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It is well known that cancer incidence and death rates have been growing, but the
development of cancer theranostics and therapeutics has been a challenging work.
Recently, nucleic acid probe–based fluorescent sensing and imaging have achieved
remarkable improvements in a variety of cancer management techniques, credited to
their high sensitivity, good tolerance to interference, fast detection, and high versatility.
Herein, nucleic acid probe–based fluorescent sensing and imaging are labeled with
advanced fluorophores, which are essential for fast and sensitive detection of aberrant
nucleic acids and other cancer-relevant molecules, consequently performing cancer early
diagnosis and targeted treatment. In this review, we introduce the characteristics of nucleic
acid probes, summarize the development of nucleic acid probe–based fluorescent sensing
and imaging, and prominently elaborate their applications in cancer diagnosis and
treatment. In discussion, some challenges and perspectives are elaborated in the field
of nucleic acid probe–based fluorescent sensing and imaging.
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INTRODUCTION

Nucleic acids (DNA and RNA) are one of the most essential components for organisms. Nucleic acid
mutations, such as DNA translocations (Javadekar and Raghavan, 2015), small insertions and
deletions (indels), and single-nucleotide polymorphisms (SNPs) (Mohlendick et al., 2019), are
frequent events during cancer progression. Rapid progress in fluorescence-based nucleic acid probes
is beneficial for studying the structural and conformational polymorphisms of nucleic acids and
further investigating their variability, internal dynamics, and interactions with proteins, metabolites,
and targeting drugs at the sub-molecular level (Sinkeldam et al., 2010; Michel et al., 2020).

Specific nucleic acid probes hold with a particular sequence, and they can recognize a broad range
of targets, such as metal ions, small organic molecules, proteins, and even viruses or cells (Xiang and
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Abbreviation: AgNCs, silver nanoclusters; AuNPs, gold nanoparticles; CDs, carbon dots; CM, cell membrane; CRC, colorectal
cancer; Cyt c, cytochrome c; DSN, double-specific nuclease; FCM, flow cytometry; g-C3N4, graphitic carbon nitride; HCC,
hepatocellular carcinoma; IB-RCA, increasingly branched rolling circle amplification; MBs, molecular beacons; MP, multi-
functional primer; PDT, photodynamic therapy; PMMA-NPs, polymethylmethacrylate nanoparticles; PNA, peptide nucleic
acid; PTT, photothermal therapy; rGO, reduced graphene oxide; rGONS, reduced graphene oxide nanosheet; ssDNA, single-
stranded DNA; THP-RCA, ultrasensitive rolling circle amplification; TME, tumor microenvironment.
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Lu, 2011; Huang et al., 2019; Bai et al., 2020). Nucleic acid probes
mainly include DNA and RNA probes. DNA probes are useful
tools for elaborating the biological processes of nucleic acid
amplification, ligation, duplication, and transcription (Wu
et al., 2014; Jia et al., 2015). SNPs are the most common DNA
variations, and the multi-color SNP probes can discriminate four
SNP variants with unique fluorescence colors, but the ideal multi-
color SNP probes remain to be explored (Obliosca et al., 2013).
RNA probes are responsible for severe DNA interference due to
the similar structures between DNA and RNA, which restrains
the exploration of RNA probes (Wang et al., 2016; Yao et al.,
2018).

Generally, the specific structures of nucleic acid probes are
beneficial to fabricate molecular computing devices,
nanobiotechnology, and biomedical technology (Pu et al,
2014), like nucleic acid probe–based fluorescent sensing and
imaging platforms. Fluorophores are crucial for the
improvement of nucleic acid probe–based fluorescent sensing
and imaging (Ebrahimi et al., 2014). Organic or conventional
fluorophores have low quantum yield and poor photostability
(Xu et al., 2018). Importantly, an increasing number of novel
fluorescent nanomaterials have been developed, such as quantum
dots (QDs), silver nanoclusters (AgNCs), gold nanoparticles
(AuNPs), upconversion nanomaterials, and cationic conjugated
polymers (CCPs) (Xu et al., 2016; Borghei et al., 2019). These
fluorophores are characterized with better brightness,
photostability, and size-tunable fluorescence spectrum and can
directly or indirectly recognize specific targets with different
patterns, such as hydrogen bonds, single-stranded DNA
(ssDNA)/RNA hybridization, aptamer–target binding, enzyme
inhibition, and enzyme-mimicking activity (Adinolfi et al., 2017).

