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Aminoglycosides, but not PTC124 
(Ataluren), rescue nonsense 
mutations in the leptin receptor 
and in luciferase reporter genes
Florian Bolze1,2, Sabine Mocek1,2, Anika Zimmermann1,2 & Martin Klingenspor1,2

In rare cases, monogenetic obesity is caused by nonsense mutations in genes regulating energy 
balance. A key factor herein is the leptin receptor. Here, we focus on leptin receptor nonsense variants 
causing obesity, namely the human W31X, murine Y333X and rat Y763X mutations, and explored 
their susceptibilities to aminoglycoside and PTC124 mediated translational read-through in vitro. In 
a luciferase based assay, all mutations - when analysed within the mouse receptor - were prone to 
aminoglycoside mediated nonsense suppression with the highest susceptibility for W31X, followed 
by Y763X and Y333X. For the latter, the corresponding rodent models appear valuable for in vivo 
experiments. When W31X was studied in the human receptor, its superior read-through susceptibility – 
initially observed in the mouse receptor – was eliminated, likely due to the different nucleotide context 
surrounding the mutation in the two orthologues. The impact of the surrounding context on the read-
through opens the possibility to discover novel sequence elements influencing nonsense suppression. 
As an alternative to toxic aminoglycosides, PTC124 was indicated as a superior nonsense suppressor 
but inconsistent data concerning its read-through activity are reported. PTC124 failed to rescue W31X 
as well as different nonsense mutated luciferase reporters, thus, challenging its ability to induce 
translational read-through.

Nonsense mutations are single nucleotide exchanges that cause in frame premature termination codons (PTCs), 
thus, leading to the synthesis of truncated and dysfunctional proteins. The impact of nonsense mutations on 
human health is indicated by many inherited diseases, such as cystic fibrosis (CF) and Duchenne muscle dystro-
phy (DMD)1, 2. In rare cases, human monogenetic obesity can be caused by PTCs in genes encoding for leptin3 and 
its cognate receptor (LEPR)4, 5, pro-opiomelanocortin6, prohormone convertase 17 and melanocortin-4-receptor8, 
which are all engaged in central energy balance regulation.

Aminoglycoside antibiotics have the ability to suppress translation termination at PTCs9. The reduc-
tion of translation fidelity permits the pairing of a near-cognate aminoacyl-tRNA with the PTC and thereby 
allows the continuation of protein synthesis10. The read-through efficiency depends on the nature of the PTC 
(TGA > TAG > TAA) and the surrounding nucleotide context11–13. A multitude of preclinical studies have 
emphasized nonsense suppression as a strategy to treat inherited diseases14–17. However, clinical studies resulted 
in variable outcomes: only subpopulations of patients suffering nonsense mutation CF, DMD, McArdle disease, 
or haemophilia benefit from aminoglycoside treatment18–21. Moreover, the use of aminoglycosides is limited due 
to side effects22, 23. Alternative drugs are needed to enable an efficient and safe nonsense suppression therapy. In 
several preclinical studies24–31, the small molecule PTC124 (Ataluren®) was suggested as the desired drug with 
superior suppressor properties and mild side effects32. In addition, a Phase 2a and a subsequent Phase 2b study 
conducted with patients suffering nonsense mutation DMD demonstrated that PTC124 elevates dystrophin lev-
els in muscle biopsies and slightly reduces the disease progression relative to placebo33, 34. In 2014 - distributed 
under Translarna - PTC124 received a ‘conditional approval’ from the European Medicines Agency for DMD35. 
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Noteworthy, several preclinical reports could not confirm the read-through activity of PTC12436–41 and the clini-
cal efficiency – in particular for CF patients in a Phase 3 study42 - was evaluated as rather weak43.

Only a few studies have addressed the suppression of PTCs in obesity-related genes36, 44. In the present work 
we focus on the leptin receptor, a class I cytokine receptor strongly expressed in the hypothalamus. Plasma lev-
els of the adipocyte-derived hormone leptin communicate the stage of energy storage to the central nervous 
system45. The plasma membrane bound LEPR-b isoform has a molecular weight of 132 kD and signals through 
diverse pathways including the Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) cas-
cade46. The importance of leptin and its receptor on energy balance is highlighted by loss-of-function mutations 
causing rare forms of monogenic obesity4, 47. Recombinant leptin represents a successful therapy to treat congen-
ital leptin deficiency48, 49. Restoring leptin receptor expression in the brain is also a beneficial treatment but its 
implementation is more difficult than leptin replacement therapy50.

