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A hierarchical clustering algorithm was applied to magnetic resonance images (MRI) of a cohort of 751 subjects having a mild
cognitive impairment (MCI), 282 subjects having received Alzheimer’s disease (AD) diagnosis, and 428 normal controls (NC).
MRIs were preprocessed to gray matter density maps and registered to a stereotactic space. By first rendering the gray matter
density maps comparable by regressing out age, gender, and years of education, and then performing the hierarchical clustering,
we found clusters displaying structural features of typical AD, cortically-driven atypical AD, limbic-predominant AD, and early-
onset AD (EOAD). Among these clusters, EOAD subjects displayed marked cortical gray matter atrophy and atrophy of the
precuneus. Furthermore, EOAD subjects had the highest progression rates as measured with ADAS slopes during the
longitudinal follow-up of 36 months. Striking heterogeneities in brain atrophy patterns were observed with MCI subjects. We
found clusters of stable MCI, clusters of diffuse brain atrophy with fast progression, and MCI subjects displaying similar atrophy
patterns as the typical or atypical AD subjects. Bidirectional differences in structural phenotypes were found with MCI subjects
involving the anterior cerebellum and the frontal cortex. The diversity of the MCI subjects suggests that the structural
phenotypes of MCI subjects would deserve a more detailed investigation with a significantly larger cohort. Our results
demonstrate that the hierarchical agglomerative clustering method is an efficient tool in dividing a cohort of subjects with gray
matter atrophy into coherent clusters manifesting different structural phenotypes.

1. Introduction

Alzheimer’s disease (AD) is the most common neurodegen-
erative disease and cause of dementia [1]. The characteristic
early symptoms of Alzheimer’s disease are short-term mem-
ory loss, language problems, disorientation, mood swings,
and behavioral issues. The shrinkage of the cerebral cortex
and the medial temporal lobe is a typical trait of Alzheimer’s
disease along with the enlargement of brain ventricles [2].
The extracellular amyloid plaques and intraneuronal tangles
of hyperphosphorylated tau protein have been widely recog-
nized as central markers of Alzheimer’s disease [3, 4].

Genetic variation and different environmental exposures
lead to heterogeneities in neurodegenerative patterns. Find-
ing and classifying these patterns (clusters) using sophisti-
cated computer-aided tools and thereby grouping the
subjects to more homogeneous groups can be clinically useful
[1, 5–7]. In particular, it would be beneficial to be able to
predict the onset of AD by applying computational tools to
examine the MRIs. Towards this end, data clustering
methods from applied mathematics have found increasing
applications in neuroscience [8]. The goal of these methods
is to group or cluster the subjects by maximizing a certain
similarity condition, which is typically a numerical metric
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that can be calculated for two clusters. Subjects falling into
the same cluster may have similarities in the pathogenesis
of MCI and AD which may elucidate the disease mechanisms
especially when genetic, demographic, and clinical data are
incorporated. Several clustering algorithms exist [8]:
connectivity-based clustering or hierarchical clustering,
centroid-based clustering, and distribution-based or
density-based clustering. For higher-dimensional data, more
recent developments such as CLIQUE have gained some
popularity [9].

Clustering methods appear well suited to the task of
dividing the subjects into different categories based on struc-
tural phenotypes as manifested by various disease subtypes at
different stages of disease progression. Previous works in this
field have found different structural phenotypes of MCI/AD
subjects with computational methods, including clustering
methods, as summarized in Table 1 [5–7, 10–18]. For exam-
ple, of the three AD subtypes investigated in [16, 17], the
hippocampal-sparing subtype of AD (i.e., cortically driven
atrophy and relative sparing of the hippocampus) showed
more aggressive progression (as measured by the cognitive
MMSE and ADAS ratings) than the typical AD and the
limbic-predominant AD. The typical AD and the limbic-
predominant AD were found by Ferreira et al. to have the
worst clinical progression rate of CDR (Clinical Dementia
Rating) and MMSE (Mini-Mental State Examination)
decline, while the hippocampal-sparing and no atrophy sub-
types showed less aggressive progression [11]. The varying
rates of decline are thought to be driven by cortical atrophy
that is worst in younger hippocampal-sparing AD subtype,
while the limbic-predominant subtype shows more severe
hippocampal atrophy and less cortical atrophy [14, 16, 17].

The typical AD (or late-onset AD, LOAD) manifests both
atrophy patterns quite equally [16]. Results obtained by
clustering can be interpreted bearing in mind the potential
of the clustering algorithms to identify different subtypes of
MCI/AD pathology. Patients with the hippocampal-sparing
subtype of AD died younger and a higher proportion of them
were men, as observed in, e.g., [16]. Those with limbic-
predominant AD are typically older and a higher proportion
of them are women. The neurofibrillary tangle count which is
strongly related to amnesia is higher in the hippocampus
with the limbic-predominant subtype than with the
hippocampal-sparing subtype [10]. The APOE ε4 is thought
to play a slightly smaller role in the hippocampal-sparing
atypical subtype of AD than in other subtypes [16].

The main focus of this work is in quantifying the differ-
ences between the various emerging structural phenotypes
found with the hierarchical clustering methods and discuss-
ing the phenotypes in light of existing knowledge. Our results
verify that agglomerative hierarchical clustering can be used
for classifying patterns of gray matter atrophy, and our
results are aligned with existing results for AD subjects
obtained with different methods. For MCI subjects, we
observe more diverse patterns of atrophy calling for further
investigation of the pathogenesis and structural changes
related to MCI.

