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Simple Summary: The current routine treatment for glioblastoma (GB), the most lethal high-grade
brain tumor in adults, aims to induce DNA damage in the tumor. However, the tumor cells might
be able to repair that damage, which leads to therapy resistance. Fortunately, DNA repair defects
are common in GB cells, and their survival is often based on a sole backup repair pathway. Hence,
targeted drugs inhibiting essential proteins of the DNA damage response have gained momentum and
are being introduced in the clinic. This review gives a perspective on the use of radiopharmaceuticals
targeting DDR kinases for imaging in order to determine the DNA repair phenotype of GB, as well as
for effective radionuclide therapy. Finally, four new promising radiopharmaceuticals are suggested
with the potential to lead to a more personalized GB therapy.

Abstract: Despite numerous innovative treatment strategies, the treatment of glioblastoma (GB)
remains challenging. With the current state-of-the-art therapy, most GB patients succumb after about
a year. In the evolution of personalized medicine, targeted radionuclide therapy (TRT) is gaining
momentum, for example, to stratify patients based on specific biomarkers. One of these biomarkers is
deficiencies in DNA damage repair (DDR), which give rise to genomic instability and cancer initiation.
However, these deficiencies also provide targets to specifically kill cancer cells following the synthetic
lethality principle. This led to the increased interest in targeted drugs that inhibit essential DDR
kinases (DDRi), of which multiple are undergoing clinical validation. In this review, the current status
of DDRi for the treatment of GB is given for selected targets: ATM/ATR, CHK1/2, DNA-PK, and
PARP. Furthermore, this review provides a perspective on the use of radiopharmaceuticals targeting
these DDR kinases to (1) evaluate the DNA repair phenotype of GB before treatment decisions are
made and (2) induce DNA damage via TRT. Finally, by applying in-house selection criteria and
analyzing the structural characteristics of the DDRi, four drugs with the potential to become new
therapeutic GB radiopharmaceuticals are suggested.

Keywords: targeted radionuclide therapy; glioblastoma; radiochemistry; theranostics; molecular
imaging; DNA repair inhibitors; DNA damage; radiopharmaceuticals; nuclear medicine
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1. Introduction

Treatment challenges posed by malignant gliomas remain considerable, and many derive
from the molecular and cellular heterogeneity inherent to these tumor variants [1,2]. New
treatment strategies for glioblastomas (GB), known as the most malignant gliomas (grade IV),
are urgently warranted. For newly diagnosed GB patients with overall good health status,
the standard of care includes maximal surgical resection, combined external beam radiation
therapy (RT), and temozolomide (TMZ), followed by maintenance TMZ [3]. However, even
with an optimal treatment protocol and recent advances in targeted therapies, survival has
only slightly improved, and almost all tumors recur [1,4]. Molecular biomarkers play an
increasing role in treatment decisions and response prediction. For example, the methylation
status of the O6-methylguanine-DNA methyltransferase (MGMT) promoter is a major cause
of TMZ resistance [5,6]. The focus for advancing GB therapy lies in the field of personalized,
targeted therapy with the ultimate aim to selectively eradicate GB cells without damaging
the surrounding healthy brain tissue [4,7,8]. To achieve this, mechanisms that induce therapy
resistance and strategies to induce selective cell death in GB cells need to be explored and
exploited. GB is recognized as being highly radioresistant and influenced by the presence of
glioma stem cells (GSCs), cellular hypoxia, high cell heterogeneity, and aberrant activation of
DNA damage response (DDR) proteins [9,10]. The dysregulation of the DDR in GB allows
cancer cells to repair DNA damage and results in resistance to the current state-of-the-art
therapies. In contrast to normal cells, components of the DDR pathway are frequently
compromised in tumor cells, and their survival is often based on a sole backup pathway.
Hence, targeted strategies against essential components of the DDR offer the possibility to
promote cell death in cancer cells and increase the tumor’s sensitivity to cancer therapies based
on the principle of ‘synthetic lethality’ (Figure 1) [10–13]. In order to sensitize GB cells to
DNA damaging agents, two approaches can be adopted. First, directly targeting key DNA
damage signaling kinases such as phosphatidylinositol 3′ kinase (PI3K)-related kinases
(PIKKs) and PIKK-regulated downstream kinases. These include DNA damage sensor
and repair proteins, e.g., ataxia-telangiectasia mutated (ATM), ATM-RAD3-related (ATR)
protein, and DNA-dependent protein kinase (DNA-PK) [14]. Second, they interfere with
cell cycle checkpoint proteins, which monitor DNA integrity before cell division (G2–M
checkpoint) and DNA replication (G1–S checkpoint) [15]. Interestingly, ‘replication stress’
present in cancer cells could further be enhanced following these therapies through further
loosening the remaining checkpoints and inducing failure of further proliferation [16].
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Figure 1. Principle of synthetic lethality. In glioblastoma (GB) therapy, DNA damage is induced by
temozolomide (TMZ) and radiation therapy (RT). DNA repair pathways are often disrupted (pathway
A) and therefore GB cells solely depend on a back-up pathway to repair DNA damage. Inhibitors of
essential DNA damage response kinases (DDRi) can block this rescue pathway to promote GB cell
death.

In this review, the rationale and current status of targeted drugs that inhibit essential
DDR kinases (DDRi) for the therapy of GB are given. Secondly, a perspective is given
on radiopharmaceuticals for nuclear imaging and targeted radionuclide therapy (TRT)
targeting DDR kinases. The ability to monitor DNA repair processes using nuclear imaging
may be an asset for personalized GB therapy and for monitoring the response to DNA
damaging treatments and DDRi. Finally, selection criteria have been applied to reveal
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candidate compounds that have the potential to become radiopharmaceuticals targeting
DDR kinases [17].

2. Targeting DDR Pathways in GB

Under physiological conditions, the DDR protects the human genome by removing
errors and avoiding the insurgence of mutations. However, in tumors treated with DNA
damaging agents, DNA repair systems contribute to treatment failure [10,13,18,19]. De-
pending on the type of damage and cell cycle phase of the tumor cells, different actors of the
DDR pathway are activated; these aspects have been previously reviewed [10,13,20]. Most
of the subtle changes to DNA, such as oxidative lesions and single-strand breaks (SSBs),
are repaired through different pathways such as base excision repair (BER), nucleotide
excision repair (NER), or mismatch repair (MMR) [19]. SSB repair is activated following
TMZ chemotherapy [21]. DNA double-strand breaks (DSBs), induced by RT, appear to be
primarily repaired by non-homologous end-joining (NHEJ) or the error-free homologous
repair (HR) pathway [19]. Surveillant sensor kinases in the DDR pathways, e.g., ATM, ATR,
poly (ADP-ribose) polymerase-1 and -2 (PARP1 and PARP2) or the DNA-PK catalytic sub-
unit (DNA-PKcs), recognize DNA damage and are recruited to the sites of SSBs and DSBs
(Figure 2). Moreover, sensor kinases are responsible for the formation of protein complexes
such as the MRN complex (Nbs1/hMre11/hRad50) or DNA-PK (Ku70/Ku80/DNA-PKcs).
The DNA-PK and MRN complexes assemble and compete at sites of DNA DSBs where
they act as damage sensors and initiate cell cycle dependent NHEJ or HR, respectively [22].
After sensor proteins detect DNA damage, transducer proteins with kinase activity, e.g.,
checkpoint kinase-1 (CHK1) and -2 (CHK2), trigger the activity of downstream effectors
that can influence and/or direct a variety of cellular responses, including transcription
processes, cell cycle regulation, DNA repair processes and apoptosis initiation [13].