To date, cancer mortality has been increasing around the
word, chemotherapy and radiotherapy are widely used in cancer
clinical treatment, but long-term treatment with chemotherapy
drugs and radiotherapy can lead to multi-drug resistance, bone
marrow suppression, and other adverse reactions (Kovacs et al.,
2018; Zhou et al., 2018). Therefore, the development of effective
treatment and early diagnosis becomes the key to decrease the
death rate (He et al., 2019; Zhao et al., 2019). Since nucleic acid
probe–based fluorescent sensing and imaging are attractive ways
to identify the status of disease development, they have been
widely investigated for usage in the early diagnosis and targeted
treatment of various cancers by transforming biorecognition
events into an amplified fluorescence signal (Mo et al., 2017;
Lou et al., 2019; Li et al., 2021). Such tools allow for direct
molecular recognition between nucleic acid probes and tested
targets in living cells and tissues, which can quantitatively
discriminate the amount and position of mutated DNA by
producing an easily recordable and interpretable fluorescence
signal (Hamd-Ghadareh et al., 2017).

Taken together, nucleic acid probe–based fluorescent sensing
and imaging platforms are of great benefit to detect the positions
and concentrations of cancer-relevant targets (Gao et al., 2018).
Thereby, we would comprehensively elaborate the application of
nucleic acid probe–based fluorescent sensing and imaging
platforms in cancer diagnosis and therapy. In order to
facilitate the development of innovative nucleic acid

probe–based fluorescent sensing and imaging systems, some
challenges and perspectives would be discussed.

THE APPLICATION OF NUCLEIC ACID
PROBE–BASED FLUORESCENT SENSING
IN CANCER DIAGNOSIS AND TREATMENT
There are numerous outstanding fluorophores utilized for nucleic
acid probe–based sensing, comprising QDs, carbon dots (CDs),
AgNCs, AuNPs, CCPs, and upconversion nanomaterials.
Presently, the fluorescence intensity-based measurement is
extensively used, in which the fluorescence intensity varies
based on the levels of targets, leading to the accurate and
quantitative measurement of cancer-relevant molecules.
Prospectively, conjugation of nucleic acid probe–based
fluorescent sensing with high-throughput microdevices, such
as lateral flow devices, microfluidics, and microarrays, has
shown distinguished advantages in cancer point-of-care
diagnosis and oncogene-guided individual therapy (Figure 1).

Nucleic Acid Probe–Based Fluorescent
Sensing Platforms in Cancer Diagnosis
Fluorescence biosensors are valuable tools for early diagnosing
of cancer with precise and in situ monitoring of the
spatiotemporal changes of miRNAs or proteins and
identifying DNA mutations, such as single labeled molecular
beacons (MBs) (FAM-MBs, with carboxyfluorescein and
without quencher), a label-free beacon (AIE-MBs, without
fluorogen and quencher), enzyme/nanomaterial-free and dual
amplification, peptide nucleic acid (PNA), flow cytometry
(FCM), nucleic acid aptamers–CDs, and enzymatic
reaction–modified fluorescence sensing (Table 1).

Graphene oxide (GO) is a typical nanomaterial that holds
exceptional optical, electrical, mechanical, and chemical
properties (Lin et al., 2014). It has attracted enormous
attention in the study of DNA-based sensors by interacting
with ssDNA through π–π stacking interactions (Tang et al.,
2015). Human telomerase has been considered a promising
cancer marker. The single labeled FAM-MBs are designed to
detect telomerase activity with the aid of GO. To further simplify
this structure, the more sensitive label-free AIE-MBs are
constructed to monitor telomerase activity based on the
enhanced fluorescence production (Ou et al., 2017). But the
label-free AIE-MBs could carry a high signal-to-background
ratio. Presently, their applications in bladder cancer diagnosis
have been reported (Ou et al., 2017).

MicroRNAs (miRNAs) serve as ponderable serum cancer
biomarkers due to their functions in modulating oncogenic
pathways (Ndzi et al., 2019). Numerous nucleic acid
probe–based fluorescent sensors have a great value in
evaluating the serum concentrations of miRNAs (Yamamura
et al., 2012). For instance, there are two programmable DNA
probes labeled with either a donor or an acceptor fluorophore
dye. In the presence of targets, the fluorescent sensing platform
contributes to fluorescence resonance energy transfer (FRET) and
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signal amplification with a cascade hybridization reaction. The
assay can sensitively detect the concentration of miRNA let-7a at
single-cell resolution and discriminate let-7a from other highly
homologous miRNAs in different molecular subtypes of breast
cancer (Qiao et al., 2020). Nevertheless, the target-triggered and
self-assembly character offers a high signal-to-noise ratio and
strong read-out ratio, subsequently allowing for an effective
detection at low abundance.

miRNA-141 is important for accelerating epithelial to
mesenchymal transition (EMT) (Bhardwaj et al., 2017). An
enzyme/nanomaterial-free and dual amplified strategy is
developed for highly sensitive detection of miRNA-141 by
combining hybridization chain reaction (HCR) and catalytic
hairpin assembly (CHA) amplification (Wei et al., 2016). The
HCR and CHA synergistically generate a remarkably amplified
fluorescence signal, and the fluorescence signal intensity
represents the concentration of the miRNA-141 target.
Meanwhile, the platform can differentiate miRNA-141 from its
family members and be expanded for designing DNA hairpin
probes (Wei et al., 2016).