Out of the publications based on clustering algorithms in
Table 1 [5, 7, 12], many have the limitation of needing to set
the number of clusters based on a priori information. Instead,
in hierarchical clustering, applied in this paper, the number of
clusters (subtypes) can be decided based on data. Differently
from other hierarchical clustering algorithms [5, 12], our
agglomerative distance-based clustering method considering

Table 1: Methods and key findings of cited literature.

Reference MCI or AD Method Application

[5] MCI Multilayer clustering Identification of rapid and slow decliners

[11] AD Visual rating scales Recognizing AD subtypes

[12] AD
Random forest pairwise similarity and

hierarchical clustering
Varying rates of degeneration of AD subtypes

[7] AD
k-means clustering and support

vector machines
Subtypes of AD atrophy

[18] MCI and AD
Voxel-wise statistical analysis and

regression models
Brain atrophy w.r.t age and APOE genotype

[14] AD
Voxel-based morphometry, statistical

analysis using ANOVA
Regional atrophy patterns and progression

rates of AD subtypes

[16] AD
Neurofibrillary tangle count using digital

microscopy, statistical methods
(ANOVA, t-tests)

Subtypes of AD and distinct clinical
characteristics

[17] AD
Cortical, hippocampal volume measurements,

statistical methods
Progression rates of AD subtypes

[21] MCI and AD Voxel-based morphometry
Atrophy pattern related to progression

from MCI to AD

[19] MCI and AD
Semisupervised machine learning and

random forest classification
Predicting conversion from MCI to AD

[22] AD
Voxel-based morphometry and

regression analysis
Precuneus atrophy in early-onset

Alzheimer’s disease
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a cohort including MCI, AD, and control subjects is able to
produce a large number of clusters at one stroke manifesting
different structural phenotypes. As will be subsequently dis-
cussed, the agreement of our results with previously published
and acknowledged results obtained with entirely different
methods is generally good, and we also obtain new structural
phenotypes of undetermined significance, interesting material
for further research. Furthermore, we present a novel way of
analysing clustering applied to the subtype identification based
on brain imaging phenotype by illustrating the differences
between clusters using statistical parametric mapping.

2. Material and Methods

2.1. ADNI Data. The ADNI initiative was launched in 2003 as
a public & private partnership, led by Principal Investigator
Michael W. Weiner, MD. The primary goal of ADNI has
been to test whether serial MRI, PET, other biological
markers, and clinical and neuropsychological assessment
can be combined to measure the progression of MCI and
early AD.

ADNI material considered in this work includes all sub-
jects from ADNI1, ADNI-GO, and ADNI2 for whom the
baseline MRI data (T1-weighted MP-RAGE sequence at 1.5
Tesla or 3.0 Tesla), typically 256 × 256 × 170 voxels with the
voxel size of approximately 1mm× 1mm× 1:2mm was
available. This led to a database of 1560 subjects, 1461 of which
had a baseline diagnosis, age, APOE, and initial ADAS data
available. These 1461 subjects form the sample for this work.

2.2. Subjects. The subject characteristics are listed in Table 2.
A total of 428 subjects were normal controls (NC) in our
cohort, while 751 were diagnosed as suffering from MCI
and 282 had Alzheimer’s disease (AD) at baseline, see
Table 2. There were 805 males and 656 females in our cohort.
We used demographic data (sex, age, education in years),
APOE ε4 genotype, and follow-up data (diagnosis and ADAS
score) 0, 12, 24, and 36 months from baseline as clinical aux-
iliary information. The ADAS scores were used in monitor-
ing disease progression after baseline, and the clinical
diagnosis was used to track status changes. The APOE ε4
prevalence (at least one allele) in NC subjects was 27.3%, in
MCI subjects it is 49.3% and in AD subjects it is 66.7%.

2.3. MRI Preprocessing. Preprocessing is essential to render
the image data between individual subjects comparable.
The preprocessing of the MRI data was done by the fully
automated CAT12 pipeline (CAT=Computational Anat-
omy Toolbox, http://www.neuro.uni-jena.de/cat/). These

images are quantitative (each voxel intensity corresponds to
the amount of gray matter (GM) in that voxel) and they
can be compared voxel-by-voxel thanks to the spatial nor-
malization. The details of image preprocessing can be found
in the Appendix. The images resulting from preprocessing
are called GM density images.

We removed the confounds by a linear regression tech-
nique similar to the one introduced in [19]: having voxel-
wise GM density value as the dependent variable, we fitted
a linear regression model with age, gender, scanner field
strength (binary coded as 1:5 T = 0 and 3 T = 1), and years
of education as independent variables on a voxel-by-voxel
basis using the data from NC subjects. Then, this regression
model was applied to the data of MCI and AD subjects, and
residuals from the model were taken as the variables of
interest.

To use hierarchical clustering, we must define a distance
between any pair of two images. This imaging phenotypic
distance was computed as the Manhattan distance of the
voxel intensities over the brain mask. This resulted in a sym-
metric matrix of distances between all subjects that served as
the input for the hierarchical clustering algorithm. We note
that all subjects were included into clustering although our
main interest lies in MCI and AD subjects.