Aberrant activation of these DDR kinases (ATM, ATR, DNA-PK, CHK1, CHK2, and
PARP) in cancer is strongly correlated with resistance to genotoxic cancer therapies, in-
cluding in GB [10,23]. Defects in the ATM-CHK2-p53 pathway promote GB formation and
play a role in the response of glioma to ionizing radiation (IR) [24]. Mutations in isocitrate
dehydrogenase 1 (IDH1) are frequently found in gliomas and are associated with better
therapeutic outcomes. Interestingly, co-mutations in DDR kinases could play a role. In
IDH1 mutated astrocytoma patients, TP53 (63%) and ATRX (27%) are the top two genes
that display a higher frequency of mutations. An association between IDH1 mutations and
reduced ATRX expression has also been shown. Mutations in CHK2 are instead associated
with an IDH1-wildtype astrocytoma [25]. Núñez et al. discovered that mutant IDH1 helps
maintain genomic stability in tumors by enhancing the DDR [26]. Glioma stem cells (GSC)
have been shown to promote radioresistance by preferential activation of the DDR pathway
through increased cell cycle checkpoint activation. This contributes to an increased DNA
repair capacity and results in greater survival [9]. Since the standard therapy of GB in-
cludes TMZ and RT, which both aim to damage the DNA, DDR inhibition is being explored
as a way to increase treatment efficacy [10]. For example, the inhibition of phosphatase
and tensin homolog (PTEN) phosphorylation at Y240 sensitizes GB to IR by preventing
enhanced DNA repair [27]. The standard TMZ chemotherapy modifies DNA or RNA at
N7-guanine, O6-guanine, and N3-adenine by the addition of methyl groups. Methylated
O6-guanine sites are usually repaired by MGMT. Since MGMT is often upregulated in GB,
TMZ-resistance may occur. However, as TMZ also introduces N-site alkylations, which are
normally repaired by BER, GB cells can be sensitized to TMZ by inhibiting key proteins
of the BER pathway (such as PARP) [28]. A number of DDRi have already reached the
clinic for the treatment of GB, including the PARP inhibitors (PARPi) olaparib and veliparib
(Figure 3) [11,29].
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Figure 2. The DNA damage response and selected targets (blue). Ataxia-telangiectasia mutated
(ATM), ATM-RAD3-related protein (ATR), cyclin-dependent kinase 1 (CDK1/2), checkpoint kinase-1
and -2 (CHK1/2), DNA-dependent protein kinase (DNA-PK), Mouse double minute 2/X homolog
(MDM2/X), Nbs1/hMre11/hRad50 (MRN complex), poly (ADP-ribose) polymerase-1 and -2 (PARP),
replication protein A (RPA), X-ray repair cross-complementing protein 4 (XRCC4).

Sensitivity towards DDRi is dependent on specific biomarkers, and the identification
of treatment-responsive patients constitutes one of the key challenges associated with
the clinical use of DDRi. Recent work has identified genomic and functional DNA repair
assays that provide the identification of predictive and pharmacodynamic DDRi biomarkers
(Figure 4) [30]. Mutational signatures associated with robust HR deficiency (HRD) primarily
include alterations affecting BRCA1, BRCA2, PALB2, and two canonical RAD51 paralog
genes (RAD51B, RAD51C). A more complex “BRCAness” signature has been defined to
denote HRD tumors that share molecular features of BRCA1/2-mutant tumors, which are
likely to benefit from DDRi [31–33]. The most promising biomarkers of BRCAness in GB
relate to IDH1/2, epidermal growth factor receptor (EGFR), PTEN, MYC proto-oncogene,
and estrogen receptors beta (ERβ) signatures [34]. For example, the anti-tumor effect of
TMZ with ATMi or PARPi is enhanced in IDH1 mutant gliomas, and TMZ increases ATRi
sensitivity in MGMT-deficient GB cells [35–37].

Strategies to define the mutational status of these genes include immunohistochemistry
(IHC) and next-generation sequencing techniques. The requirement of whole-genome
or whole-exome sequencing for the identification of selected gene signatures limits its
widespread clinical utilization as a biomarker. However, new computational tools such
as signature multivariate analysis and combinations of genomic analyses with single-cell
imaging may increase the number of patients to be considered for treatments targeting
HRD [38,39].
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Figure 4. Preliminary biomarkers to guide the use of DNA damage response (DDR) inhibitors in
order to reach synthetic lethality. Ataxia-telangiectasia mutated (ATM), ATM-RAD3-related protein
(ATR), checkpoint kinase-1 and -2 (CHK1/2), DDR kinase inhibitor (DDRi), DNA-dependent protein
kinase (DNA-PK), poly (ADP-ribose) polymerase-1 and -2 (PARP). * “BRCAness” signature can
include mutations in ATM, ATR, BAP1, BRCA1, BRCA2, CDK12, CHK1, CHK2, FANCA, FANCC,
FANCD2, FANCE, FANCF, PALB2, NGS1, WRN, RAD50, RAD51B, RAD51C, RAD51D, MRE11A, BLM,
BRIP1. # Mutational signature found in human cancers characterized by defective homologous-
recombination-based DNA double-strand break repair [33].
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3. DDR (Radio)Pharmaceuticals

Single-photon emission computed tomography (SPECT) and positron emission tomog-
raphy (PET) imaging could be utilized to identify patients that would benefit from DDRi
therapy. Radiopharmaceuticals targeting DDR kinases have potential for the assessment
of DDR target engagement (e.g., PARP activity) and may assist in monitoring response to
DDRi or other DNA damaging treatments [40]. In addition, given the well-understood
involvement of DDR during tumorigenesis, the ability to monitor these repair processes
using PET or SPECT may facilitate the detection of earlier stages of carcinogenesis [41].

Upon confirming the expression of the DDR kinase in the GB tumor, therapeutic DDR
targeting radiopharmaceuticals could be administered prior to or in combination with other
DNA-damaging agents (e.g., TMZ and external beam RT), ultimately causing a synergistic
anti-tumor response. Noteworthy, DDRi induced toxicity to healthy tissue might be limited
due to intact DDR pathways in healthy cells (Figure 1) [42]. Interestingly, TRT agents
targeting DDR kinases offer increased cytotoxicity compared to cold DDRi due to the
additional radiation-induced DNA damage. Our group recently published a perspective
on TRT for the treatment in GB, with a special focus on radiopharmaceutical requirements,
including target and radionuclide selection, blood–brain barrier (BBB) passage, toxicity,
validation, and combined therapy strategies [43].