In addition, a novel PNA probe–based fluorogenic biosensor is
designed to selectively target the miRNA-141 biomarker in serum
without amplification step. In this system, PNAs are engineered
with uncharged oligonucleotide analogs. And PNAs are capable
of hybridizing to complementary targets with high affinity and
specificity, further analyzing the concentrations of circulating
miRNA-141 and miRNA-375, which have been applied for
sensitively diagnosing prostate cancer (Pca) (Metcalf et al.,
2016). In addition, fluorophore-labeled PNA probes are able to
quantitatively and specifically detect multiplexed miRNAs in
living cancer cells when conjugated with the nano
metal–organic framework (NMOF) vehicle, and the release of
PNAs from the NMOF would lead to the recovery of fluorescence
(Wu et al., 2015). Innovatively, the interaction between
immobilized PNA probes and DNA targets leads to enzyme-
catalyzed pigmentation, allowing for simple visual read-out with
up to 100% accuracy (Jirakittiwut et al., 2020).

Furthermore, a simpler DNA probe sensor has been creatively
presented through integrating with FCM, which is based on the
double key “unlocked mechanism” and the fluorescence

FIGURE 1 | Nucleic acid probe–based fluorescent sensing. Hairpin or single-stranded nucleic acid probes are labeled with fluorophores to construct nucleic acid
probe–based fluorescent sensing platforms. Effective fluorophores comprise QDs, CDs, AgNCs, AuNPs, CCPs, and upconversion nanomaterials. In the presence of
targets, fluorophore-labeled probes hybridize targets and transmit the amplified fluorescence signal, further detecting the levels of cancer-relevant molecules and
facilitating oncogene-guided individual therapy. In addition, the conjugation of fluorescent sensing with high-throughput microdevices, such as lateral flow devices,
microfluidics, and microarrays, has shown distinguished advantages in cancer point-of-care diagnosis. AgNCs, silver nanoclusters; AuNPs, gold nanoparticles; CDs,
carbon dots; QDs, quantum dots; CCPs, cationic conjugated polymers.

TABLE 1 | Application of nucleic acid probe–based fluorescent sensing in cancer diagnosis and treatment.

Fluorogenic biosensing Probes Cancers Targets Application Ref.

FAM-MBs/AIE-MBs ssDNA Bladder cancer Telomerase Diagnosis Ou et al. (2017)
An acceptor fluorophore dye ssDNA Breast cancer miRNA let-7a Diagnosis Qiao et al. (2020)
An enzyme/nanomaterial-free and dual amplification ssDNA Various cancers miRNA-141 Diagnosis Wei et al. (2016)
PNA probes ssDNA Prostate cancer miRNA-141 and miRNA-375 Diagnosis Metcalf et al. (2016)
FCM-based DNA probes ssDNA Breast cancer miRNA-21 and miRNA-141 Diagnosis Peng et al. (2019a)
Nucleic acid aptamers–CDs ssDNA Various cancers Cyt c Diagnosis Ghayyem and Faridbod (2018)
MP-MBs ssDNA Various cancers p53 Treatment Xu et al. (2015)
THP-RCA-MBs ssDNA Various cancers STAT3 Treatment Song et al. (2019)
IB-RCA-MBs ssDNA CRC Kras gene codon 12 Treatment Li et al. (2016)
PMMA-NPs ssDNA Lung cancer Survivin mRNA Treatment Adinolfi et al. (2017)

