perform frequency tuning
for a strongly coupled piezoelectric energy harvester.

Besides scavenging kinetic energy from base excitations, PEHs can also be used to convert kinetic
energy from rotational motion into electrical energy. Rotational PEHs can be categorized into two
types. The first type contains a stator and a rotating hub, and these two components are coupled by
magnetic force [22–26] or contact force [27]. When the rotating hub runs, reciprocating force will be

Sensors 2020, 20, 1206; doi:10.3390/s20041206 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-7242-5628
https://orcid.org/0000-0001-7434-703X
http://www.mdpi.com/1424-8220/20/4/1206?type=check_update&version=1
http://dx.doi.org/10.3390/s20041206
http://www.mdpi.com/journal/sensors


Sensors 2020, 20, 1206 2 of 12

generated to excite the PEH. Several studies [22–24] achieved energy harvesting from human motion
by attaching a magnet on a freely rotating eccentric mass and relied on the magnetic force to pluck
a piezoelectric cantilever with a tip magnet. Fu and Yeatman [25] discussed the influence of the
arrangement of the rotating magnets and the beam on the performance of the PEH. Shu et al. [26]
analyzed a rotary magnetic plucking PEH with a rectifier circuit. The other type of rotational energy
harvesting is to mount a PEH on a horizontal rotating hub. As the hub rotates, the direction of the
gravitational force varies with respect to the hub to excite the PEHs [28–42]. Although the excitation
force caused by the gravity under rotational motion is similar to that caused by rectilinear excitations,
the centrifugal force may affect the mechanical characteristics of the rotational PEHs. Gu et al. [28]
and Hsu et al. [29] proposed an outwardly installed cantilevered PEH that used a tip mass at the
free end for rotational energy harvesting. The resonant frequency of the PEH was passively tuned
by the centrifugal force that changed with the rotational speed. Rui et al. [30] determined a design
parameter for the outwardly installed rotational cantilevered PEH to optimize the self-tuning effect
and achieve broadband harvesting. Guan and Liao [31] installed the PEH in the inward orientation
and made the tip mass close to the rotating center to achieve a small centrifugal force. Instead of
directly exciting the piezoelectric beam, Gu and Livermore [32] proposed a PEH composed of a driving
beam with a tip mass and a driven piezoelectric beam. The driving beam was excited by the rotational
motion and its tip hit the piezoelectric beam to generate energy. Wang et al. [33] proposed a self-tuning
PEH for rotational motion. The resonant frequency could be adjusted by changing the effective
length of the beam due to centrifugal force under rotational motion. Hsieh et al. [34] developed the
theoretical model of a rotational PEH in outward, inward, and transverse configurations to examine
their impact on the resonant frequency of the PEH. Instead of frequency tuning, Sadeqi et al. [35]
proposed a broadband PEH by attaching a spring-mass system to a piezoelectric beam. By properly
tuning the resonant frequency of the spring-mass system, the first two resonant frequencies of the PEH
became close enough to form a broad bandwidth. Febbo et al. [36] and Ramírez et al. [37] utilized a
multi-degree-of-freedom PEH composed of a multibeam structure to achieve low-frequency rotational
energy harvesting. Bistable PEHs consisting of a piezoelectric cantilever beam and a pair of magnets
were presented for rotational motion and showed the capability of broadband harvesting [38–41].
Zou et al. [42] developed a rotational PEH that consisted of two beams coupled by magnetic force to
improve the bandwidth.

In the literature, a cantilevered rotational PEH in the inward and outward configurations at
different installation distances has been investigated. However, there are no studies of the relationship
between the installation angle and the dynamic characteristics of the rotational PEH. In this paper,
we analyze the influence of the installation orientation of the rotational PEH on its performance. The
theoretical model is derived and experimentally verified. This paper is organized as follows. The
configurations of the PEH and its model are presented in Section 2, as well as the experimental set-up.
The theoretical and experimental results are depicted in Section 3. Finally, conclusions are drawn in
Section 4.