Here, we studied three leptin receptor nonsense mutations, as well as their suppression susceptibility to the 
aminoglycosides G418 and gentamicin, and to the oxadiazole substance PTC124 in HEK293 cells. LEPRW31X was 
originally found in an obese human subject4, LeprY333X was identified in the obese db333/db333 mouse model51, 
and LeprY763X represents the mutation causing the obese phenotype of Koletsky rats52. To ensure comparability 
between the variants originating from different species, we initially characterized them within the murine recep-
tor. The W31X variant was additionally investigated in its natural human receptor context. Firstly, we conducted 
an assay with fusion constructs consisting of the particular PTC ± 6 bp nucleotide context and a Photinus lucif-
erase (PLuc) to assess the read-though susceptibility of the mutations. Then we performed a signalling assay 
utilizing STAT3-responsive luciferase reporter genes to investigate the receptor activities of the LEPR-b mutants. 
Additionally, we designed and tested nonsense mutated Renilla and secreted NanoLuc luciferase reporters to 
further explore the read-through activity of PTC124.

Results
Susceptibility of nonsense mutated mLepr-PLuc fusions constructs to aminoglycoside medi-
ated read-through.  All experiments were performed in medium free of streptomycin, an aminoglycoside 
antibiotic which is widely used in combination with penicillin in mammalian cell cultures. Pilot experiments have 
shown that the absence of streptomycin increased the read-through efficiency of gentamicin (Supplementary 
Fig. 2). Under this optimized cell culture condition, we tested whether W31X, Y333X and Y763X are prone 
to aminoglycoside mediated read-through using fusion constructs containing the particular PTC ± 6 bp con-
text fused inframe upstream to the Photinus luciferase (PLuc) ORF. Initially, the mutations were investigated 
in the mouse receptor context (Table 1). Transiently transfected HEK293 cells were incubated for 24 h with ris-
ing concentrations of gentamicin or G418. Gentamicin rescued mLeprW31X-PLuc (Fig. 1a), but less efficient than 
G418 since higher doses were needed and maximal luciferase activities were lower (Fig. 1b). On the contrary, 
both aminoglycosides failed to induce a read-through in mLeprY333X-PLuc transfected cells (Fig. 1c and d). In 
cells expressing mLeprY763X-PLuc, gentamicin and G418 mediated only a minor restoration of luciferase activity 
(Fig. 1e and f).

Aminoglycoside mediated rescue of nonsense mutated mLEPR-b variants.  In this assay, we 
tested whether aminoglycosides are able to restore the signalling properties of PTC harbouring full-length recep-
tor variants. The nonsense variants mLepr-bW31X, mLepr-bY333X and mLepr-bY763X were initially characterized 
within the mouse receptor ORF. Contrary to the wild-type receptor (Fig. 2a inset), in the absence of aminogly-
cosides none of the mutated variants were activated by leptin (Fig. 2). In line with the findings obtained with 
the PTC-containing Lepr-PLuc fusion vectors (Fig. 1), the most efficient rescue was detected for mLEPR-bW31X 
(Fig. 2a and b), followed by mLEPR-bY763X (Fig. 2c and d) and mLEPR-bY333X (Fig. 2e and f). Both aminoglyco-
sides were able to revive mLEPR-bW31X signalling activity to 20–25% of the level of mLEPR-bwt (Fig. 2a and b). 
Relative to mLEPR-bwt, mLEPR-bY333X (Fig. 2c and d) and mLEPR-bY763X (Fig. 2e and f) reached activity levels of 
10% and 15%, respectively. Furthermore, G418 was more efficient than gentamicin since much lower doses were 
sufficient to induce receptor activity.

Nonsense 
mutation Species PTC ± 6 bp context Protein

W16X
human* ACT CCT TGA 

AGA TTT TPXRF

mouse TCT CCC TGA 
AAA TTT SPXKF

Y333X mouse GTT GTG TAA TTT 
CCA VVXFP

Y763X
rat* AAT GAT TAA AGT 

CTG NDXSL

mouse GAT GAT TAA AGT 
CTG DDXSL

Table 1.  Leptin receptor nonsense mutations. Three different point mutations resulting in the formation of 
premature termination codons (PTC) were investigated in the present study. All mutations were inserted into 
the murine receptor sequence to ensure a comparison within an identical genetic backbone. The mutation 
W31X was additionally investigated within the human sequence. Differences on the nucleotide and amino acid 
level are underlined. *Indicates the species in which the mutation was identified.
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Figure 1.  Susceptibility of nonsense mutated Lepr-PLuc fusion constructs to aminoglycoside mediated read-
through. HEK293 cells were co-transfected with either (a,b) mLeprW31X-PLuc, (c,d) mLeprX333Y-PLuc or (e,f) 
mLeprX763Y-PLuc and phRG-b for data normalization. The indicated nonsense mutations were imbedded 
into ± 6 bp murine receptor context (see Table 1 and Supplementary Fig. 1). Two days after the transfection, cells 
were treated for 24 h with rising concentrations of either G418 or gentamicin (n = 4–6, SD).