2.4. Clustering Method. We clustered the subjects using the
agglomerative hierarchical clustering algorithm with the far-
thest neighbor metric described in [20], i.e., the complete
linkage algorithm. The computation starts with 1461 sepa-
rate clusters that are progressively merged as the calculations
proceed. Every iteration reduces the number of clusters by
one by fusing two clusters. The two fused clusters, A and B,
are those which have the smallest maximum distance of ele-
ments. That is, we find clusters A and B for which d =max
∣ a − b ∣ is minimized, where a ∈ A and b ∈ B. The choice of
clustering method and its parameters are discussed in the
Appendix. The clustering method was implemented in
Matlab R2018b.

The clustering methodology directly utilized the prepro-
cessed MRI tissue maps while characteristics of the subjects
listed in the previous section were used only to as demo-
graphic and clinical side information when interpreting the
clusters, i.e., no other information thanMRI enter to the clus-
tering algorithm. The mean value or average diagnosis is cal-
culated for each cluster as a weighted average of the clinical
status (i.e., NC = 1, MCI = 2, AD = 3) within each cluster to
help guide attention and to interpret the results. The clusters
were divided into three categories based on the weighted
average diagnoses.

Table 2: APOE ε4 data and baseline diagnoses of the subjects. The baseline diagnosis depends on the number of APOE ε4alleles (chi-squared
test p < 0:001).

Mean ADAS score at baseline ADAS score std at baseline No APOE ε4 APOE ε4 heterozygotes APOE ε4 homozygotes Σ

NC 9.4 4.3 311 106 11 428

MCI 16.6 6.8 381 290 80 751

AD 29.8 8.0 94 130 58 282

Σ — — 786 526 149 1461
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2.5. Cluster Characteristics. Linear regression for the ADAS
trajectory of each subject in the cluster was performed to
compute the rate of change in the ADAS score and the mean
slope (the unit is ADAS points/month), and standard
deviation was calculated for each cluster.

2.6. Analysing the Differences between Structural Phenotypes.
Our main interest is in comparing the GM maps in the clus-
ters found during hierarchical clustering. However, differ-
ences in MRIs are barely discernible on visual inspection
without special tools. We adopted a standard voxel-based
morphometry approach that is widely utilized (e.g., in
[21]), whereby the neuroanatomical differences between
any two groups can be conveniently compared by voxel-
wise t-tests on gray matter density images. The t-test value
(t) itself is taken as the parameter to be visualized in each
voxel, thus producing a 3D t-map of cluster differences.

3. Results

3.1. General Characteristics of Clustering. A total of 8 AD
clusters and 23 MCI clusters with interesting characteristics
were found. The cluster characteristics are listed in
Figures 1 and 2, respectively. Very small clusters (less than
7 subjects) are excluded from the discussion because they
were either judged to be outliers or did not allow statistically
meaningful analysis. The clusters were categorized as AD,
MCI, or normal clusters by considering the average diagno-
sis. The average diagnosis was calculated as a weighted aver-
age of the clinical status (i.e., NC = 1, MCI = 2, and AD = 3).
The cluster category was decided simply by dividing the
interval from 1 to 3 into 3 equally wide subintervals, i.e., a
cluster was an MCI cluster when the average diagnosis was
between 1.667 and 2.333; NC cluster if the average diagnosis
was at most 1.666; and AD cluster when the average diagno-

sis was greater than 2.333. This categorization is possible as
the distribution of numerically coded diagnoses within
clusters never was bimodal, i.e., there were no clusters
characterized by the absence of MCI subjects and containing
both NC and AD subjects.

The mean ADAS slopes were used to guide our attention
amidst the vast number of resulting clusters. The 95% confi-
dence interval for the distribution of mean ADAS slopes for
AD clusters (in Figure 1) was [0.309 0.672]; for MCI clusters
(in Figure 2), it was [0.138 0.245]; and for NC clusters (in
Table 3), it was [-0.027 0.022]. The confidence intervals do
not overlap, i.e., when the clusters are organized into these
three categories based on weighted average diagnosis, the
progression rates of cluster ADAS scores were statistically
significantly different between the groups.

3.2. Clusters with High Presence of AD Subjects. The charac-
teristics of the AD clusters are illustrated by displaying the
key parameters as a radar plot in Figure 3 along with cluster
phenotypes and demographic characteristics. More detailed
cluster characteristics are listed in Figure 1. Figure 1 includes
all the clusters for which the average diagnosis was at least 7/3
and therefore characterized as AD clusters. The high propor-
tion of APOE ε4 in these clusters as compared with the rest of
the clusters stands out. The cluster-wise mean ADAS slopes
were on average higher than with the MCI and NC clusters
as already mentioned.

We concluded that the atrophy patterns of clusters 1-4 in
Figure 1 fit with the typical AD. This conclusion was arrived
at for two reasons: First, clusters 1-4 appeared very similar in
MRI comparisons, with only small differences visible inMRIs
that appeared randomly distributed as seen in more detail in
Figure 4. The cluster 2 in Figure 1 was paid special attention
because of the quite low average age of 66.2 years and the
high baseline ADAS score 33.0 as compared with clusters 1,