AgNCs, silver nanoclusters; AIE-MBs, a label-free beacon; AuNPs, gold nanoparticles; CRC, colorectal cancer; Cyt c, cytochrome c; FCM, flow cytometry; IB-RCA, increasingly branched
rolling circle amplification; MBs, molecular beacons; MP, multifunctional primer; PMMA-NPs, polymethylmethacrylate nanoparticles; PNA, peptide nucleic acid; ssDNA, single-stranded
DNA; THP-RCA, ultrasensitive rolling circle amplification.
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enrichment signal amplification (Peng et al., 2019a; Oldham et al.,
2020). In the sensor, fluorescent particle (FS)–labeled hairpin
DNA probes (HDs) serve as the lock of “unlocked mechanism”
and specifically hybridize with the probes on polystyrene (PS)
microparticles. In the presence of miRNA targets, both miRNA
targets and duplex-specific nuclease (DSN) act as the double key
to specifically unlock HDs and increase the enrichment of HDs
on PS microparticles. Then, the unlocked fluorescent probes lead
to the enrichment of the fluorescent signal (Peng et al., 2019b).
The FCM-based DNA probe sensor is allowed to measure
miRNA-21 and miRNA-141 in breast cancer blood samples
with higher sensitivity (Peng et al., 2019a). The whole
procedure does not need a complex purification process,
indicating a simplified FCM-based nucleic acid probe
fluorescent sensing platform.

Protein also exerts enormous functions in diverse pathological
activities, which provides effective targets for cancer diagnosis.
For example, cytochrome c (Cyt c), a heme protein, is a significant
biomarker for apoptosis (Chen et al., 2021). Cyt c–specific nucleic
acid aptamers have the strong binding affinity to Cyt c. The
detection of Cyt c relies on the interaction of nucleic acid
aptamers with fluorescent CDs. In the presence of Cyt c, the
interaction between nucleic acid aptamers and Cyt c would result
in the release of CDs and fluorescence production, and the
intensity of fluorescence is proportional to the concentration
of Cyt c (Ghayyem and Faridbod, 2018). Therefore, the nucleic
acid aptamer–CD sensing platform could be used for detecting
various cancer-related proteins through designing target-specific
nucleic acid aptamers, but CDs can only adsorb ssDNA probes
via π–π interaction.

Nucleic acids serve as substrates of nucleic acid enzymes, and
enzymatic reaction–mediated fluorescence sensing is a versatile
avenue to improve the sensitivity of cancer diagnosis when
combining with target-dependent cycling amplification
(Allinson, 2010). In detail, when probe strands recognize the
target DNA strands, the probe–target complexes are instantly
digested by a specific enzyme to emit a fluorescence signal. Then,
the released target DNA strands immediately react with another
probe and give out a stronger signal (Zuo et al., 2010).
Exonuclease III (Exo III) is one of the DNA-repair enzymes
Chen et al. (2019a), and it is inclined to be recognized by MBs.
MB-labeled fluorescence probes can effectively cleave Exo III and
stimulate DNA-dependent signal recycling amplification, further
testifying DNAmutation and diagnosing cancer (Zuo et al., 2010;
Chen et al., 2019b).

In this work, a novel and low-background fluorescent sensor
platform is developed to detect nucleic acids based on the
combination of δ-FeOOH nanosheets with Exo III–assisted
target-recycling signal amplification. δ-FeOOH nanosheets, as
the quenchers, are conjugated with the dye-labeled ssDNA
probes. The dye-labeled ssDNA probes integrate with the
DNA targets to form a double-strand DNA complex (dsDNA).
Then, the dye-labeled ssDNA probes in the dsDNA complex will
be gradually hydrolyzed into short fragments by Exo III, and the
fluorescence signal is recovered due to the weaker bind affinity
between short fragments and δ-FeOOH nanosheets (Wu et al.,
2020). Markedly, the most suitable environment should be

provided for boosting Exo III activity, and this sensing
platform would become a universal approach for optimizing
the early detection of DNA mutation.

Nucleic Acid Probe–Based Fluorescent
Sensing Systems in Cancer Treatment
Abnormal changes in tumor suppressor genes, oncogenes, and
other molecules are found in various cancers. Thus, precisely
targeting these aberrant molecules via nucleic acid probe–based
fluorescent sensing is prospective for guiding and optimizing
cancer gene–based individual treatment. There are several noble
fluorescence sensing strategies, including multifunctional
primer–integrated MBs (MP-MBs), ultrasensitive rolling circle
amplification (THP-RCA), increasingly branched rolling circle
amplification (IB-RCA), and polymethylmethacrylate
nanoparticle (PMMA-NP)–modified MBs (Table 1).

p53 is an essential tumor suppressor, and targeting p53
mutation should also be concerned (D’Orazi et al., 2021).
Presently, the MP-MB probe has been developed to detect p53
gene. Compared with the traditional MBs, MP-MBs can not only
selectively identify the targets and sensitively transmit a
hybridization signal but also act as the primer during
enzymatic polymerization. Specifically, hybridization of MP-
MBs with p53 gene can restore the fluorescence intensity and
provoke the pre-locked primer by changing the molecular
configuration of MP-MBs, further targeting p53 mutation and
instructing p53 gene–guided individual therapy (Xu et al., 2015).
MP-MBs do not require any chemical modification, and with less
species requirement, they have wider sequence diversity and
preserved intrinsic bioactivity.