Figure 2.  Aminoglycoside mediated rescue of signalling properties of nonsense mutated LEPR-b variants. 
HEK293 cells were co-transfected with either (a,b) mLepr-bW31X- (inset mLepr-bwt), (c,d) mLepr-bY333X- or 
(e,f) mLepr-bY763X-pcDNA3.1 overexpression construct, STAT3-RE-PLuc and phRG-b. Two days after the 
transfection, cells were treated for 24 h with different concentrations of the aminoglycosides and for the last 16 h 
in addition with 6 nM murine leptin (n = 4, SD). Statistical significance between (−) and (+) leptin was assessed 
by t-tests with Bonferroni-Holm correction for multiple comparisons *p < 0.05; **p < 0.01; ***p < 0.001.
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PTP1B neutralizes the gentamicin induced rescue of mLEPR-bW31X signalling.  Protein-tyrosine 
phosphatase 1B (PTP1B) is an intracellular inhibitor of LEPR-b signalling. Its expression attenuated the activity 
of mLEPR-bwt (Fig. 3a). Overexpression of PTP1B neutralized the gentamicin effect on mLEPR-bW31X (Fig. 3b) 
indicating that a reactivation of the signalling cascade and not an off-target effect is responsible for the aminogly-
coside mediated activation of the STAT3-RE-PLuc reporter in the signalling assay (Fig. 2).

Aminoglycosides do not restore hLEPR-bW31X signalling.  For a more physiological characterization 
of the human mutation W31X, we studied the mutation in its natural human sequence context. When HEK293 
cells - expressing the human or mouse LEPRW31X-PLuc fusion protein - were exposed to gentamicin and G418, 
a significantly lower read-through susceptibility for the human version was observed (Fig. 4a and b). Then, we 
compared the signalling properties of human and murine full-length LEPR-bW31X orthologues. HEK293 cells 
transfected with the hLEPR-bwt-pDEST26 expression construct were activated by leptin proving the functional-
ity of the expression vector/system (Fig 4c inset). Signalling of hLEPR-bW31X could not be restored in response 
to 24 h aminoglycoside treatment (data not shown). Even a prolonged G418 incubation of 48 h had no effect 
on hLEPR-bW31X signalling (Fig. 4d). Only a modest activation of hLEPR-bW31X was observed when cells were 
exposed for 48 h to the highest gentamicin concentration (Fig 4c). However, the difference between (−) and (+) 
leptin at 2200 µM gentamicin was not statistically significant. A two-way ANOVA conducted with the independ-
ent variables gentamicin and leptin treatment revealed a significant effect for both factors on hLEPR-bW31X activ-
ity (gentamicin p < 0.001; leptin p < 0.05). In contrast, cells transfected with mLepr-bW31X-pcDNA3.1 exhibited 
again a superior susceptibility to the read-through activity of both aminoglycosides (Fig. 4c and d).

The human and mouse LEPR-b orthologues were either expressed from pDEST26 or pcDNA3.1. To exclude 
a distracting effect of the pDEST26 vector backbone on nonsense suppression of W31X in the human receptor, 
we transferred the hLEPR-b ORF into pcDNA3.1. Replication of the experiment with hLEPR-bW31X-pcDNA3.1 
resulted again in no reactivation when cells were exposed to aminoglycosides (Supplementary Fig. 3).

Off-target effect of PTC124 is specific for PLuc.  Previous reports demonstrated off-target effects of 
PTC124 on PLuc, hence, disabling the STAT3-RE-PLuc reporter vector to study PTC12438, 39. Indeed, off-target 
effects of PTC124 on PLuc were confirmed in our study. When PTC124 was mixed with lysates from HEK293 
cells containing PLuc and RLuc protein, PTC124 specifically reduced PLuc mediated bioluminescence in a 
dose-dependent manner but left the RLuc signal unperturbed (Fig. 5a). Intermediate PTC124 concentrations 
added to growing HEK293 cells, co-transfected with STAT3-RE-PLuc and STAT3-RE-RLuc vectors, increased 
PLuc, but not RLuc activity (Fig. 5b). At higher doses PLuc activity was reduced, most likely due to a carryover of 
PTC124 from the cell culture dish to the luminometer tube (Fig. 5b). Beside its desired insensitivity to PTC124, 
the STAT3-RE-RLuc vector was able to report LEPR-b signalling (Fig. 5c). The EC50 value assessed with the 
STAT3-RE-RLuc plasmid (1.1 nM) matches the EC50 value determined in previous experiments utilizing the 
STAT3-RE-PLuc reporter (0.8 nM)53.