Cluster 
number

Females Males NC MCI AD Average 
diagnosis

APOE 
prev. %

Declining 
status % 

Average
education 

years 

Mean
ADAS 
score

Mean 
age

Mean 
ADAS 
slope

STD of 
ADAS 
slopes

1 17 25 0 25 17 2.40 61.9 44.0 13.9 24.5 73.0 0.318 0.327

2 2 5 1 0 6 2.71 85.7 0.0 13.7 33.0 66.2 0.450 0.393

3 9 6 1 8 6 2.33 66.7 66.7 16.6 25.7 76.4 0.300 0.305

4 5 19 1 12 11 2.42 62.5 53.8 16.0 24.2 75.2 0.389 0.471

5 11 20 1 13 17 2.52 64.5 64.3 15.2 27.2 71.2 0.498 0.413

6 22 7 0 11 18 2.62 65.5 45.5 16.1 29.6 67.8 0.622 0.508

7 7 12 1 5 13 2.63 52.6 33.3 16.4 24.4 77.2 0.397 0.685

8 5 2 0 1 6 2.86 57.1 100.0 17.0 39.6 60.1 0.964 0.494

Figure 1: AD clusters and their characteristics. The average diagnosis was calculated as a weighted average of the clinical status (i.e., NC = 1,
MCI = 2, and AD = 3). The worsening clinical status column is relevant only from NC to MCI and from MCI to AD progression because the
worsening status is deduced from categorical variables. Italic in the Table emphasizes the structural similarity of the cluster phenotypes.
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3, and 4. Perhaps surprisingly, however, the MRIs did not
reveal striking differences in regional atrophy when compar-
ing cluster 2 with clusters 1, 3, and 4. For these reasons, sub-
jects of clusters 1-4 were deemed to most likely follow a
similar course of the disease. Secondly, in MRI comparisons
of the union of clusters 1-4 manifest marked atrophy as
compared with the union of all NC clusters (predominantly
healthy controls). Results of this fundamental comparison
are shown in Supplementary Results (Figures 11-13), and
they fit the neurodegenerative patterns of typical AD where
the medial temporal lobe is strongly involved [2].

Structural atrophy becomes more evident when look-
ing at clusters 5-8, some of them having higher baseline
ADAS scores and/or steeper ADAS slopes. Let us take a
look at cluster 5 first. Voxel-wise comparisons in
Figure 5 reveal remarkable structural differences between
cluster 5 and clusters 1-4. Subjects in cluster 5 have, on
average, more cortical atrophy in the frontal and temporal
lobes than subjects in clusters 1-4. This suggests that the
subjects in cluster 5 featured a neurodegenerative pattern
deviating from the typical course of the disease, i.e., an
atypical AD subtype. While the differences of cortical

Cluster 
number

Females Males NC MCI AD Average 
diagnosis

APOE 
prev. %

Declining 
status % 

Average
education 

years 

Mean
ADAS 
score

Mean 
age

Mean 
ADAS 
slope

STD of 
ADAS 
slopes

1 52 41 35 48 10 1.73 45.2 24.1 15.7 13.9 73.8 0.075 0.262

2 16 35 18 30 3 1.71 43.1 25.0 16.0 13.8 76.7 0.086 0.275

3 10 5 4 9 2 1.87 26.7 0.0 14.7 12.2 72.0 -0.009 0.167

4 9 14 5 11 7 2.09 56.5 50.0 15.8 19.7 71.3 0.283 0.440

5 3 6 2 4 3 2.11 44.4 33.3 14.9 17.5 78.5 0.323 0.365

6 10 14 7 14 3 1.83 58.3 19.0 15.7 14.3 72.9 0.069 0.596

7 39 33 13 44 15 2.03 59.7 49.1 15.5 18.9 74.6 0.258 0.331

8 0 7 0 6 1 2.14 57.1 66.7 16.3 23.9 72.4 0.343 0.334

9 7 7 1 9 4 2.21 57.1 30.0 15.5 22.0 73.1 0.412 0.584

10 12 15 7 14 6 1.96 40.7 33.3 16.0 16.7 72.2 0.049 0.232

11 9 11 3 13 4 2.05 65.0 37.5 15.7 16.9 72.5 0.153 0.184

12 9 10 4 10 5 2.05 52.6 42.9 15.9 20.8 70.8 0.286 0.431

13 90 60 43 72 35 1.95 52.7 33.9 15.4 18.2 74.0 0.188 0.322

14 15 14 5 17 7 2.07 55.2 54.5 15.4 18.7 78.3 0.303 0.410

15 5 7 1 8 3 2.17 41.7 22.2 16.8 19.9 71.6 0.334 0.320

16 2 8 0 8 2 2.20 30.0 37.5 16.4 20.7 76.8 0.188 0.270

17 6 8 3 5 6 2.21 71.4 37.5 16.6 15.6 73.1 0.361 0.411

18 0 7 1 5 1 2.00 42.9 33.3 16.8 17.9 78. 0 0.201 0.217

19 3 5 1 6 1 2.00 75.0 14.3 15.5 18.5 79.4 0.117 0.189

20 11 12 8 13 2 1.74 43.5 38.1 16.9 13.3 71.5 0.076 0.228

21 1 10 4 6 1 1.73 36.4 10.0 17.3 13.9 70.2 -0.003 0.116

22 3 12 3 11 1 1.87 46.7 28.6 16.0 17.5 72.3 0.148 0.371

23 3 7 2 5 3 2.10 50.0 14.3 16.6 10.0 72.6 0.165 0.341

Figure 2: MCI clusters and their characteristics. Italic background color refers to faster progression. The number of MCI clusters is
higher than the number of MCI subtypes discussed in many other works because some of our clusters turn out to be structurally
very similar.
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atrophy are statistically significant in comparison with
clusters 1-4 (typical AD), the differences in the hippocam-
pal region are more uncertain. Considering the male pre-
ponderance, the aggressive progression, and the more
cortically driven atrophy of cluster 5, it seems likely that
this cluster would represent an atypical AD subtype where
cortical atrophy dominates, with relative sparing of the
hippocampi. Clusters 5-8 and the related Figures 5–8 are
discussed in more detail in Section 4.