The nature of the induced DNA damage in TRT is dependent on the specific radia-
tion characteristics of the used isotopes. Most GB research has investigated the cellular
and physical effects of IR in the context of external beam RT, radiation effects which are
significantly different compared to TRT radiation effects [20]. Lutetium-177, iodine-131,
rhenium-186, rhenium-188, or yttrium-90, are commonly utilized for TRT of GB, featuring
β--particle emissions with relatively low linear energy transfer (LET) (0.2–2 keV/µm) and
a low relative biological effectiveness (RBE). As a result, the β--emission induced dam-
age consists of some DSBs but mostly repairable SSBs, which could result in sublethal
damage repair [44]. Targeted α-particle therapy (TAT) using astatine-211, actinium-225,
or bismuth-213, is gaining attention due to the higher LET (50–230 keV/µm) and RBE
inducing more complex DNA damage and a lower dependency on the tumor oxygenation
status [45,46]. Complex DNA damage significantly contributes to exceeding the cellular
capabilities of DNA repair, thereby forcing cells towards cell death [20]. The first positive
clinical trials on TAT have emerged, and TAT was suggested as a facilitator to overcome
tumoral resistance to chemotherapy [47,48]. A nice example is the astatine-211 radiolabeled
PARPi, which induced cellular lethality by targeting alpha-emitters directly to the nucleus,
with high sensitivity in neuroblastoma in vitro and in vivo. The [211At]-PARPi was 10,000
times more potent than talazoparib, indicating that the likely mechanism of cell killing
does not rely on pharmacological PARP inhibition but rather on alpha-particle induced
DNA damage [49,50]. Lastly, the short penetration range and LET (4–26 keV/µm) of Auger
electron emitters make them suitable candidates for inducing damage to a specific target
with dimensions comparable to the DNA, leading to complex, lethal DNA damage [51].

A current list of radiopharmaceuticals targeting DDR processes in various cancer types
is provided in Table S2 and summarized in Figure 5. So far, most DDRi have been directly
radiolabeled with 123I-, 131I-, 18F- and 211At-radionuclides. Only one analog of olaparib was
64Cu-radiolabeled following conjugation of a 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic
acid (DOTA) moiety, allowing for PET imaging of mesothelioma [29,40,49,50,52–91].

Interestingly, it was also hypothesized that ‘cold’ DDRi could increase the effec-
tiveness of TRT agents. This hypothesis has already been confirmed in ovarian cancer
xenografts, where the synergistic effect of a mesothelin-targeted 227Th-conjugate in com-
bination with ATMi, ATRi, DNA-PKi, and PARPi was investigated [92]. In prostate and
neuroendocrine cancer, multiple clinical trials are still running, combining PARPi with
[177Lu]-DOTATATE, [177Lu]-PSMA-617 or [223Ra]-dichloride (ClinicalTrials.gov Identifiers:
NCT03874884, NCT03317392, NCT03076203, NCT04086485, NCT04375267) [29]. Unfortu-
nately, studies have not been initiated in GB yet.
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3.1. ATM/ATR Inhibitors
3.1.1. Targeting ATM/ATR as an Anti-GB Strategy

ATM and ATR are members of the PIKK family of serine/threonine protein kinases,
which are crucial in the initiation of cell cycle arrest and apoptosis (Figure 1). ATM is
the main kinase in the cellular response to DNA DSBs, while ATR is activated by single-
stranded DNA structures, which may arise upon SSB induction and stalled or collapsed
replication forks. Although ATM and ATR are activated by different types of DNA damage,
their signaling cascades are partially overlapping [93–95]. For example, CHK1/2 is a
downstream target in both pathways. However, ATM plays a crucial role in the activation
of the G1/S cell cycle checkpoint while ATR enforces the intra-S-phase and G2/M cell
cycle checkpoint (Figure 1) [96]. Notably, the list of substrates undergoing ATM-dependent
phosphorylation is still growing [97].

Hypersensitivity of ATM-defective cells to IR and the critical function of the ATR path-
way for the survival of tumor cells has led to considerable interest in ATM and ATR as
therapeutic targets for cancer therapy [93,98,99]. Glioma cells, especially GSCs, exhibit in-
creased resistance to IR, which is mediated by an upregulation of DDR targets such as ATM,
ATR, PARP1, and CHK1. This results in a rapid G2/M cell cycle checkpoint activation and en-
hanced DNA repair [9,100]. However, tumor cells often suffer from defects in ATM function
through mutation of the ATM protein itself or its associated downstream targets, particu-
larly p53. Such mutated cells must maintain functional S and G2/M cell cycle checkpoints
mediated by ATR/CHK1 to avoid premature mitotic entry [101]. The genomic characteri-
zation of human GB genes and their core pathways showed that p53 signaling was altered
in 87% of GB cases [102]. Therefore, ATR/CHK1 inhibition shows great potential to induce
synthetic lethality [12,102,103]. Treatment with ATM- or ATR-inhibitors (ATMi/ATRi) may
thus selectively sensitize glioma cells and GSCs to IR and/or TMZ [103–105].

Possible determinants of ATRi sensitivity include high levels of ATR, Cdc25A, and
CHK1. Multiple predictive biomarkers have also been incorporated into early phase tri-
als: alternative lengthening of telomeres, reduced expression/loss of function of ATM,
BRCA1/2, TP53, ARID1A, and overexpression of CCNE1, APOBEC, and MYC (Table S1
and Figure 4) [106–108]. Especially DDRi combined with IR could provide a therapeutic
strategy for IDH1R132H glioma patients who also harbor p53- and ATRX-inactivating muta-
tions [26]. Alpha Thalassemia/Mental Retardation Syndrome X-Linked (ATRX)-deficient
glioma displaying p53 loss of function could also benefit from ATRi therapy [109,110]. In
p53-deficient settings, suppression of ATM dramatically sensitized cells to chemotherapy,
whereas, conversely, ATM suppression had the opposite effect in the presence of functional
p53 [101]. ATM kinase inhibition combined with low dose radiation was also selectively
toxic to glioma with mutant p53 through the induction of mitotic catastrophe and apopto-
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sis [111]. Overexpression of cMYC has previously been shown to cause replicative stress
and to confer sensitivity to CHK1i and ATR knockdown. Mutations in ARID1A predict
response to ATRi and PARPi since ARID1A-deficient cells rely on ATR checkpoint activity
to prevent apoptosis [112]. Lastly, pRAD50 has been identified as a novel and clinically
applicable pharmacodynamic biomarker of sensitivity to ATM/ATR inhibition [113].

3.1.2. Current Status of ATM/ATR Targeted Therapy in GB

An overview of oncological clinical trials investigating ATMi and ATRi and their
relevant biomarker selection criteria are summarized in Table 1 and Table S2. There are
currently four ATMi (KU-60019, AZD0156, AZD1390, and M3541) evaluated in clinical
trials, of which two (AZD1390 and AZD0156) include glioma patients (Table 1) [103]. One
of the first-generation ATMi includes the small molecule ATP-competitive inhibitor 2-
morpholin-4-yl-6-thianthren-1-yl-pyran-4-one (KU55933) and its ameliorated derivatives
KU-60019 and CP466722 [114–116]. Therapy with these ATMi has resulted in chemo-
and radiosensitization of GB cells and a significant two- to three-fold increased survival
when KU-60019 was administered intratumorally in GB models combined with external
beam IR. Particularly, a signature of IDH mutations combined with a low expression of
TP53 or MGMT and high expression of phosphatidylinositol-3-kinase (PI3K) has been
identified as a biomarker for more effective ATM-based therapy [35,117–121]. Interestingly,
KU-60019 limited glioma cell growth in co-culture with human astrocytes, with the latter
seemingly unaffected by the same treatment [104,115,118,120]. The last generation ATMi
AZ32 and AZD1390 have been specifically designed to effectively cross the BBB and showed
radiosensitizing effects in GB both in vitro and in vivo [75,93,103,111]. This led to a phase I
study of AZD1390 in combination with RT in patients with brain cancer (ClinicalTrials.gov
Identifier: NCT03423628). The ATMi AZD0156 has shown potential in multiple cancer
types, including synergism with PARPi [29,122–124]. In a phase I trial combining AZD0156
with olaparib, hematologic toxicity appears to be the treatment-limiting toxicity in advanced
malignancies (including glioma), although efficient doses could be reached [125]. Data on
ATMi KU-59403 in GB are awaited [126]. Finally, besides employing small molecule ATMi,
silencing of ATM or ATR using siRNA has also been shown to increase glioma cell chemo-
and radiosensitivity [21,127,128].