PTC124 does not rescue mLEPR-bW31X signalling.  The effect of PTC124 on LEPR-b signalling 
was investigated with the newly designed STAT3-RE-RLuc reporter vector. Under all treatment conditions, 
mLEPR-bwt signalling was activated by leptin (Fig. 5d). The reduced mLEPR-bwt activity in response to G418 is 
likely due to toxic side effects. Mouse LEPR-bW31X activity was successfully reactivated in medium supplemented 

Figure 3.  PTB1B blocks the gentamicin induced rescue of mLEPR-bW31X signalling. HEK293 cells were co-
transfected with either (a) mLepr-bwt- or (b) mLepr-bW31X-pcDNA3.1 overexpression construct, the PTB1B 
overexpression vector, STAT3-RE-PLuc and phRG-b. Two days after the transfection, cells were treated for 
24 h with 2.2 mM gentamicin and for the last 16 h in addition with 6 nM murine leptin (n = 4, SD). Statistical 
significance between (−) and (+) leptin was assessed by t-tests with Bonferroni-Holm correction for multiple 
comparisons ***p < 0.001.
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with G418. Notably, mLEPR-bW31X signalling reached ~20% of the mLEPR-bwt level (Fig. 5e), an effect size which 
is in line with the rescue effect assessed with the STAT3-RE-PLuc reporter construct (Fig. 2a). On the contrary, 
PTC124 did not restore mLEPR-bW31X signalling at any dose applied (Fig. 5e).

Aminoglycosides, but not PTC124, suppress nonsense mutations in the Renilla and secNLuc 
luciferase genes.  To further study PTC124, we generated nonsense mutated Renilla and secNLuc lucif-
erase reporter gene vectors. Gentamicin and G418 were able to rescue RLucW121X and RLucW156X activities in 
a dose-dependent manner after an incubation time of 24 h (Fig. 6a and b). In contrast, PTC124 was not able to 
revive the Renilla mutants even after a prolonged incubation of 48 h (Fig. 6c and d). Besides, we utilized secN-
Luc - a small luciferase which is secreted into the medium54 - as reporter for nonsense suppression. In the first 
place, we tested whether G418 and PTC124 have an off-target effect on secNLuc. We detected slight but tolerable 
off-target effects (during luminometry) and evaluated that secNLuc represent a suitable reporter system to assess 
the read-through activities of our test compounds (Supplementary Figures 4 and 5). G418 restored secNLucW40X 
and secNLucW162X activities dose-dependently in medium after 24 and 48 h as well as in cell lysates after 72 h 
incubation (Fig. 7a–c). Again, PTC124 failed to rescue the activity of secNLuc mutants at any treatment condition 
(Fig. 7d–f).

Discussion
Approximately 10% of genetic diseases are driven by nonsense mutations55. In rare cases, monogenic obesity can 
also be the consequence of nonsense mutations in genes which are involved in body weight regulation.

In HEK293 cells, we characterized the human W31X4, murine Y333X51 and rat Y763X52 leptin receptor non-
sense variants and their suppression susceptibilities to the aminoglycosides G418 and gentamicin and to the 
oxadiazole substance PTC124. For establishing a read-through assay, we cloned reporter gene constructs con-
sisting of the particular PTC ± 6 bp murine nucleotide context fused to the N-terminus of the Photinus luciferase 
(PLuc). The highest read-through susceptibility was observed for LeprW31X-PLuc, followed by LeprY763X-PLuc. The 
LeprY333X-PLuc fusion did not respond to the aminoglycoside treatment. These findings are in general agreement 
with previous studies which demonstrated variable read-through levels dependent on the nature of the PTC 
(TGA > TAG > TAA) and the surrounding nucleotide context11–13.