STAT3 is a potent proto-oncogene, and screening STAT3 gene
is useful for cancer therapy (Kryczek et al., 2014). A novel THP-
RCA strategy is designed to ultrasensitively detect human proto-
oncogenes via conjugating with target-catalyzed hairpin
structure–mediated padlock cyclization. For the system,
hairpin probe (HP) 1 is formed as the cyclization template
and RCA reaction primer and HP2 is the padlock probe. The
two probes fold into a hairpin structure via self-hybridization. In
the presence of STAT3 DNA, HP2 hybridizes with HP1 in an
end-to-end manner. Then, HP2 is cyclized by ligase on the HP1
template; the cyclized HP2 enables the RCA and generates a long
tandem ssDNA product that is capable of hybridizing with
considerable quantity of MBs. Subsequently, the amplified
fluorescence value represents the ultrasensitive detection of
STAT3 gene (Song et al., 2019). Moreover, the sensing system
is suitable for target detection in human serum.

Similarly, IB-RCA is constructed for highly sensitively
detecting and targeting the colorectal cancer (CRC) gene, Kras
gene codon 12, which comprises a padlock probe (PP) and anMB
(Li et al., 2016). The PP is circularized after hybridization with the
DNA target, while the stem of the MB is opened by the DNA
target. The newly opened MB hybridizes with the circularized PP
to generate a long tandem ssDNA product, consequently
triggering the next RCA reactions and producing a
dramatically amplified fluorescence signal (Li et al., 2016). It is
worth noting that IB-RCA efficiently transduces the fluorescence
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signal in a simpler way compared with conventional
amplification methods.

In addition, targeting mRNAs is the other cardinal avenue to
cancer treatment. Survivin is an overexpressed anti-apoptotic
protein and considered a pharmacological target for effective
anticancer therapy (Meiners et al., 2021). Survivin MBs can
selectively detect survivin mRNA through embedding into the
cells with the assistance of Lipofectamine, but MBs might be
degraded by enzymes in vivo (Bishop et al., 2015). In order to
overcome this problem, biocompatible core–shell PMMA-NPs
serve as the carrier of MBs to specifically target survivin mRNA in
A549 human lung adenocarcinoma epithelial cells, which
suppresses cancer cell proliferation (Adinolfi et al., 2017).
PMMA-NPs consist of a fluorescein-modified hydrophobic
PMMA core and an external hydrophilic shell functionalized
with primary amine groups and quaternary ammonium salts.
Interestingly, the PMMA-NP carrier has higher biocompatibility,
lower cytotoxicity to healthy cells, higher biological inertness,
lower synthesis costs, and higher selectivity, as well as prolonging
the drug half-life in the human body compared with classical
transfection reagents such as Lipofectamine, which extend the
application of PMMA-NPs (Brandts et al., 2021).

THE APPLICATION OF NUCLEIC ACID
PROBE–BASED FLUORESCENT IMAGING
IN CANCER DIAGNOSIS AND TREATMENT
At present, even if nucleic acid probe–based fluorescent sensing
has made significant progress in cancer diagnosis and therapy, it
cannot detect the cancer-relevant targets in situ. It is worth noting
that nucleic acid probe–based fluorescent imaging can visualize
the cancer target expression, composed of visualizing the changes
in molecule conformation, locating surface molecules, and

targeting cancer cells in living samples with a high
spatiotemporal resolution, resulting in an elevated efficiency of
cancer diagnosis and treatment (Figure 2). Due to the excellent
functions of RNA during cancer development, the investigation
of multi-fluorophore color RNA probes is required for
understanding the correlation of gene expression and
interaction between nucleic acids (Okamoto, 2011).

Nucleic Acid Probe–Based Fluorescent
Imaging Platforms in Cancer Diagnosis
miRNAs have become ideal and noninvasive cancer biomarkers.
To accomplish better and faster miRNA imaging, Au
nanoparticles (AuNPs)/double-specific nuclease (DSN), AgNC-
generating MBs (AgNC-MBs), reduced graphene oxide (rGO),
FAM, OTP-ZnCl2, Hsd, and NBE-modified fluorescent probes
are applied for fabricating imaging platforms and measuring
mutant-type targets in diagnosis of various cancers (Figure 2;
Table 2).