2. Materials and Methods

Figure 1 shows the PEH in three different orientations: outward, inward, and tilted configurations.
The orientation of the PEH influences the direction of the centrifugal force acting on the beam. Note that
the outward and inward configurations are the tilted configuration when θ is 0◦ and 180◦, respectively.
Therefore, the derivation of the model focused on the tilted configuration. The distance between the
rotating center and the fixed end of the PEH is represented as r0.
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Figure 1. The piezoelectric energy harvester (PEH) under rotational motion in different orientations: 
(a) the outward configuration, (b) the inward configuration, and (c) the tilted configuration. 

2.1. Modeling of the Proposed PEH 

The schematic of the PEH is shown in Figure 2. The PEH was a cantilevered beam with a partially 
covered piezoelectric layer. A tip mass was attached to the free end of the beam. The beam is was 
considered as a two-segment structure. The force and moment acting on the beam in the tilted 
configuration and an infinitesimal element of the beam is illustrated in Figure 3. The model is based 
on Euler–Bernoulli beam theory. Considering the inertial forces and the electromechanical coupling 
term, the equation of motion can be written as: 
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Figure 1. The piezoelectric energy harvester (PEH) under rotational motion in different orientations:
(a) the outward configuration, (b) the inward configuration, and (c) the tilted configuration.

2.1. Modeling of the Proposed PEH

The schematic of the PEH is shown in Figure 2. The PEH was a cantilevered beam with a partially
covered piezoelectric layer. A tip mass was attached to the free end of the beam. The beam is was
considered as a two-segment structure. The force and moment acting on the beam in the tilted
configuration and an infinitesimal element of the beam is illustrated in Figure 3. The model is based on
Euler–Bernoulli beam theory. Considering the inertial forces and the electromechanical coupling term,
the equation of motion can be written as:

EI1
∂4w1

∂x1
4
− P

∂2w1

∂x1
2 + m1

∂2w1

∂t2 −m1ω
2
dw1 + ϕvv(t)[

dδ(x1)

dx1
−

dδ(x1 − L1)

dx1
] = 0 (1)

EI2
∂4w2

∂x24
− P

∂2w2

∂x22 + m2
∂2w2

∂t2 −m2ω
2
dw2 + m2ω

2
dr0 sinθ = 0 (2)

where the subscript indicates the segment number. The first segment was covered with a piezoelectric
layer, while the second segment was not; EI is the bending stiffness; w is the transverse displacement
of the beam; m is the mass per unit length; ωd is the rotational speed of the motor; L1 is the length of
the first segment; r0 is the distance between the fixed end of the beam and the rotating axis; θ is the tilt
angle of the beam; P is the axial load due to the centrifugal force caused by the tip mass and can be
expressed as:

P = Mtω
2
d(r0 cosθ+ L) (3)

where Mt is the tip mass; and L is the total length of the beam.
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Figure 3. Force diagrams of (a) the whole beam (b) an infinitesimal element.

The boundary and continuous conditions of the structure are listed below:

w1(0, t) = 0 (4)

w′1(0, t) = 0 (5)

w1(L1, t) = w2(0, t) (6)

w′1(L1, t) = w′2(0, t) (7)

EI1w′′1 (L1, t) = EI2w′′2 (0, t) (8)

EI1w′′′1 (L1, t) = EI2w′′′2 (0, t) (9)

EI2w′′2 (L2, t) = 0 (10)

EI2w′′′2 (L2, t) − P ·w′2(L2, t) + Mtω
2
dw2(L2, t) −Mt

..
w2(L2, t) = 0 (11)

The transverse motion of the beam can be rewritten as:

wk(xk, t) =
∞∑

i=1

φ ki(xk)ηi(t) (12)

where φki(x) is the mode shape function of the k-th segment and the i-th mode; ηi(t) is the temporal
function. In this study, only the first mode was considered. The mode shape function can be further
represented as:

φ 1(x) = C1 sin(α1x) + C2 cos(α1x) + C3sinh(α2x) + C4 cosh(α2x) (13)
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φ 2(x) = C5 sin(α3x) + C6 cos(α3x) + C7sinh(α4x) + C8 cosh(α4x) (14)

where

α2
1 =
−K2

1 +
√

K4
1 + 4β4

1

2
(15)

α2
2 =

K2
1 +
√

K4
1 + 4β4

1

2
(16)

α2
3 =
−K2

2 +
√

K4
2 + 4β4

2

2
(17)

α2
4 =

K2
2 +
√

K4
2 + 4β4

2

2
(18)

and

K2
k =

Mtω2
d(r0 cosθ+ L)

EIk
, k = 1, 2 (19)

β4
k =

mk(ω
2
n +ω2

d)

EIk
, k = 1, 2 (20)

where ωn is the resonant frequency of the beam.
The orthogonality condition was used to mass-normalize the mode shape function:∫ L1

0
φ 1mm1φ 1ndx1 +

∫ L2

0
φ 2mm2φ2ndx2 + φ 2m(L2)Mtφ 2n(L2) = δmn (21)

Therefore, the equations of motion can be expressed as:

d2η(t)
dt2 + 2ζ0ωn

dη(t)
dt

+ω2
nη(t) + ΘV(t) = f (t) (22)

where ζ0 is the damping ratio of the system and f (t) is the normalized coefficient for excitation force
caused by the gravitational force of the tip mass:

f (t) = −φ 2(L2) ·Mtg cosωdt (23)

The piezoelectric layer can be considered as a capacitor in parallel with a current source so the
electromechanical coupling equation of the circuit can be expressed as:

−Θ
.
η(t) + Cp

.
Vp(t) +

1
R

Vp(t) = 0 (24)

where Vp is the voltage across the resistive load R; Cp is the capacitance of the piezoelectric layer. The
coupling coefficient can be written as:

Θ =

∫ L1

0
e31bphpc

∂3w1

∂x2
1∂t

dx1 (25)

2.2. Experimental Setup

The experimental setup for the rotational tests of the PEH is depicted in Figure 4. A variable-speed
drive (Oriental Motor BMUD200-A) was used to control the speed of the motor (Oriental Motor
BLM5200-A), which drove a mounting frame. The PEH was fixed on the mounting frame by a clamp.
The clamp was screwed on the frame, which allowed the clamp to be installed at different positions
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and in different orientations. The PEH was composed of a cantilever beam covered with an MFC
(Macro-Fiber Composite) patch (M-2807-P2) and a tip mass was attached to the end of the beam. The
MFC patch was more flexible than piezoelectric ceramics, so it was more suitable for the PEH with
large deflection. The distance between the fixed end of the PEH and the rotating axis could be adjusted.
The titled angle of the PEH could also be tuned to see its influence on the performance of the PEH. An
oscilloscope (Rigol DS1104Z) was used to measure the voltage output of the PEH.
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Figure 4. Experimental setup.

3. Results and Discussion

The rotational PEH was first installed in the outward configuration (θ = 0◦). The corresponding
parameters are listed in Table 1. Figure 5 shows the resonant frequency of the PEH installed with
different r0. In the outward orientation, the centrifugal force resulted in tensile force on the beam so
the resonant frequency increased as the driving frequency rose. The matching frequencies, which
are located at intersections between the solid lines and the dashed line, indicate that the resonant
frequency of the PEH matched the driving frequency. Note that the resonant frequency increased as r0

was enlarged under the same driving frequency. That is because the centrifugal force caused by the
tip mass was enhanced when r0 increased. The slope of the curve became steeper when r0 increased.
Figure 6 depicts the simulation and experimental results of the voltage responses. The experimental
results match the simulation well. The numerical peak voltage and resonant frequency were close to
the experimental results. As predicted by the model, the experimental result showed that the matching
frequency rose when r0 was enlarged.