Figure 4.  Aminoglycoside treatment of human LEPRW31X. (a,b) HEK293 cells were co-transfected with 
the mLeprW31X-PLuc or hLEPRW31X-PLuc fusion construct (embedding the W31X either into mouse or 
human ± 6 bp context) and phRG-b. Two days after the transfection, cells were treated for 24 h with rising 
concentrations of (a) gentamicin or (b) G418 (n = 7–8, SD). P-values indicate the outcome of two-way ANOVA 
with aminoglycoside treatment and species context as independent variables. (c,d) HEK293 cells were co-
transfected with either the hLEPR-bW31X-pDEST26 or mLepr-bW31X-pcDNA3.1 full-length overexpression 
construct, STAT3-RE-PLuc and phRG-b. One day after the transfection, cells were treated for 48 h with different 
concentrations of the aminoglycosides gentamicin (c) or G418 (d) and for the last 16 h in addition with 16 nM 
human or 6 nM murine leptin, respectively. Inset in (c) shows signalling of hLEPR-bwt (n = 4–6, SD). Statistical 
significance was assessed by t-tests with Bonferroni-Holm correction for multiple comparisons *p < 0.05; 
***p < 0.001.
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For the signalling assay, we introduced the mutations into the full-length mouse Lepr-b ORF. The Lepr-bW31X 
allele exhibited again the highest rescue susceptibility followed by Lepr-bY763X. The increased bioluminescence 
during the aminoglycoside treatment was clearly caused by an activation of the JAK/STAT pathway since PTP1B 
blocked the gentamicin induced restoration. Cytoplasmic PTP1B dephosphorylates JAK2, attenuates STAT3 
phosphorylation and thereby inhibits the production of PLuc56. Although, the read-through experiments with 
the LeprY333X-PLuc fusion construct indicated a resistance of Y333X to aminoglycoside treatment, the signalling 
assay, however, revealed that Y333X is receptive for nonsense suppression. This inconsistency is likely due to 
the different sensitivities of the two assay systems. In the signalling assay, translational read-through is indi-
rectly detected by measuring the complete signalling cascade with the STAT3-responsive reporter. Intracellular 
receptor pathways typically amplify the initial signal which is likely to potentiate the sensitivity of the assay. In 
the read-through assay, nonsense suppression is directly detected without any amplification cascade between the 
translational read-through event and the bioluminescence measurement. Moreover, the different length/com-
plexities of the nucleotide contexts surrounding Y333X either in the fusion construct or in the full-length Lepr-b 
ORF may also contribute to the inconsistent results between the two assays.

The successful rescue of Y333X and Y763X identifies the db333/db333 mouse and the Koletsky rat as rodent 
models to explore nonsense suppression in vivo. Additionally, other strategies to rescue PTCs including inhi-
bition of nonsense mediated mRNA decay, suppressor tRNAs and pseudourydilation can be explored in these 
two rodent models57. The success of pharmacological interventions depends strongly on the pharmacokinetic 
characteristics of a drug. A specific challenge for the rescue of nonsense mutations in centrally expressed genes is 
the blood-brain-barrier – a border which limits the delivery of drugs from the lumen of cerebral blood capillaries 
into brain parenchyma. Obstacles regarding blood-to-brain transfer as well as complication due to cytotoxocities 
must be considered in studies using animal models for nonsense suppression.

Protein identity for human/mouse and rat/mouse LEPR-b are 75% and 82%, respectively. The triplets encod-
ing W31 and Y763, as well as the important +1 nucleotides are also conserved. Therefore, we initially exam-
ined all mutations in the murine sequence to compare their characteristics within the same context. For a more 

Figure 5.  PTC124 has an off-target effect on PLuc and is not restoring mLEPR-bW31X signalling. (a) Lysates 
from HEK293 cells containing PLuc and RLuc were treated with rising concentrations of PTC124 during 
bioluminescence quantification. Shown is one representative measurement. (b) HEK293 cells were co-
transfected with the STAT3-RE-PLuc and STAT3-RE-Rluc vector. Two days after the transfection, cells were 
treated for 24 h with rising concentrations of PTC124 (n = 3, SD). (b) HEK293 cells were co-transfected with 
the mLepr-bwt overexpression construct and STAT3-RE-RLuc. Two days after the transfection, cells were treated 
for 16 h with rising concentrations of murine leptin. Shown is one representative measurement. (d,e) HEK293 
cells were co-transfected with either the mLepr-bwt- or mLepr-bW31X-pcDNA3.1 overexpression construct and 
with STAT3-RE-RLuc. Two days after the transfection, cells were treated for 24 h with G418 or with rising 
concentrations of PTC124 and for the last 16 h in addition with 6 nM murine leptin (n = 3, SD). Statistical 
significance between (−) and (+) leptin was assessed by t-tests with Bonferroni-Holm correction for multiple 
comparisons ***p < 0.001.