Table 1. Relevant clinical trials concerning DDRi therapy in glioma patients.

Target Drug Combined Therapy * Clinical
Phase Glioma Type Biomarker Selec-

tion/Evaluation
Trial Number

(Status)
Reference

ATM AZD1390 RT I
nd/rec GB,

malignant brain
neoplasms

- NCT03423628 (r)

ATM AZD0156 Olaparib/Irinotecan/Fluorouracil/Folonic
acid I AST (incl glioma) - NCT02588105 (anr)

PARP1/2/3 Olaparib

TMZ/RT II advanced IDH1/2 mutations NCT03212274 (r)

TMZ/RT II rec HGG IDH mutant NCT03561870
(unknown)

Cediranib/vs
Bevacizumab II rec GB Angiogenesis-DNA

repair NCT02974621 (anr)

TMZ I rec GB - NCT01390571 (c)
[129]

Pamiparib/TMZ/RT 0/I nd/rec GB - NCT04614909 (r)

PARP1/2 Veliparib
(ABT-888)

TMZ II/III nd GB
methylated

MGMT-DDR genes-
MGMT-PARP1

NCT02152982 (anr)

TMZ/RT II nd GB unmethylated
MGMT [130]

TMZ/RT II nd grade III-IV
no H3

K27M/BRAFV600
mutations

NCT03581292 (anr)

TMZ I/II rec GB - [131]

TMZ/RT I nd GB plasma proteomic
evaluation NCT00770471 (c)
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Table 1. Cont.

Target Drug Combined Therapy * Clinical
Phase Glioma Type Biomarker Selec-

tion/Evaluation
Trial Number

(Status)
Reference

PARP1/2 Talazoparib Carboplatin II rec GB
IDH/PTEN

mutation
“BRCAness”
signature *

NCT04740190 (r)

PARP1/2 Niraparib
(MK-4827)

RT II rec GB - NCT04715620 (r)

Tumor-Treating Fields II rec GB MGMT NCT04221503 (r)

TMZ I advanced cancer,
incl GB - NCT01294735 (c)

[132]

PARP1/2 Pamiparib
(BGB-290)

TMZ/RT I/II nd/rec GB MGMT NCT03150862 (c)

TMZ I/II rec grade II-IV IDH1/2-mutant NCT03914742 (r)

TMZ I nd/rec grade I-IV IDH1/2-mutant NCT03749187 (r)

TMZ/RT 0/I nd/rec GB - NCT04614909 (r)

DNA-PK Nedisertib
(M3814) TMZ/RT I nd GB MGMT

unmethylated NCT04555577 (r)

PI3K/mTOR/DNA-
PK

Samotolisib
(LY3023414) - II paediatric CNS

tumors
PI3K/mTOR

mutations NCT03213678 (r)

Abbreviations: active non-recruiting (anr), advanced solid tumors (AST), central nervous system (CNS), (c)
completed, high-grade glioma (HGG), isocitrate dehydrogenase(IDH), newly diagnosed (nd), O6-methylguanine-
DNA methyltransferase (MGMT), poly(ADP-ribose)polymerase (PARP), phosphatidylinositol-3-kinase and the
mammalian target of rapamycin (PI3K/mTOR), phosphatase and tensin homolog (PTEN), recruiting (r), recurrent
(rec), * “BRCAness” signature (ATM, ATR, BAP1, BRCA1, BRCA2, CDK12, CHK1, CHK2, FANCA, FANCC, FANCD2,
FANCE, FANCF, PALB2, NGS1, WRN, RAD50, RAD51B, RAD51C, RAD51D, MRE11A, BLM, BRIP1).

ATRi has demonstrated significant therapeutic potential in cancer treatment, with
anti-tumor activity when administered as monotherapy but also when combined with con-
ventional chemotherapy, RT, or immunotherapy [99]. The ATRi currently in clinical trials
are VX-970 (also known as VE-822, M6620, or berzosertib, Merck®, Darmstadt, Germany),
VX-803 (M4344, Merck®), BAY1895344 (elimusertib, Bayer®, Leverkusen, Germany), M1774,
RP-3500, and AZD6738 (ceralasertib, AstraZeneca®, Cambridge, UK). Notably, some of
these trials considered biomarkers for patient stratification (Table S1). Unfortunately, no
trials have been initiated in GB so far [29,107,133,134].

VX-970, for which 15 trials are now active, reached the clinic first [29,124,135,136].
Radiation and chemosensitization effects have been shown, but efflux pump mechanisms
limit brain accumulation of VX-970 [37,137–139]. However, prolonged survival was noted
in rats with intracranial GB tumors that were treated with RT combined with VX-970.
Survival was even more improved upon the combination with PARPi [140,141]. The
synthetic lethal interaction of VX-970 might be enhanced by selecting another ATR/CHK1
downstream target, such as WEE1. WEE1 inhibitors (WEE1i) have recently attracted
attention with multiple phase I/II studies investigating this synergy (Figure 1) [29,142,143].
WEE1 promotes S and G2/M cell cycle arrest by blocking cyclin-dependent kinase 1 and 2
(CDK1/2) and allowing DNA repair, as shown in Figure 2 [144]. The most studied WEE1i
is adavosertib (MK1775, AZD1175), with 23 active trials, including a phase I trial in GB
patients (ClinicalTrials.gov Identifier: NCT01849146) [29]. In addition, 27 clinical trials
are currently actively evaluating the selective ATRi AZD6738 (Table S1) after promising
preclinical results [29,99,145,146]. Notably, no significant radiosensitizing effect was found
in an orthotopic GB animal model despite effective AZD6738 brain penetration [147].

NVP-BEZ235, a dual PI3K/mammalian target of rapamycin (mTOR) inhibitor, was
identified as a potent inhibitor of ATR and ATR homologs, ATM and DNA-PK [148].
NVP-BEZ235 effectively crosses the BBB with GB radiosensitization and TMZ sensitization
effects, but toxicity was shown upon introduction in the clinic [29,147,149–157]. Several
ATRi have been abandoned in the development stage before reaching the clinic, including
Schisandrin B, NU6027, ETP-46464, VE-821 (later optimized to VE-822/VX-970), and AZ20
(later optimized to AZD6738) [99].
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3.1.3. ATM/ATR Radiopharmaceuticals

Two ATMi have been 11C-radiolabelled: AZD1390 and AZD0156. In macaque mon-
keys, intravenous administration revealed superior permeability and BBB penetrating
properties of [11C]-AZD1390 compared to [11C]-AZD0156 [75]. A first clinical trial in
healthy volunteers analyzed the brain distribution of [11C]-AZD1390 and confirmed BBB
penetration [59]. These findings support the use of radiolabeled AZD1390 for therapy
and/or diagnostics in patients with central nervous system (CNS) malignancies, including
GB. Only one ATRi, VE-821, a less potent precursor of the ATRi VE-822, has been 18F-
radiolabelled. This VE-821 analog (termed ‘[18F]-ATRi’) was put forward as a clinically
relevant PET imaging agent in an in vivo study by Carlucci et al., and specific target binding
was confirmed using a U251 MG GB animal model [40].