Table 1. Parameters of the PEH in the outward configuration.

Symbol Description Value

L Length (beam) 75 mm
bs Width (beam) 12.7 mm
hs Thickness (beam) 0.1 mm
ρs Density (beam) 7930 kg/m3

Es Young’s modulus (beam) 193 GPa
L1 Length (MFC) 28 mm
bp Width (MFC) 7 mm
hp Thickness (MFC) 0.3 mm
ρp Density (MFC) 5440 kg/m3

Ep Young’s modulus (MFC) 30.336 GPa
Mt Tip mass 3.04 g
R Load resistance 1 MΩ
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Figure 6. The simulation and experimental voltage responses of the PEH in the outward orientation
with different r0.

For the inward configuration, the beam was slightly shortened from 75 to 72 mm to prevent
the excessive amplitude of the tip displacement, since a longer beam would otherwise lead to a
larger tip displacement. Figure 7 shows the resonant frequency of the PEH with different r0. The
resonant frequency decreased as the driving frequency increased because the centrifugal force worked
as compressive force on the beam to lower its stiffness when the beam was placed in the inward
orientation. The slope of the curve became steeper when r0 increased. The matching frequency
decreased when r0 was enlarged. Figure 8 depicts the frequency responses of the PEH with different r0.
The resonant frequency was raised as r0 decreased in both the simulation and experimental results.
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Figure 8. The simulation and experimental voltage responses of the PEH in the inward orientation
with different r0.

Finally, the resonant frequency of the PEH in the tilted configuration is illustrated in Figure 9.
The length of the beam used in this configuration was 78 mm and r0 was set to 30 mm. The PEH was
tested with different tilt angles. It was expected that the tilt angle would change the magnitude of
the component of centrifugal force in the longitudinal direction of the beam. The result showed that
the resonant frequency decreased as the tilt angle increased, because a large tilt angle reduced the
tensile axial load caused by the centrifugal force. The slope of the curve became less steep when the
angle increased. A similar trend of the resonant frequency was seen in both the simulation and the
experimental results shown in Figure 10. The resonant frequency reduced as the tilt angle increased in
the simulation and experimental results. The peak voltage was enhanced when the resonant frequency
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was decreased. Note that there was a mismatch between the numerical and experimental resonant
frequency when the tilt angle was 90◦. The reason for this is that the component of the centrifugal
force in the transverse direction of the beam made the beam deflect. The deflection would strengthen
the axial load, as indicated in Figure 11, since the deflection resulted in a larger component of the
centrifugal force in the axial direction. Therefore, the experimental stiffness would be higher than the
stiffness estimated by the model and consequently the experimental resonant frequency would be
higher than the numerical one.
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4. Conclusions

This study examined a PEH in different orientations under rotational excitations. The installation
orientation of the PEH influenced the axial component of the centrifugal force acting on the
beam so the dynamics of the PEH were affected correspondingly. The dynamics of the rotational
PEH was theoretically modeled and an experimental study was conducted for validation. Three
configurations—outward, inward, and tilted orientations—were studied and compared. In the outward
orientation, the resonant frequency of the PEH increased when the installation radius was extended,
because of the increase of the centrifugal force. However, the experiment and simulation showed that
the resonant frequency of the PEH in the inward orientation was raised as the installation radius was
shortened. Finally, the tilt angle of the PEH had a strong influence on the resonant frequency of the
PEH. When the tilt angle increased from 0◦ to 90◦, the increase of the resonant frequency with respect
to the driving frequency became less significant. In addition, as the tilt angle increased, the tensile
axial load caused by the centrifugal force was reduced so the resonant frequency was lowered. Overall,
this study shows that both the installation radius and the tilt angle could be used to tune the matching
frequency to fit the environment for high power output. Although the installation radius was effective
for tuning the matching frequency, it is constrained by the size of the rotating hub and sometimes
cannot be freely adjusted. The tilt angle, however, can be used to adjust the matching frequency when
the installation radius is limited.
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