www.nature.com/scientificreports/

7Scientific Reports | 7: 1020  | DOI:10.1038/s41598-017-01093-9

physiological characterization, we additionally investigated W31X within its natural human context. Interestingly, 
the superior read-through susceptibility of W31X disappeared when integrated in the full-length hLEPR-b. This 
‘loss-of-response’ was already indicated in the read-through assay with the fusion constructs. Additional nucleo-
tides outside of the ±6 bp context – which are only present in the full-length hLEPR-bW31X – could further reduce 
the read-through susceptibility. Alternatively, a full-length protein synthesis is not necessarily synonymous to the 
restoration of a functional protein, because a non-wild-type amino acid can be incorporated at the PTC position. 
The human LEPR-b could be more sensitive to the insertion of a non-tryptophan amino acid at codon position 31 
than the mouse orthologue. However, recent experiments in yeast showed that UGA codons are predominantly 
suppressed by tryptophan58. Besides, the N-terminal domain (AA residues 22–121) is not crucial for LEPR-b 
signalling59, 60. Therefore, it is more plausible that the broader sequence context in the full-length hLEPR-bW31X 
ORF contains nucleotides disturbs translational read-through. The impact of the species backbone on W31X 
introduces the perspective to discover unknown sequence elements influencing nonsense suppression.

Since the clinical use of aminoglycosides is limited due to cytotoxic effects, other read-through drugs are on 
demand. One such candidate is the oxadiazole compound PTC124. Best read-through effects of PTC124 are 
reported on the UGA triplet, especially when a pyrimidine is located in the +1 position24. We tested the effect 

Figure 6.  Aminoglycosides but not PTC124 suppress nonsense mutations in the Renilla luciferase. HEK293 
cells were transfected with either the RLucW121X or RLucW156X overexpression construct. Two days after the 
transfection, cells were treated for 24 h with (a) G418, (b) gentamicin, (c) 24 h or (d) 48 h with PTC124 (n = 3–4, 
SD). Statistical significances were tested by one-way ANOVA with compound concentration as independent 
variable.

Figure 7.  G418 but not PTC124 suppresses nonsense mutations in the secreted NanoLuc luciferase. HEK293 
cells were transfected with either the secNLucW40X and secNLucW162X overexpression construct. Two days after 
the transfection, cells were treated for 24 h, 48 h and 72 h with rising concentrations of G418 (a–c) or PTC124 
(d–f) (n = 4, SD). Luciferase activities were measured either in medium or in cell lysates.
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of PTC124 on mutations causing premature UGA codons: LeprW31X (UGA/A), RLucW121X (UGA/G), RLucW156X 
(UGA/C), secNLucW40X (UGA/C) and secNLucW162X (UGA/A). From this perspective, all mutants – in particular 
RLucW156X and secNLucW40X – were predicted as PTC124 responders. However, PTC124 induced no restoration of 
receptor signalling in mLepr-bW31X transfected cells. The experiments with the nonsense mutated RLuc and secN-
Luc reporter genes additionally rebutted a read-through activity of PTC124. Notably, there are preclinical studies 
which do24, 26, 28, 29 or do not36–38, 40 substantiate the read-through effect of PTC124. These inconsistencies may 
be due to differences in the tested nonsense alleles (nature of the PTC and its surrounding context), the selected 
doses and/or the experimental settings (as suggested by ref. 61). It is a paradox that all 5 tested nonsense alleles 
were non-responsive to PTC124 but susceptible to aminoglycoside mediated restoration. Critical experimental 
conditions – for instance concentration range24, 28–30, transient transfection29, 30, incubation time24, 28, 29 and cell 
line24, 29 - match with reports in which PTC124 act as nonsense suppressor. Inconsistent outcomes between stud-
ies highlight the need to further characterize PTC124.

In the present study, we investigated the susceptibilities of three LEPR nonsense mutations to stop suppres-
sion. The human W31X, mouse Y333X and rat Y763X were all prone to aminoglycoside mediated nonsense 
suppression when characterized within the mouse receptor. The findings for Y333X and Y763X suggest the 
corresponding rodent models to explore nonsense suppression in vivo. Surprisingly, when the W31X mutation 
was inserted into its natural human receptor context, its superior read-through susceptibility, observed within 
the murine sequence, disappeared. The strong impact of the species backbone on W31X provides the possi-
bility to identify novel sequence elements affecting nonsense suppression. The oxadiazole compound PTC124 
failed to suppress UGA termination codons, substantiating the need for alternative read-through agents. Our 
newly designed Renilla and secNLuc nonsense constructs are suitable as reporters to screen for such alternative 
compounds.