3.2. CHK1/2 Inhibitors
3.2.1. Current Status of CHK1/2 Targeted Therapy in GB

CHK1/2 are cell cycle checkpoint kinases that prevent cell cycle progression when
DNA damage is detected and being repaired, as shown in Figure 2 [158,159].CHK1 is
activated by ATR phosphorylation on Ser317 and Ser345, and CHK2 is activated by ATM
phosphorylation on Thr68. CHK2 phosphorylates p53, preventing its interaction with
MDM2, and subsequently, p53 drives the expression of genes involved in apoptosis in-
duction and cell cycle checkpoint activation, such as p21/CDKN1 [96]. CHK1 plays an
important role in intra-S-phase and G2/M cell cycle checkpoint progression mediated by
phosphorylation and inhibition of Cdc25A and Cdc25C [93,159]. Inhibited Cdc25 proteins
are no longer able to activate their CDK proteins substrates and thereby fail to induce cell
cycle arrest [160].

CHK1/2 upregulation has been shown in GB, and inhibition is of interest, particularly
in GBs with aberrations in other cell cycle regulating factors, such as p53, since these
tumors rely on the remaining checkpoints to repair DNA damage. Approximately 50% of
GB patients with CHK2 alterations also carry defects in the p53 signaling pathway, while
this is only 10–13% for DDR components ATM, ATR, or CHK1 [9,24,161]. In GSCs, the
basal expression of CHK1 and Cdc25C has also shown to be much higher compared to
differentiated GB cells [100,161].

CHK1/2 inhibition has been extensively explored clinically in various cancer types
but not yet in GB, likely because numerous CHK1/2i were discontinued before phase III,
such as UCN-01 (7-hydroxystaurosporine), rabusertib (LY2603618) and MK-8776 (SCH
900776) [162–168]. AZD7762, for instance, showed severe cardiac toxicities in patients
with advanced solid tumors (AST) [169]. Clinical trials are currently ongoing for CHK1-
selective inhibitors CCT245737 (SRA737), GDC0575 (ARRY-575, RG7741), and the CDK1/2
inhibitor prexasertib (LY2606368). Prexasertib-related neutropenia has been identified as
an adverse effect but warrants further development with clinical activity in ovarian cancer,
squamous cell carcinoma, and advanced cancer types [170–174]. The CHK1i GDC-0425 or
GDC-0575, given in combination with gemcitabine to solid tumor patients, both warrant
further investigation [175,176].

CHK1i therapy of GB has remained in the preclinical setting. Treatment with gemc-
itabine and the CHK1i MK-8776 effectively permeated the BBB and inhibited glioma growth
in vivo [177]. Moreover, UCN-01, although in itself non-toxic, increased the cytotoxicity of
TMZ by five-fold in U87MG (p53 wild-type or deficient) glioma cells by accumulating the
number of cells bypassing G2-M arrest and thereby undergoing mitotic catastrophe [178].
UCN-01 also inhibited GSC growth in vitro, and AZD7762 radiosensitized p53-mutated
GB cell lines (confirmed in GB in vivo models) [179–181]. SAR-020106 sensitized human
GB cells to RT, TMZ, and decitabine treatment [182]. The impact of CHK1 inhibition on
GB cells was also studied using SB18078 and PF477736, confirming an influence on colony
and tumor sphere formation, as well as cell proliferation. Khanna et al. also confirmed that
CHK1 acts via protein phosphatase 2A in promoting GB cell growth [183]. Unfortunately,
in AST, a phase I study on PF477736 combined with gemcitabine was terminated due to
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business reasons (NCT00437203) [29]. Interestingly, targeting the CHK1 gene in GSCs,
using, for example, lentivirus-delivered short hairpin RNA (shRNA), also showed the
potential to increase radiosensitivity via apoptosis induction [184].

Less research is performed on CHK2i in GB. It should be noted that while knockdown
of CHK1 expression enhanced radiosensitivity of human GSCs, this was not the case upon
CHK2 inhibition [184]. TMZ-induced cell death was also more prominently enhanced
by pharmacologic inhibition of CHK1 compared to CHK2 inhibition [128]. However, the
CHK2i PV1019 radiosensitized U251 glioma cells [12,185]. As an alternative to CHK1/2
inhibition, inhibition of their downstream targets CDK1/2 or Cdc25A protein phosphatase
has been studied [186]. In our opinion, the multi-targeted MAPK inhibitor MEK162, which
also inhibits CDK1/CDK2/WEE1/p-ATM besides CHK2, should be further explored since
it downregulated and radiosensitized spheroidal and orthotopic GB xenografts [15].

3.2.2. CHK1/2 Radiopharmaceuticals

Therapeutic effects of CHK1/2 inhibition can be visualized using molecular imaging
techniques such as PET or MRI. For example, radiosensitization effects after CHK1/2i
therapy were visualized using diffusion-weighted MRI in GB models [181]. The prolifer-
ation PET tracer 3′-deoxy-3′-[18F]fluoro-thymidine ([18F]FLT) was also able to visualize
antiproliferative effects in xenograft rodents following PF00477736 therapy [187]. Un-
fortunately, radiolabeled CHK1/2i are scarce. Both CHK1/2i prexasertib and CHK1i
LY2603618 (rabusertib) were radiolabeled with carbon-14 to study their metabolism in ad-
vanced/metastatic solid tumor patients [60,91]. Also, [14C]-GDC-0425 was used to evaluate
safety concerns of thiocyanate arising from GDC-0425 administration, but these proved to
be negligible [90].

3.3. PARP Inhibitors
3.3.1. Current Status of PARP Targeted Therapy in GB

PARPi have shown significant promise in a variety of malignancies with deficiencies
in HR signaling [34,188]. In GB, the BRCAness phenotype leads to impairment of HR
and thus PARPi sensitivity [34]. Glioma biomarkers of predictive value for PARPi ther-
apeutic efficacy include IDH1/2 mutations, a low BRCA1 expression, aberrant ATM or
ATR signaling, MYC overexpression, and inactivation of mismatch repair genes, especially
MSH6 [36,123,189–194]. PTEN mutations, present in 70% of GB tumors, have shown
to increase the level of DSBs upon PARP inhibition, though some studies contradict
this [195–198]. MGMT promoter hyper methylation is also being studied as a potentially
predictive biomarker for PARPi-mediated TMZ sensitization [189]. TMZ-induced damage
can be repaired by either direct repair (in case of O6-methylguanine lesions) or BER (in case
of N7-methylguanine and N3-methyladenine lesions). Thus, inhibiting PARP-mediated
SSB repair (BER) leads to the accumulation of DNA DSBs, thereby enhancing cytotoxic-
ity [199,200]. This way, glioma patients may still benefit from alkylating chemotherapy,
regardless of their MGMT promotor status [200–202]. Another mechanism of PARPi TMZ
sensitization is allosteric PARP trapping (leading to instability of stalled replication forks),
as well as BRCA1 and RAD51 depletion (leading to compromised fork protection) [189,203].
For more info on the combination effects of PARPi and chemotherapeutics, we refer the
reader to [204]. Interestingly, cancers with BRCA-deficiency and PARPi resistance could
also benefit from a combined therapy including CHKi and PARPi [174,205,206]. CHK2
inhibition might also provide a strategy to alleviate hematologic toxicity from PARPi [207].