Some subjects with a typical AD subtype are buried in the
MCI-dominated clusters. Hence, the role of the atypical sub-
types of AD may appear exaggerated, although, in reality,
they represent a minor proportion of AD cases. Some of the
clusters are mostly formed well before the iteration is termi-
nated, indicating that groups of similar subjects deviating
strikingly from the others (compatible with finding atypical
MRIs from the cohort) are effectively captured by the
algorithm.

3.3. Clusters Interpreted as Predominantly MCI. The clusters
consisting of predominantly MCI subjects (average diagnosis
between 1.67 and 2.33) and their characteristics are shown in
Figure 2above. It is immediately clear that these clusters also
include many control subjects and some AD subjects. The
APOE ε4 alleles were less abundant in these clusters than in
the AD clusters. The mean ADAS baseline scores and slopes
were generally clearly lower than in the AD clusters as was
noted in Section 3.1. We quantified the progression rates of
the AD, MCI, and NC clusters and noted that they are differ-
ent, as was pointed out in Section 3.1. We found that the MCI
progression rates were distributed between the NC and AD
progression rates.

We run the voxel-wise t-tests for the MCI clusters in
Figure 2 in the same way as with the AD clusters in
Figure 1. However, this time, we made no attempt to com-
pare all the clusters as the number of pairwise compari-
sons increases quadratically as a function of the number
of clusters to be compared, 23 clusters resulting in 276
cluster comparisons. Instead, we make some comparisons

of the clusters deemed interesting based on cluster charac-
teristics of Figure 2. We note that many of the clusters
turned out to be similar. For instance, clusters 16 and
18-23 showed only small differences in brain atrophy pat-
terns. We focus on comparisons between clusters of slow
(or stable MCIs) and fast progressors. Clusters 3 and 21
in Figure 2 were selected to represent particularly slow
progressors based on their ADAS slopes and small conver-
sion rates. We considered clusters 14, 15, and 17 as a ref-
erence of fast progressors because they had the highest
ADAS slopes.

Figure 9 illustrates the comparison between the slowest
progressing cluster 3 and fast progressors (union of the clus-
ters 14, 15, and 17). The differences in the level of atrophy
were striking. Gray matter loss in clusters 14, 15, and 17
appeared nearly in the entire intracranial volume (excluding
the occipital lobe and perhaps part of the parietal cortex) as
compared with the cluster 3.

Clusters 9 and 21 in Figure 2 show very different progres-
sion rates as measured with ADAS slopes. To quantify the
differences, the fastest progressing cluster 9 was compared
with the stable MCI subjects in cluster 21. The comparison
in Figure 9 reveals cortical differences in atrophy, especially
in the frontal lobe. These clusters’ differences are interesting
as the comparison revealed differences in both directions
across the brain.

There were regional differences between the fast pro-
gressing MCI clusters as can be seen in Figure 10, where
clusters 8 and 9 are compared. Cluster 8 was chosen
because it has the highest baseline ADAS score of all
MCI clusters, close to those of AD clusters in Figure 1.
Cluster 9 was the fastest progressing MCI cluster as mea-
sured with ADAS slopes, and the baseline ADAS score
was the second highest of MCI clusters. In Figure 10,
frontocortical and subcortical structures show differences
in atrophy, sparking a hypothesis that the MCI of cluster
8 is due to emerging AD. The strikingly unidirectional dif-
ferences in atrophy suggest that the pertaining etiologies
might remarkably deviate from each other.

Table 3: The clusters with the lowest average diagnosis (NC = 1, MCI = 2, AD = 3).

Cluster
number

Females Males NC MCI AD
Average
diagnosis

APOE
prev.
%

Declining
status %

Mean
education
years

Mean
ADAS
score

Mean
age

Mean
ADAS
slope

STD of
ADAS
slopes

1 22 18 18 22 0 1.55 35.0 27.5 16.1 11.6 74.3 -0.049 0.189

2 17 19 17 15 4 1.64 41.7 34.4 16.1 14.4 73.8 0.057 0.183

3 93 66 71 80 8 1.60 37.7 23.2 16.4 12.6 73.6 0.062 0.434

4 38 39 36 34 7 1.62 31.2 11.4 16.0 12.0 74.7 0.016 0.156

5 16 31 30 17 0 1.36 36.2 17.0 16.1 11.5 76.6 0.017 0.172

6 5 20 10 15 0 1.60 32.0 20.0 15.8 13.3 70.9 -0.040 0.246

7 8 8 8 7 1 1.56 37.5 13.3 17.8 10.8 73.7 0.011 0.179

8 1 7 4 4 0 1.50 25.0 25.0 16.8 9.1 71.8 -0.037 0.142

9 7 6 8 5 0 1.38 15.4 15.4 16.8 10.8 72.3 -0.020 0.156

10 5 17 9 12 1 1.64 31.8 19.0 16.6 13.9 75.1 0.012 0.143

11 3 4 4 3 0 1.43 14.3 14.3 16.0 13.7 80.1 -0.014 0.167

12 3 8 9 2 0 1.18 9.1 9.1 17.0 10.8 71.8 -0.042 0.133
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3.4. Clusters Interpreted as Predominantly Normal Controls.
The clusters with the lowest average diagnoses are presented
in Table 3. The mean ADAS slopes were close to zero as
expected. Unsurprisingly, there were many MCI subjects
present in these clusters, but only very few AD subjects. As
a whole, no striking features with respect to disease