Highly efficient cellular transfection and intracellular signal
amplification are basis for low-abundance miRNA imaging
(Chen et al., 2019a; Lu et al., 2020). A study uses AuNPs/DSN
to encapsulate the functional cancer cell membrane (CM) vesicle,
and AuNPs are modified with three types of fluorescent probes.
The AuNPs/DSN@CM can specifically target the cancer cell, and
the internalized AuNPs/DSN@CM further recognizes the
miRNA targets and induces DSN-based recycle signal
amplification, leading to simultaneous detection of multiple
miRNAs. This approach has successfully analyzed and
monitored the dynamic changes in oncogenic miRNAs in
breast cancer cells with high sensitivity (Lu et al., 2020).
Compared with traditional AuNPs, AuNPs/DSN@CM exhibits
the higher transfection efficiency, biocompatibility, and
specificity.

FIGURE 2 | Nucleic acid probe–based fluorescent imaging. Hairpin or single-stranded nucleic acid probes are labeled with fluorophores to form nucleic acid
probe–based fluorescent imaging platforms. Novel fluorophores include AuNPs/DSN, AgNC-MBs, FAM, OTP-ZnCl2, Hsd, and NBE. In the presence of targets,
fluorophore-labeled probes hybridize targets, further performing molecular imaging and locating molecules expressed on the surface of cells or tissues and targeting
cancer cells in living samples. The fluorescent imaging platforms can detect cancer-related molecules, resulting in an elevated efficiency of cancer diagnosis.
Meanwhile, these imaging methods are utilized for delivering anticancer drugs and guiding PDT and PTT, further killing cancer cells by in situ imaging of low-abundance
biomarkers. AgNCs, silver nanoclusters; AuNPs, gold nanoparticles; MBs, molecular beacons; DSN, double-specific nuclease; PDT, photodynamic therapy; PTT,
photothermal therapy.
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Favorably, the fluorescent AgNC-MBs are economical
alternatives for detecting multiple nucleic acids (Del Bonis-
O’Donnell et al., 2016; Huang et al., 2018). However, most of
AgNC-MBs have limited versatility; the reason is that
fluorescence properties of DNA-AgNCs will be severely
damaged when the AgNC-stabilizing sequence is embedded
into the MB sequence. Based on toehold-mediated DNA
strand displacement, a new type of AgNC-MB is constructed
by combining with total internal reflection fluorescence
(TIRF)–based single-molecule fluorescence imaging (Peng
et al., 2019b). The AgNC-MB platform can simultaneously
measure two breast cancer–related miRNAs (miRNA-21 and
let-7a) and distinguish the mutant-type targets at low
abundance (Peng et al., 2019a). In addition, miRNA-451a and
miRNA-214-3p are meaningful biomarkers for breast cancer; the
novel rGO-modified DNA nanoprobe is prepared for
simultaneous dual-color imaging of miRNA-451a and miRNA-
214-3p (Xiong et al., 2021). Above all, the AgNC-MBs and rGO-
modified imaging platforms provide versatile methods for
sensitively and simultaneously imaging multiple miRNA
biomarkers. Notably, AgNCs have been employed in single-
molecule microscopy, molecular logic devices, and metal ion
sensing (Adinolfi et al., 2017).

Currently, fluorescent RNA probes are developing. The OTP-
ZnCl2 complex has a better interaction with nucleolus RNA than
DNA, and it can stably insert into the inside of RNA based on the
hydrogen bonds between OTP-ZnCl2 and RNA, between the
oxime group and the base pair of RNA (Wang et al., 2016).
Because of the outstanding cell permeability, low cytotoxicity, and
counterstain compatibility, OTP-ZnCl2 has become a favorable
dye for designing selective RNA fluorescent probes and two-
photon fluorescence imaging. In this study, OTP-ZnCl2–based
fluorescent RNA probes are allowed for accurate RNA imaging
within hepatocellular carcinoma (HCC) cells (Wang et al., 2016).
In addition, the near-infrared and cell-impermeant fluorescent
dye Hsd is utilized to modify RNA probes owing to its selective
response to RNA, and it can enter into the living cells for selective
RNA staining and imaging with low cytotoxicity and fluorescence
quantum yield. But the process needs the assistance of cucurbit[7]
uril (CB7) to strengthen the potential of Hsd in cancer diagnosis
(Li et al., 2013). Besides, NBE, an NIR fluorescent probe, has no
response to DNA. NBE-modified RNA probes are utilized for

fulfilling excellent RNA imaging in live breast cancer and HCC
cells with good photostability, high selectivity, and fast response
to RNA, which facilitates the diagnosis of various cancers
according to RNA contents (Yao et al., 2018).