Currently, four PARPi have been FDA-approved: olaparib (AZD2281 or KU0059436,
Lynparza®, AstraZeneca); rucaparib (Rubraca®, Clovis Oncology, Boulder, CO, USA); ta-
lazoparib (Talzenna®, Pfizer, Manhattan, NY, USA); and lastly, niraparib (Zejula®, Tesaro,
Waltham, MA, USA). A fifth PARPi, veliparib (ABT-888, Abbott Laboratories, Abbott Park, IL,
USA), is expected to obtain approval in the near future, following promising phase III trial
results in metastatic breast cancer [29,188]. In-depth reviews of the current status of PARPi as
mono- or combination therapies for cancer were previously published [162,188,208].
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Preclinically, olaparib delayed GB recurrence when combined with RT and sensitized
IDH1-mutated tumor cells when combined with TMZ, leading to clinical trials in GB
patients (Table 1) [29,36,209,210]. The phase I OPARATIC trial in recurrent GB patients
confirmed that olaparib could be safely combined with daily TMZ if intermittent dosing was
applied. Additionally, drug penetration into the entire tumor specimen was confirmed [129].
A phase I/II study in GB of olaparib combined TMZ/RT is currently recruiting [29,211,212].

The radiosensitizing effect of the PARPi veliparib (ABT-888) has been shown preclin-
ically in GB, despite two studies proving otherwise [195,200,210,213–220]. The addition
of veliparib to TMZ also prevented TMZ resistance, although this may not be achiev-
able in a tolerable dosing regimen [191,221–223]. In recurrent GB previously treated with
bevacizumab, the TMZ/veliparib combination did not significantly improve six-month
progression-free survival [131,224]. Administering veliparib in combination with standard
RT/TMZ was also not tolerable in GB patients and did not provide clinical benefit in un-
methylated MGMT GB patients [130]. The MGMT-methylated GB patient population will
be addressed in the Alliance A071102 trial (ClinicalTrials.gov Identifier: NCT02152982) [29].
Inhibition of ABCB1 and ABCG2 (drug efflux transporters expressed at the BBB) by elacridar
may improve the efficacy of TMZ/veliparib therapy [196]. Combined veliparib/RT/TMZ
is also being explored in malignant glioma patients without H3 K27M or BRAFV600
mutations (Table 1) [29].

Rucaparib has shown anti-GB effects in vitro, which were ameliorated when com-
bined with BKM120 (PI3K inhibitor) or when conjugated to IR-786 (heptamethine cyanine
dye) [225,226]. In combination with TMZ, rucaparib prolonged the time to tumor re-
growth by 40% in heterotopic GB xenografts. However, this could not be confirmed in
orthotopic GB models, most likely due to limited drug delivery [227]. Despite being FDA-
approved for various cancer types, rucaparib has not yet been investigated in clinical
trials for GB patients. In AST, however, rucaparib/TMZ was well-tolerated and showed
proof-of-principle [29,228].

The PARPi talazoparib is FDA-approved for breast cancer, and a phase II trial on the
talazoparib/carboplatin combination is currently recruiting recurrent high-grade glioma
patients with DDR deficiency [29]. The combination of high and low LET radiation qualities
with talazoparib led to promising preclinical results when administered to GSCs. More-
over, EFGR amplification might increase their sensitivity [229–231]. In vivo, talazoparib
combined with TMZ prolonged GB stasis, but this could not be confirmed in orthotopic GB
models, most likely due to BBB efflux mechanisms [232].

Niraparib (MK-4827) is currently being investigated in recurrent GB, either combined
with RT or with tumor-treating fields (TTFs). TTFs are expected to reduce BRCA1 signaling
and thereby reduce DNA repair capacity, causing PARPi-assisted synthetic lethality [29].
The first results on the niraparib/TMZ combination indicated tolerance and efficiency in
patients with advanced cancer [132]. Notably, niraparib penetrated intracranial tumors in
breast cancer models [233].

Other PARPi under investigation in GB include pamiparib (BGB-290, Partruvix™; BeiGene
Ltd., Changping Qu, Beijing, China), E7016 and CEP-8983 (prodrug CEP-9722) [215,234,235].
Preclinically, pamiparib has shown strong anti-tumor synergism with TMZ and improved
BBB penetration compared to other PARPi, which led to clinical trials, as outlined in
Table 1 [29,197]. In a phase I trial in patients with solid tumors, CEP-9722 showed limited
clinical activity [236].

Finally, it was shown that combined inhibition of PARPi and ATRi in GSCs resulted
in a profound radiosensitization, which exceeded the effect of a single ATRi [100,141].
Multiple clinical trials are exploring this combination (olaparib/ceralasertib), including a
phase II trial in IDH mutant solid tumors (ClinicalTrials.gov Identifier: NCT03878095) [29].

3.3.2. PARP Radiopharmaceuticals

Radiolabeled versions of PARPi strongly gained momentum in the last years due
to their potential to directly and non-invasively image PARP expression, quantify the
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biodistribution of a PARPi and its tumor uptake, define treatment response and stratify
patients likely to respond to PARPi therapy [199]. Due to the nuclear sub-cellular location
of PARP and confirmed overexpression in GB, with overall low expression in healthy brain
tissue, PARP-1 is also a near-ideal target to develop radiotherapeutics [56,188]. In addition
to eliciting synthetic lethality, promoting genomic instability, and enhancing cytotoxicity
of a subsequently administered DNA-damaging agent, PARP-TRT could also cause DNA
damage [237]. In response to DNA damage, the expression of PARP-1 also increases, which
may result in an increased target availability for the therapeutic radiopharmaceutical [50].

Most radiopharmaceuticals targeting PARP are structurally similar to small molecules olaparib
([18F]-BO, [18F]-PARPi, [18F]-20, [123I/131I]-PARPi, [18F]-PARPi-FL, [64Cu]-PARPi, [18F]-olaparib,
[18F]-AZD2461, [18F]-AZD2281, [11C]-PJ34) or rucaparib ([18F]FTT), [18F]-WC-DZ-F, [18F]FE-LS-
75, [125I]-KX1, [125I]-KX-02–019, [14C]-rucaparib, [211At]-MM4) [40,50,53,56,64,69,78,87,188]. These
radiopharmaceuticals were recently reviewed [188,237,238]. Three of these PARP radiophar-
maceuticals, namely [18F]-PARPi, [18F]FTT, and [14C]-rucaparib have reached the clinical
setting (Table S2) [61,69,76,85].

[18F]-PARPi, was deemed well tolerable and safe in patients with head-and-neck
cancer [61]. In GB mouse models, [18F]-PARPi and a bimodal fluorescence/PET imag-
ing agent succeeded in visualizing the tumor [40,53,54]. Additionally, [18F]-PARPi has
shown potential in discriminating active brain cancer from treatment-related changes in a
murine model of radiation necrosis. This was confirmed in brain cancer patients, including
three patients with IDH wild-type primary GB [76,77]. [18F]-PARPi-PET/MRI is currently
being evaluated in a pilot study in recurrent brain tumors (ClinicalTrials.gov Identifier:
NCT04173104) [29]. [18F]FTT is currently being investigated in phase I studies in various
cancer types, including GB (Table S2) [29,85]. [18F]FTT-PET was, for example, performed to
measure PARP-1 expression pre- and post-treatment with TTF and niraparib. Additionally,
[18F]FTT uptake was correlated with HR deficiency status [29]. Unfortunately, early clinical
results of [18F]FTT report low brain penetration and high uptake values in the liver and
spleen [86]. In addition, regrettable results have also been reported for other olaparib-based
radiopharmaceuticals. An absorption, metabolism, and excretion (ADME) analysis of
[14C]-rucaparib, reported no brain uptake, and development of [18F]-20 was halted due to
substantial defluorination [53,69].