3 –3 –5

L R

6Z Z

Figure 4: Results of voxel-wise t-tests of gray matter distributions
between clusters 1 and 2 in Figure 1. The FDR corresponding to ∣t
∣ >3 threshold was 0.143. Average t-values were not high and
differences between the clusters occurred in a scattered manner
suggesting that the clusters 1 and 2 manifested similar (typical)
AD pathogenesis. Further results (not shown) revealed that
clusters 1-4 show a lot of similarity and most likely manifest the
typical AD pathogenesis.

3 –3 –7
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5Z Z

Figure 5: Results of voxel-wise t-tests of gray matter distributions
between cluster 5 and union of clusters 1-4 in Figure 1. Cluster 5
displayed more cortical atrophy than the union of clusters 1-4,
especially in the frontal and temporal lobes. Moreover, the
differences were strikingly unidirectional in all brain regions
displaying marked differences. Coronal and sagittal views of the
same figure are shown in Supplementary Results (Figures 5 b and
5 c). The FDR value corresponding to the threshold ∣t ∣ >3 was
0.00135.

AD cluster number

Diagnosis ADAS

1
Clusters

2
3
4

5
6
7
8

APOE e4
1.3

0.9

0.5

2.9 2.6 2.3 24.2 31.9 39.6

60.1

68.7

77.2
Age

Structural phenotype Demographic/clinical
special feature

1 Load Slow decline

2 Load High prevalence of
APOE e4 carries

3 Load Slow decline

4 Load Male predominant

5 Cortically driven
atrophy

Male predominant

6 Limbic-predominant
atrophy

Female predominant

7 Male predominant

8 Cortically driven
atrophy with precuneus

strongly involved

Young subjects, fast
progression

Limbic-predominant
atrophy

Figure 3: Top panel: radar plot of AD clusters. Cluster 8 consisted
of, on average, strikingly young subjects, and the baseline ADAS
score was the highest for all clusters. The role of APOE ε4 was
markedly elevated for cluster 2 as compared with other clusters.
Bottom panel: table listing structural phenotypes for AD clusters
with demographic and/or clinical features. Clusters 1 and 3
displayed the slowest average decline rate among the AD clusters
in terms of the change in ADAS scores during the three-year
follow-up. Color coding refers to structural similarity. The same
color coding is used in subsequent, more detailed Figure 1.
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Figure 6: Results of voxel-wise t-tests of gray matter distributions
between clusters 6 and 7 in Figure 1. Clusters 6 and 7 very closely
resemble each other. Voxel-wise t-tests do not show significant
regional differences in atrophy patterns of clusters 6 and 7 except
retroorbitally on the right hemisphere, where cluster 7 subjects
display more atrophy. Due to scattered and anatomically confined
bidirectional differences, the clusters are interpreted to consist
mostly of subjects having a similar atypical subtype of AD.
Coronal and sagittal views are shown in Supplementary Results
(Figures 4 b and 4 c). The FDR value is 0.0345.
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Figure 7: Results of voxel-wise t-tests of gray matter distributions
between clusters 5 and 6 in Figure 1. Clusters 5 and 6 differ in
terms of cortical atrophy (most notably in the frontal lobe) that is
more prominent in cluster 5. Coronal and transverse views are
shown in Supplementary Results (Figures 5 b and 5 c). The FDR
value is 0.0119.
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Figure 8: Results of voxel-wise t-tests of gray matter distributions
between the cluster 8 and the union of clusters 6 and 7 in
Figure 1. The precuneus and the frontal lobe of cluster 8 subjects
are on average more atrophic than with subjects in clusters 6 and
7. Coronal and transverse views are shown in Supplementary
Results (Figures 6 b and 6 c). The FDR value is 0.0109.
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Figure 9: Fast MCI progressors (cluster 9 in Figure 2) compared
with stable MCI subjects (cluster 21 in Figure 2). The t-tests
manifest bidirectional differences. The faster MCI progressors
show more atrophy in the medial temporal lobe and especially in
the cerebellum, while the stable MCI subjects manifest more
atrophy in the frontal cortex, albeit in a scattered manner. Coronal
and transverse views are shown in supplementary results
(Figures 8 b and 8 c). The FDR value is 0.0510.
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progression are evident in Table 3 as expected, and the results
are shown here for the sake of completeness.

4. Discussion

4.1. Methodology. We applied a hierarchical clustering algo-
rithm to MRIs of a cohort of 1461 subjects including AD
patients, MCI subjects, and healthy controls. The clustering
algorithm was based on a voxel by voxel distances between
gray densities of the MRIs normalized to stereotactic space.
Therefore, the cluster analysis did not a priori target any par-
ticular brain region. It can be considered a strength of the
method that it considers the whole intracranial volume and
is not tuned to find anything particular, yet it produced a
multitude of results that are compatible with results obtained
with entirely different approaches [5, 12, 14, 16]. Our meth-
odology, as demonstrated, appears particularly useful in
searching for entirely new patterns of brain atrophy thus
paving the way for finding new (sub)types of AD/MCI
pathogenesis.