Nucleic Acid Probe–Based Fluorescent
Imaging Systems in Cancer Treatment
Likewise, nucleic acid probe–based fluorescent imaging is an
available approach for guiding cancer treatment and
improving the therapeutic efficacy with in situ imaging of low-
abundance nucleic acid targets. Currently, some imaging
methods are utilized for delivering anticancer drugs and
guiding photodynamic therapy (PDT) and photothermal
therapy (PTT) (Figure 2; Table 2).

Recently, the water-dispersible graphitic carbon nitride (g-C3N4)
nanosheet has been considered an excellent nanocarrier functioned
with CHA amplification, and it is applied for self-tracking
transfection of DNA hairpin probes (Xiang et al., 2020; Lin et al.,
2021a). The cancer-related mRNAs will efficiently initiate the DNA
hairpin probes, ultimately leading to an amplified fluorescence signal
via hybridization and mRNA displacement. Then, the enhanced
fluorescence imaging will sensitively analyze the low-abundance
cancer-relevant mRNAs, directly track the location, and guide
precise PDT of cancers upon light irradiation (Xiang et al., 2020).
Presently, the g-C3N4 nanosheet–based nanoassembly has been
used for low-abundance survivin mRNA imaging and anticancer
PDT, which do not show obvious side effects (Xiang et al., 2020).

As we all know, aberrant alterations of glycans are involved in
many types of cancers. Herein, DNA-stabilized AgNC probes
have been presented for label-free fluorescence imaging of cell
surface glycans and fluorescence-guided PTT. In this pattern,
surface glycans are specifically labeled by DNA-AgNC fluorescent
probes via the dibenzocyclooctyne (DBCO)-functioned and
DNA-initiated hybridization chain reaction (HCR). Then,
DNA-AgNC probes produce the amplified signal, subsequently
killing cancer cells and inhibiting cancer growth due to the
remarkable photothermal properties of the HCR. Furthermore,
DNA-AgNCs can dramatically reduce the cost and the instability
of fluorescent dyes, and the HCR prevents the introduction of
excessive azido-sugars and ensures apparent fluorescence. These
results present the high value of the fluorescence imaging

TABLE 2 | Application of nucleic acid probe–based fluorescent imaging in cancer diagnosis and treatment.

Fluorogenic imaging Probes Cancers Targets Application Ref.

AuNPs/DSN@CM ssDNA Breast cancer Multiplex miRNAs Diagnosis Lu et al. (2020)
AgNC-MBs ssDNA Breast cancer miRNA-21 and let-7a Diagnosis Peng et al. (2019b)
rGO ssDNA Breast cancer miRNA-451a and miRNA-214-3p Diagnosis Xiong et al. (2021)
OTP-ZnCl2 RNA HCC Total RNA Diagnosis Wang et al. (2016)
Hsd RNA Cervical carcinoma Total RNA Diagnosis Li et al. (2013)
NEB RNA Breast cancer and HCC Total RNA Diagnosis Yao et al. (2018)
g-C3N4 nanosheet ssDNA Lung cancer Survivin mRNA PDT Xiang et al. (2020)
AgNCs ssDNA Various cancers Glycans PTT Wu et al. (2018)
rGONS ssDNA Various cancers p53 and p21 mRNA Treatment Fan et al. (2019)
AuNP–MB–Dox ssDNA Breast cancer Cyclin D1 mRNA Treatment Qiao et al. (2011)

AgNCs, silver nanoclusters; AuNPs, gold nanoparticles; CM, cell membrane; DSN, double-specific nuclease; g-C3N4, graphitic carbon nitride; HCC, hepatocellular carcinoma; MBs,
molecular beacons; PDT, photodynamic therapy; PTT, photothermal therapy; rGO, reduced graphene oxide; rGONS, reduced graphene oxide nanosheet; ssDNA, single-stranded DNA.
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nanoplatform in visualizing specific glycans and guiding
anticancer PTT (Wu et al., 2018).

The p53 and p21 genes play vital roles in blocking cancer
development; it is important to monitor mRNA levels of the two
markers (Lei et al., 2020). Herein, a reduced graphene oxide
nanosheet (rGONS)–modified nanosystem is constructed for in
situ and real-time p53 and p21 mRNA imaging by adsorbing the
FAM-labeled p21 probe (P21) and Cy5-labeled p53 probe (P53).
Once the two fluorescence probes hybridize with corresponding
targets, the formation of DNA/RNA duplexes directly facilitates
the release of probes from the rGONS surface and then restores
the fluorescence signal (Fan et al., 2019). Therefore, the
nanosystem in situ reveals a p53 and p21 mRNA–related
regulatory process, which is practicable for drug screening and
therapy evaluation in clinics.