PARP radiopharmaceuticals in a preclinical phase that are worth exploring in GB
include [14C]-pamiparib and [64Cu]-DOTA-PARPi. The ADME of [14C]-pamiparib was
evaluated in four patients with advanced cancer and indicated near-complete absorption
and low renal clearance of the parent drug [74]. [64Cu]-DOTA-PARPi showed potential
in mesothelioma-bearing animal models [64]. Notably, fluorinated radiopharmaceuticals
based on talazoparib have been evaluated in a prostate cancer model and indicated TRT
potential [65].

Therapeutic radiopharmaceuticals targeting PARP have been studied in GB preclin-
ically with promising results. The first Auger-based theranostic PARPi, the Iodine-123
Meitner-Auger PARP1 inhibitor, successfully delivered a lethal payload within a 50 Å dis-
tance of the DNA of GB cancer cells and demonstrated a survival benefit in mouse models
of GB [57,239,240]. [123I] -I2-PARPi retained within GB xenograft tumors and correlated
with PARP expression [55]. Jannetti et al. developed [131I] -PARPi, a 1(2H)-phthalazinone
with a similar structure to olaparib. Convection enhanced delivery of [131I] -PARPi led to
increased survival of mice with orthotopic brain tumors [56]. Selective binding of 131I- and
124I-labelled I2-PARPi was also confirmed in GB models [58]. A particularly promising
PARP-TRT agent is [211At]-MM4, a rucaparib derivative, due to its high cytotoxicity and
favorable half-life (7.2 h). In neuroblastoma models, this compound resulted in increased
survival [50].
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3.4. DNA-PK Inhibitors
3.4.1. Current Status of DNA-PK Targeted Therapy in GB

DNA-PK consists of a heterodimer (Ku70/80) and a large catalytic subunit, known
as DNA-PKcs [12,241]. This complex initiates NHEJ by binding to the DSB, leading to
subsequent phosphorylation and activation of DNA-binding proteins, ultimately causing
ligation of DSB ends (Figure 1) [10]. In GB, high DNA-PK levels correlate with poor
survival and increased GSC stability [242,243]. DNA-PK has been shown to mediate GSC
radioresistance and glioma progression in vivo, suggesting DNA-PK/RAD50 as promising
targets for GSC eradication [244]. To date, research on biomarkers demonstrating DNA-
PK inhibition sensitivity is only preclinical, but HR deficiency could theoretically predict
sensitivity to DNA-PKi given the increased reliance of HR deficient cells on NHEJ [162].
Sun et al. identified p53 as a potential predictive biomarker of response to the combination
of DNA-PKi and RT [245].

Small molecule inhibitors of DNA-PK, from the discovery of the first identified in-
hibitors (wortmannin and its derivatives PX-866 and PWT-458) to more selective DNA-PKi,
have been reviewed [13,246,247]. The DNA-PKi VX-984 (Vertex, now licensed to Merck
KGaA, Darmstadt, Germany as M9831), nedisertib (M3814, peposertib, MSC2490484A,
Merck KGaA), and the recently discovered AZD7648, have entered clinical trials. Only
nedisertib combined with RT/TMZ is currently under investigation for GB patients with
unmethylated MGMT promotor status, following preclinical evidence of a radiosensitiz-
ing upon NHEJ inhibition [29,248]. In phase I trials for AST, this combination was well
tolerated and demonstrated modest efficacy [249]. VX-984 has shown promising radiosen-
sitizing effects in GB in vitro and in vivo with confirmed BBB crossing [250]. Interestingly,
an inability to resolve γ-H2AX foci in the presence of VX-984 could be induced in T98G
cells only [251]. Results on the safety of VX-984 administered in AST patients are still
pending [29]. AZD7648 is undergoing clinical evaluation in AST after it showed RT/TMZ
sensitizing effects and synergism with olaparib. However, this needs to be confirmed in
GB [29,252,253].

Less selective DNA-PKi co-targeting mTOR include CC-115, avadomide (CC-122),
samotolisib (LY3023414), and NVP-BEZ235. In GB patients, CC-115 was well tolerated, and
21% achieved a stable disease status with proven drug distribution in GB tissue [254,255].
CC-115 has shown a synergistically lethal effect with functional ATM loss and is included in
one of the three experimental arms of the ongoing Individualized Screening Trial of Innova-
tive GB Therapy (INSIGhT) trial [254,256]. Avadomide (CC-122) has recently been deemed
safe in various cancer types, and applicability in CNS-related cancers was suggested. A
phase I trial on avadomide in patients with advanced tumors unresponsive to standard
therapies, including GB, is still active (ClinicalTrials.gov Identifier: NCT01421524) [257].
Samotolisib (LY3023414) had single-agent activity in advanced cancer patients and is being
investigated further in pediatric CNS tumors. To be noted, BBB penetration remains a
stumbling block [29,258–260].

Finally, based on preclinical data alone, SU11752, KU0060648, NU7026, and NU7441
have been put forward as glioma targeted drugs, either as single agents or in combination
regimens (RT/TMZ/topoisomerase II inhibitors) [261–265].

3.4.2. DNA-PK Radiopharmaceuticals

Radiopharmaceuticals targeting DNA-PK are scarce. In healthy subjects, the dispo-
sition of the samotolisib derivative [14C]-LY3023414 following oral administration was
studied; however, results are pending (ClinicalTrials.gov Identifier: NCT02575703) [29]. It
should be noted that the uptake of radiolabeled LY3023414 would not be DNA-PK spe-
cific because it also targets PI3K/mTOR. Additionally, the radiosynthesis protocols for
11C-labelled chromen-4 derivatives as new potential DNA-PK-PET imaging radiopharma-
ceuticals were published by Gao et al. but have not yet been validated in vivo [73].
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4. Development of Other DDR Radiopharmaceuticals

Besides DDRi radiopharmaceuticals themselves, radiotracers enabling the visual-
ization and quantification of the amount of DNA damage induced after TRT would be
extremely valuable, e.g., to assess the radiobiological treatment response of the tumor. This
category includes γH2AX radiotracers: 89Zr-/111In-labelled anti-γH2AX-TAT. Anti-γH2AX
antibodies are routinely used in ex vivo assays to quantify the number of γH2AX foci or
DNA DSBs within cell populations, but a cell-penetrating peptide is required for in vivo
applications [41,266]. For example, the extent of DNA damage response after [177Lu]-
DOTATATE therapy was evaluated using [111In]-anti-γH2AX-TAT SPECT imaging [267].

5. Challenges and Risks of DDRi (Radio)Pharmaceuticals

Exploiting synthetic lethal interactions has attracted considerable attention as an
anticancer strategy; however, the development of such approaches to selectively target
cancer cells while sparing health tissues remains challenging [158]. Major hurdles include
tumor biology, heterogeneity, and complexity; an inadequate understanding of synthetic
lethal interactions; drug resistance, and the challenges regarding screening and clinical
translation. Hence, there is an urgent need to develop improved efforts aiming to iden-
tify and understand synthetic lethal interactions, as well as validate new screening tools
and biomarkers, including DDR radiopharmaceuticals. Improved genetic perturbation
techniques, including CRISPR/Cas9 gene editing, are also promising prospects concerning
synthetic lethal effects in cancer [268].