Because the cerebral cortex contains vastly more voxels
than the hippocampus, it appears possible that our method
is more sensitive to cortical atrophy than hippocampal atro-
phy. Therefore, the regions of interest approach with more
balanced weights of different regions might be worth explor-
ing to better capture the changes localized in smaller neuro-
anatomical regions. Hence, an obvious modification to this
method would be to restrict to certain neuroanatomical
regions hypothesized to be related to different pathologies.
This approach might result in even more coherent clusters.

Also, a longitudinal investigation of brain atrophy could be
done using clustering techniques with comparisons to clini-
cal findings.

4.2. Discussion on AD Clusters. The clustering method found
8 AD clusters with more than 7 subjects. The clusters 1-4 (in
Figure 1) were deemed typical AD clusters while clusters 5-8
may represent atypical phenotypes that we consider as more
interesting. Regarding the structural phenotypes and progres-
sion rates of atypical AD subtypes, our results align with [12,
14, 16], particularly with respect to the clusters with cortically
driven atrophy patterns (clusters 5 and 8 in Figure 1). On the
other hand, the lack of strong cortical atrophy and female pre-
ponderance of the subjects in AD cluster 6 in Figure 1 led us to
hypothesize that this cluster represents the limbic predomi-
nant subtype of AD. In this cluster, the MCI progression rate
into AD was remarkable and could indicate that the MCIs
would progress into a similar subtype of AD as the diagnosed
AD cases in this cluster. Based on a voxel-based analysis of
MRIs, cluster 7 resembled very closely cluster 6 (Figure 6).
The more prominent cortical atrophy differentiated cluster 5
from clusters 6 and 7 as shown in Figure 7. The demographic
and clinical features of clusters 6 and 7 would be consistent
with the limbic-predominant subtype of AD. Still, to label
the overall pathology of these clusters as limbic-predominant
is admittedly rather speculative.

Cluster 8 featured the highest mean baseline ADAS
score 39.6 of all clusters and the lowest average age 60.1
years of all clusters at baseline. A structural feature that
distinguished the cluster 8 from the other clusters was
the marked atrophy near the precuneus as shown in
Figure 8. Based on Figure 8, it is evident that the precu-
neus, known to be involved in episodic memory and
visuospatial processing, of the subjects in cluster 8 was
more atrophic than that of other clusters. This is an inter-
esting finding because disproportionate atrophy in precu-
neus has been previously associated with earlier onset of
AD and posterior cortical atrophy shows a female bias
[21, 22]. Comparing with characteristics presented in [14,
16], we are most likely facing with an atypical AD subtype
that is driven by cortical atrophy with parietal cortical
atrophy also especially evident. The low age at baseline
diagnosis (6 of the 7 subjects were under 60 years old at
baseline) and the fast progression rate as calculated from
ADAS scores along with the MRI differences in precuneus
as compared with other clusters would support this
hypothesis. The proportion of cortically driven (or rela-
tively hippocampal-sparing) subtype has been found to
be higher than other subtypes in early-onset AD (EOAD)
[16]. In Figure 8, statistically significant differences were
seen also near the basal ganglia. Volumes of subcortical
structures, including the amygdala, hippocampus, thala-
mus, putamen, globus pallidus, and nucleus caudatus, are
known to decrease in AD, showing different rates of
decline depending on age [23]. An FDG PET-study
showed that the glucose metabolism in the left precuneus
of EOAD subjects was markedly impaired as compared
with late-onset AD (LOAD) subjects [24]. Interestingly,
notable atrophy in the precuneus was the feature that
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Figure 10: Cluster 8 shows on average significantly more cortical
and also subcortical atrophy than cluster 9. All cluster 8 subjects
are males, and the baseline ADAS score was the highest of all MCI
clusters. Yet, the ADAS slope is highest, i.e., the longitudinal
decline of cluster 9 is the worst of all MCI clusters. Transverse and
coronal views are shown in Supplementary Results (Figures 9 b
and 9 c). The FDR value is 0.00786.
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distinguished our AD cluster 8, with low average age at
baseline, from the other clusters (see Figure 1 and
Figure 8). Additionally, bilateral posterior parietal, poste-
rior cingulate, posterior temporal, and precuneal regions
were found to be more vulnerable to atrophy in younger
AD subjects [18]. The higher atrophy rate for younger
patients that we found was also observed in [18].

4.3. Discussion onMCI Clusters.OurMCI results suggest that
the structural MCI phenotypes are very diverse and worth
exploring in more detail. We were able to recognize clusters
of predominantly MCI subjects with different progression
rates into AD and varying patterns of brain atrophy (see
Figures 9–11). The varying progression rates manifest
themselves as a wide array of values from close to zero
(stable MCI) to values near those of AD. We found strik-
ing heterogeneities in MCI atrophy patterns in the cerebral
cortex, subcortical structures, and the anterior part of the
cerebellum, where Purkinje cells have been shown to dis-
play morphometric changes in AD [25]. Interestingly, the
fastest declining (in terms of ADAS slopes) cluster 9 in
Figure 2 displayed notable cerebellar atrophy as compared
with slower decliners (see Figure 9). This agrees with the
previous literature as those MCI subjects that converted
to AD were shown to manifest greater cerebellar atrophy
than cognitively normal subjects in [26]. Considering our
MCI results, it might be tempting to think that subjects
in the faster declining MCI clusters might later turn into
fast progressing atypical ADs. However, if that were the case,
one would anticipate some clusters of strikingly young MCI

subjects. But, in fact, none of the MCI clusters have an aver-
age age below 70 years. Most likely, many of the MCI subjects
progressing fast will simply enter the typical AD subtype. We
hypothesize that many of the MCI subjects that will turn into
atypical AD did enter the atypical AD clusters in Figure 1 as
discussed above rather than the MCI clusters in Figure 2. The
number of MCI phenotypes detected by our clustering algo-
rithm was higher than in other works [5, 21]. However, many
of these methods are supplied with a predefined number of
clusters as opposed to our data-driven number of clusters
selection. As MCI is a complex and heterogeneous clinical
construct, the number of true MCI subtypes remains a chal-
lenging question.