Doxorubicin (Dox) is a common anticancer drug, and
fluorophore-modified Dox is essential for cancer targeted
therapy by intercalation within DNA/RNA. Herein, Dox
carriers directly impact the therapeutic efficiency, and MB-
functionalized AuNPs are identified as superior carriers to
deliver fluorescent Dox. When MBs selectively interact with
mRNA targets, fluorescent Dox is released from the
AuNP–MB–Dox complex. The released Dox is positively
correlated with the quantities of mRNA targets (Qiao et al.,
2011). This strategy selectively detects the concentration of
cyclin D1 mRNA in breast cancer and induces cyclin D1 +
breast cancer cell apoptosis. Obviously, AuNP-MBs are the
ideal carriers for transporting anticancer drugs, as they can
specifically interact with cancer-relevant mRNA targets and
kill cancer cells with lower side effects (Qiao et al., 2011).

DISCUSSION

All in all, the applications of fluorescent biosensors and imaging
technologies are increasingly widespread. However, there are
some defects that need to be improved: i) The nucleic acid
probes might lose the ability to hybridize with target strands
when the target sequences form secondary structures such as
hairpins or quadruplexes, subsequently disturbing the
surrounding sequences (Ming et al., 2019). Thus, an open
strand–based model is required for eliminating the influence
of complicated secondary structures. The model would be
conducted for observing low-abundance DNA mutations in
cancer samples, further improving cancer gene–based
individual therapy. ii) We should also focus on the
development of other fluorescence signaling techniques, such
as lifetime, correlation spectroscopy, polarization, and
localization; they are excellent carriers for delivering
information and exploring molecular interactions and DNA
structures, which will make significant advancements in cancer
diagnostics and theranostics (Su et al., 2012; Adinolfi et al., 2017).

Some nucleic acid probe–based fluorescent sensing platforms
are simultaneously labeled with fluorogen and quencher. The
synthesis of both fluorogen and quencher is complex, and the
relative distance between fluorogen and quencher is difficult to
control, which may lead to false-positive and false-negative results

(Ou et al., 2017). In order to realize more specific molecular
recognition and more accurate quantification of target
molecules, studies are supposed to focus on designing new
nucleic acid probes with more chemical functionalities and less
nonspecific interactions. Even though fluorescent probe–labeled
nucleic acid aptamers exert brilliant functions with low cytotoxicity
and high specificity, the performance of aptamer-based sensors
remains to be improved due to fast nuclease degradation, rapid
renal excretion, and weaker binding affinity (Tan et al., 2019).

Nucleic acid fluorescent probe–based imaging technology has
attracted widespread attention, which can display quantitative maps
according to the concentrations of target molecules in living
samples. Although numerous nucleic acid probes have sufficient
sensitivity and selectivity for in vitro imaging of various targets,
there are several scientific and technical challenges to in situ and in
vivo fluorescence imaging: i) the complexity of tumor
microenvironment (TME) might cause damage to normal cells
and non-target molecules (Lin et al., 2021b) and ii) the high
background of enzymatic catalysis dramatically decreases the
feasibility of in vivo fluorescence imaging (Ferrero et al., 2021).
Thus, novel fluorophores with high quantum yield need to be
explored for eliminating the background signal and reducing the
perturbation to normal biological processes, which is vital for
monitoring the enzymatic processes with greater temporal and
spatial resolution. Currently, a number of aptamer-based methods
for in vivo fluorescence imaging have been reported, such as
fluorescent dyes, QDs, or upconversion nanoparticle–labeled
aptamers (Bagalkot et al., 2007; Kim et al., 2012).

Although nucleic acid probe–based fluorescent sensing and
imaging systems have made some progress, several drawbacks
need to be ameliorated, including low sample throughput, defective
reproducibility, insufficient quantitation accuracy, high operation
costs, complicated procedures, and long assay period (Fang et al.,
2019). To solve these deficiencies, miniaturized and automated
nanodevices would be rapidly developed via integrating
fluorescence-labeled nucleic acid probes with high-throughput
technologies, such as lateral flow devices, microfluidic chips, or
microarray chips (Fang et al., 2019). These creative nanodevices
would achieve tremendous advancements in cancer diagnostics
and theranostics through real-time monitoring of biological
processes, rapidly identifying targets and characterizing enzymes
in a complex system (Fang et al., 2019). Nevertheless, how to assist
them to exert more sophisticated functions in complicated
biological environments remains to be explored.
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