Methods
Generation of Lepr fragment Photinus luciferase fusion constructs for the read-through 
assay.  The Lepr-PLuc fusion constructs consisted of 15 bp nucleotide fragments of the leptin receptor inserted 
in frame directly after the ATG initiation codon of the Photinus luciferase (PLuc) gene in the pGL3-SV40-Promo-
tor vector (Promega, Mannheim, Germany). The receptor fragment comprised the particular PTC ± 6 bp nucle-
otide context (Table 1 and Supplementary Fig. 1). Fusion constructs were generated by using the QuickChange II 
site-directed mutagenesis kit (Agilent, Waldbronn, Germany) with oligonucleotides including overhangs encod-
ing the receptor fragments (primer pairs 1–4 in Supplementary Table 1).

Overexpression and reporter gene vectors for the signalling assay.  mLepr-bwt (UniProt ID P48356) 
in pcDNA3.1 vector was kindly provided by Dr. Björback. The nonsense mutations W31X, Y333X and Y763X 
were integrated into the mLepr-b open reading frame (ORF) using the QuickChange II site-directed mutagen-
esis kit (Agilent) in accordance to the manufacturer’s instructions. The same mutagenesis strategy was used to 
insert the W31X mutation in the human LEPR-b ORF. hLEPR-bwt (UniProt ID P48357) contained an N-terminal 
His6-tag in pDEST26 (Source BioScience, Nottingham, UK) (Primer pairs 5–8 in Supplementary Table 2). PTP1B 
overexpression vector was kindly provided by Dr. Liangyou Rui62. The STAT3-RE-PLuc reporter gene vector 
– originally named pAD32 - containing the STAT3-responsive Photinus luciferase was also received from Dr. 
Bjorbaek. Since PTC124 has an off-target effect on the Photinus luciferase (PLuc)38, 39, we cloned an additional 
STAT3-RE-RLuc reporter gene vector harbouring the Renilla luciferase (RLuc). Therefore, the promotor region 
from pAD32 containing the STAT3-RE was amplified by PCR. The 336 bp PCR product was cloned with NheI and 
NcoI into phRG-b to obtain STAT3-RE-RLuc (primers pair 9 in Supplementary Table 1).

Generation of nonsense mutated RLucW121X, RLucW156X, secNLucW40X and secNLucW162X lucif-
erase reporters.  The tryptophan codons (TGG) 121 and 156 in RLuc gene in phRG-b (Promega) were 
replaced by premature TGA stop codons utilizing the QuickChange II mutagenesis kit (Agilent) (Primer pairs 
10 and 11 in Supplementary Table 1). The ORF of the secretory NanoLuc luciferase (secNLuc) was amplified by 
PCR using pNL1.3 (Promega) as a template (Primer pair 12 in Supplementary Table 1). The 618 bp PCR product 
was cloned with AflII and XhoI into pcDNA5/FRT/TO (Life Technologies, Carlsbad, California). Then the TGG 
codons 40 and 162 of secNLuc were changed to TGA by site-directed mutagenesis (Primer pairs 13 and 14 in 
Supplementary Table 1).

Culture conditions and transient transfections of HEK293 cells.  HEK293 cells were cultured in 
DMEM (Sigma Aldrich, Taufkirchen, Germany) containing 10% (v/v) FBS (Biochrom, Berlin, Germany) and 
200 U/mL penicillin (Carl Roth, Karlsruhe, Germany). One day prior to calcium phosphate transfection, cells 
from one 10 cm dish were split 1:5 onto new 10 cm dishes (details see ref. 53). Specific procedures for every 
sub-experiment after transfection are described below:

	 (i)	 Read-though assay with ‘Lepr-PLuc fusion constructs’: To test whether the leptin receptor nonsense muta-
tions are prone to aminoglycoside mediated nonsense suppression, HEK293 cells were co-transfected with 
one of the Lepr-PLuc fusion constructs along with phRG-b vector (5 µg of each plasmid). One day after 
transfection, cells were transferred from one 10 cm dish to one poly-D-lysine coated 48-well culture plate. 
Two days following transfection, cells were incubated for 24 h with or without G418 (Sigma Aldrich) or 
gentamicin (Carl Roth). Three days after transfection, cells were washed with PBS and stored at −80 °C.