Regarding AD and frontotemporal degeneration (FTD),
the behavioral variant of FTD (bvFTD) was differentiated
from AD based on gray matter content in the nucleus cauda-
tus and inferior frontal lobe adjacent to the longitudinal fis-
sure (gyrus rectus) in [27]. Interestingly, there is a
possibility that some of the MCI subjects in our cohort may
be of the frontotemporal type (FT-MCI, [28]). Were that
the case, the etiology would most likely be unrelated to APOE
ε4. Differentiating FTD fromMCI/AD is beyond the scope of
this work but remains an interesting possibility within the
framework of our methodology.

Appendix

A. Methodological Details

A1. Image Preprocessing. The CAT12 pipeline first denoised
the images using adaptive nonlocal means filtering [29], seg-
mented the images into gray matter (GM), white matter
(WM), and cerebrospinal fluid (CSF) [30], computed partial
volume fractions [31], and spatially normalized the tissue
fraction images (nonaffinely) to the stereotactic MNI space
using the DARTEL algorithm [32]. This resulted in spatially
aligned GM and WM tissue fraction maps. Thereafter, the
tissue fraction maps were smoothed with a Gaussian filter
with 8mm FWHM (full width at half maximum) isotropic
kernel. We considered only the GM images as these will
include the most salient information for the dementia
applications.

A2. Choice of Clustering Method and Its Parameters. Regard-
ing the choice of algorithm, we noted that there are some
individual outliers, i.e., MRIs that are of poorer quality or
for some other reason deviate quite notably from others so
that the corresponding subjects do not cluster early during
the iteration. The agglomerative clustering is well suited for
this setting because the most obvious outliers will be auto-
matically clustered in the later phases of the computation.
We look for the clusters in an explorative way by judiciously
terminating the iteration before encountering the worse
image data thus avoiding an unnecessary dilution of the
results.

The standard way to observe the clustering dynamics
is to keep track of the clustering metrics as a function of
the number of clusters and to consider the so-called elbow
plot (Figure 12) in estimating the reasonable number of
clusters [20]. The farthest neighbor metric was used in
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Figure 11: Results of voxel-wise t-tests of gray matter distributions
between MCI cluster 3 and the union of MCI clusters 14, 15, and 17.
The slowest progressing MCI cluster 3 had statistically significantly
higher gray matter density than the fastest progressing MCI clusters
14, 15, and 17. Coronal and sagittal views are shown in
Supplementary Results (Figures 7 b and 7 c). The FDR value is
0.00673.
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distance-based clustering. Other metrics exist and could be
used but after experimenting with other metrics, the far-
thest neighbor metric was deemed the most appropriate
for our purposes because it produced the most coherent
clusters.

A3.Thresholding of Statistical Maps. For uniform visualiza-
tion, we decided to threshold the t-maps at an uncorrected
threshold ∣t ∣ >3 and approximate the false discovery rate
(FDR) at ∣t ∣ = 3. The FDR was approximated by computing
q-values for each voxel and selecting the q-value of the voxel
with the minimum ∣t ∣ larger than 3 as the FDR of the
thresholded map [33]. These FDR values, which alert about
multiplicity issues, are given in figure captions. We note
that as the number of possible cluster comparisons is
large; it is necessary to limit the discussion to most illustrative
comparisons.
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Figure 3(b): coronal view of the image shown in Figure 3. Fig-
ure 3(c): sagittal view of the image shown in Figure 3. Figure
4(b): coronal view of the image shown in Figure 4. Figure
4(c): sagittal view of the image shown in Figure 4. Figure
5(b): coronal view of the image shown in Figure 5. Figure
5(c): transverse view of the image shown in Figure 5. Figure
6(b): coronal view of the image shown in Figure 6. Figure
6(c): transverse view of the image shown in Figure 6. Figure
7(b): coronal view of the MRIs in Figure 7. Figure 7(c): sagit-
tal view of the MRIs in Figure 7. Figure 8(b): coronal view of
theMRIs in Figure 8. Figure 8(c): transverse view of theMRIs
in Figure 8. Figure 9(b): transverse view of the MRIs in Figure
9. Figure 9(c): coronal view of the MRIs in Figure 9. Figure
11: clusters 1-4 from Figure 1 (typical AD) are compared
with normal controls (NC). Transverse view, FDR value is
0.000502. Figure 12: clusters 1-4 from Figure 1 (typical AD)
are compared with normal controls (NC). Coronal view,
FDR value is 0.000502. Figure 13: clusters 1-4 from
Figure 1 (typical AD) are compared with normal controls
(NC). Sagittal view, FDR value is 0.000502. (Supplementary
Materials)
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