	(ii)	 Signalling assay in the presence of aminoglycosides: For assessing the signalling properties of full-length 
LEPR-b variants in the presence of aminoglycosides, HEK293 cells were co-transfected with three different 
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plasmids (5 µg each): one of the mLepr-b-pcDNA3.1 expression construct, STAT3-RE-PLuc and phRG-b. 
One day following the transfection, cells were transferred from one 10 cm dish to one poly-D-lysine coated 
48-well plate. Two days after the transfection, gentamicin or G418 were added to the cell cultures. After 6 h 
pre-incubation with the aminoglycosides – cells were treated with murine leptin containing an N-termi-
nal His6-tag (kindly provided by Dr. Martin Schlapschy). Overall, aminoglycoside incubation took 24 h, 
whereas leptin treatment lasted 18 h. For cells transfected with hLEPR-b-pDEST26 constructs, aminogly-
coside pre-incubation started simultaneously with the transfer to the 48-well plate to allow a treatment 
time of 48 h. Incubation with human leptin (R&D systems, Minneapolis, MN) lasted also 18 h. Three days 
after transfection, cells were washed with PBS and stored at −80 °C.

	(iii)	 Signalling assay in the presence of PTC124: For investigating the signalling properties of murine Lepr-
bW31X in the presence of PTC124 (Selleckchem Co, Shanghai, China) or G418, HEK293 cells were co-trans-
fected with two different plasmids (5 µg each): mLepr-bwt or mLepr-bW31X-pcDNA3.1 expression construct 
along with STAT3-RE-RLuc reporter gene vector. One day post transfection, cells were transferred from 
one 10 cm dish to one poly-D-lysine 48-well plate. Two days after the transfection, PTC124 or G418 were 
added to the cells. Three days post transfection, cells were washed with PBS and stored at −80 °C.

	(iv)	 Read-through assay with RLuc variants: HEK293 cells were transfected with expression constructs carrying 
either RLucW121X or RLucW156X. One day following transfection, cells were transferred from one 10 cm dish 
to one poly-D-lysine coated 48-well plate. Two days after the transfection, aminoglycosides or PTC124 
were added to the cells. After 24 and 48 h incubation time, cells were washed with PBS and stored at 
−80 °C.

	(v)	 Read-through assay with secNLuc variants: HEK293 cells were transfected with expression constructs car-
rying either secNLucW40X or secNLucW162X. One day post transfection, cells were transferred from one 10 cm 
dish to one poly-D-lysine coated 48-well plate. Two days after the transfection, G418 or PTC124 were 
added to the cells. Medium from cells expressing secNLucW40X or secNLucW162X was collected 24 and 48 h 
after the addition of G418 or PTC124. Seventy-two hours after the incubation started, cells were washed 
with PBS and stored at −80 °C. secNLuc activities were assessed in the medium and in cell lysates.

Luciferase assays.  Quantification of luciferase activities were performed with commercially available 
kits (Promega, Mannheim, Germany) in concordance to the manufacturer’s instructions. Frozen cells from 
sub-experiments (i), (ii), (iii) and (iv) were incubated with the passive lysis buffer enclosed in the respective 
luciferase assay kit for 20 min at room temperature. Lysates from (i) and (ii) were combined with dual luciferase 
assay reagents (Promega, #E1910), whereas lysates from (iii) and (iv) were mixed with the Renilla assay reagent 
(Promega, #E2810). Bioluminescence was measured in a Sirius single-tube luminometer (Berthold Technologies, 
Bad Wildbad, Germany). In (i) and (ii) PLuc activities were normalized to those of the constitutively expressed 
RLuc enzyme derived from phRG-b vector. Medium and cells collected in experiment (v) were processed with 
compounds from the Nano Glo assay kit (Promega, #N1110) in accordance to the manufacturer’s instructions. 
secNLuc bioluminescence was quantified in an Infinite M200 plate reader (Tecan, Männedorf, Switzerland).

Statistics.  Data are plotted as means with standard deviations (SD) and were statistically analysed by Prism 
6 (Graph Pad software company) and Sigmaplot 12.5 (Systat Software, Erkrath, Germany). Data from the 
read-through assays obtained with the Lepr-PLuc, RLuc and secNLuc reporter genes were analysed by one-way 
ANOVA with read-through compound concentration as an independent variable. To analyse the data from 
the signalling assays, two tailed t-tests were conceded to test for significant differences between leptin (+) and 
non-leptin (−) treated cells within each aminoglycoside/PTC124 concentration. Statistical significances were 
corrected for multiple comparisons by applying the Holm-Sidak method. Data from the hLEPR-b signalling 
assay were additionally analysed by two-way ANOVA with aminoglycoside and leptin as independent variables.
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