DDRi induced toxicity to healthy tissue can be limited due to the innate DDR path-
ways in healthy cells (Figure 1). The phenomenon of “replication stress”, unique to fast
proliferating cancer cells, enforces this statement [16,42]. Unspecific cellular toxicity may
occur since most DNA repair pathways overlap in terms of DNA repair proteins. This could
lead to unwanted DNA damage to normal tissue, increasing the risk for late toxicity [158].
For example, ATM inhibition showed a greater radiosensitizing effect in p53-deficient
tumors, but effects were also observed in p53 wild-type cells [111]. This might be an
important consideration for proliferating cells of the CNS, where a p53-dependent G1/S
checkpoint would stay at least partially activated in the presence of an ATMi (via ATR),
thereby inducing cell cycle arrest and preventing apoptosis. In neurons, ATM seems to
be a requirement for apoptosis. Hence, transient brain exposure to an ATMi might not be
extremely toxic [111]. Upon PARP inhibition, toxicity to the normal brain is expected to be
minimal since PARP-1 expression has not been detected in normal neurons [269]. Moreover,
early-phase clinical trial data indicates that the radiosensitizing properties of PARPi are
most pronounced in rapidly proliferating cells [212]. Hence, due to the non-dividing nature
of neuronal tissue in the brain, it is assumed that the addition of a PARPi to RT would have a
relatively larger effect on highly proliferative GB cells compared to normal brain cells [200].
The toxicity of PARPi is also related to their PARP trapping capacity, and reactivities differ
with different combination partners and the DNA damage mutations present [204,270].
For example, the combination of PARPi with chemotherapy is hampered by overlapping
toxicities, thereby limiting their administrable dose. Interestingly, hematologic toxicity
seems more pronounced in germline BRCA carriers [270,271].

In the context of TRT, the combined toxicity of the cold DDRi with the radionuclide
is important to consider. TRT toxicity can be related to targeting efficiency, radionuclide
stability and the nuclear recoil effect, physical properties of the radionuclides, dosimetry,
immunogenicity, and administration route [43]. Confirming the presence of the DDR target
using an imaging DDR radiopharmaceutical (SPECT/PET) and evaluating its distribution
throughout the body (before selecting TRT as a treatment strategy) is essential. Increased
toxicity might be expected in case multiple DNA damaging strategies are combined. How-
ever, it should be noted that the concentration of the DDRi for targeted therapy will be
markedly higher than the prospective dosage given of a radiolabeled DDRi during nuclear
imaging or TRT. Following PARP-TRT, normal tissue toxicities in the spleen and bone
marrow are projected due to PARP-1 expression in normal tissues. Other potential sites for



Cancers 2022, 14, 1821 16 of 32

toxicity include the liver and gastrointestinal tract if involved in the biological clearance of
the compound [50].

Nuclear imaging strategies have shown the ability to measure expression levels of DDR
kinases in vivo. However, when compared to the tumor uptake of radiopharmaceuticals
targeting cancer biomarkers situated on the cell surface, uptake of these agents is generally
low. Factors such as the transient nature of DDR protein activation (e.g., following RT, the
expression levels of many biomarkers, including PARP-1 and γH2AX, disappear within
days), the inefficient drug internalization/nuclear translocation, and specifically for GB
applications, BBB crossing play a role [41]. In the case of alpha emitters, sub-cellular
delivery to cell nuclei will increase the cytotoxicity due to the high probability that both the
alpha particle and its atomic parent nuclei recoil radiation will traverse the cell nucleus [50].
As can be seen in Table S2, most of the DDRi investigated for TRT have been radiolabeled
with halogens. Reaching the nucleus might be difficult upon radiometal chelation; however,
some preclinical results showed promise. A Cu-64-radiolabeled olaparib analog containing
a DOTA moiety resulted in clear tumor uptake in mesothelioma [64]. The nuclear uptake
of a [177Lu]-DOTA-labeled DNA intercalator in Raji cells was deemed sufficient, although
it was lower compared to total cellular uptake [272].

Treatment resistance is a bothersome limitation for the application of DDRi and
DDR-based TRT. GB tumors relying on one DNA repair pathway for their survival may
additionally hold mutations that cause resistance to certain DDRi [158]. For example,
PARPi resistance may be induced by HR restoration or mitigation of replication stress.
Identified biomarkers for PARPi resistance include loss of 53BP1/ARID1A, low level of
Schlafen 11 (SLFN11) or GBP1, and genomic reversion of BRCA1/2. In addition, DNA
replication fork protection (PTIP/EZH2) or genetic mutations that result in the activation of
a drug efflux pump play a role. This highlights the need for functional biomarkers that can
assess HR proficiency, predict DDRi effectiveness, and the need for a combined treatment
strategy (e.g., PARPi with other DDRi or TKIs) [30,162,208,273,274]. Unfortunately, due to
the limited number of clinical trials involving ATMi/ATRi/CHK1i/DNA-PKi, biomarkers
indicating resistance to these DDRi are largely unknown. A few examples include: PGBD5
and Cdc25A depletion have been associated with ATRi resistance, and overexpression of
ATP-binding cassette G2 (ABCG2) increased CC-115 resistance [275–278].

6. Selection of New GB Radiopharmaceuticals Targeting the DDR

In order to select suitable candidate radiopharmaceuticals capable of targeting DDR
kinases for GB imaging and therapy, several factors need to be considered, such as bio-
chemical and pharmacological characteristics, radiolabeling, and radionuclide half-life
options, and the ability to cross the BBB. The latter is affected by the molecular weight,
lipophilicity, polar surface area, and hydrogen bond donors of the inhibitor [43]. In order
to identify those DDRi that have the potential to become suitable GB TRT agents, in-house
selection criteria were applied to all the above mentioned DDRi studied in GB (listed
in Table 2). Thereby four DDRi are suggested that could potentially be converted into
novel TRT radiopharmaceuticals: AZD1390, Nedisertib (M3814), SAR-020106, and MK8776
(Figure 6).

These DDRi contain a halogen in an aryl position that could be a designated location
for radiohalogenation, for example, using iodine-125 (Auger emitter), iodine-131 (beta
emitter), or astatine-211 (alpha-particle emitter); and/or qualify for insertion of a chelator
substituent to harbor a therapeutic radiometal.

Nucleophilic halogen exchange (iodine for iodine) reactions are regularly used for
the incorporation of radioiodine into organic molecules, with inorganic salts (ammonium
sulfate) or copper (II) salts often being added to catalyze the iodine exchange. Notably, a
naturally stable isotope of astatine does not exist, and, therefore, halogen exchange using
astatine-211 would require the iodo- or bromo- derivatives [279]. However, this approach
is unable to yield a pure, astatinated product since the unreacted iodo- or bromo-starting
compounds cannot be removed. Therefore, astatination reactions generally occur through
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electrophilic substitution reactions in the presence of oxidants, with a new method devel-
oped using the substitution of a dihydroxyboryl group [279,280]. When radiohalogenating
the abovementioned DDRi, the effect that the larger halogen will have on the modified
molecule may also result in altered biological properties.

Table 2. Selection criteria for assessment of candidate GB DDRi TRT agents.

Inclusion Criteria

1. The DDRi was studied preclinically or in clinical trials in GB.
2. The DDRi is a small molecule that:

A. contains a halogen which indicates a position that can potentially be radio-iodinated or
-astatinated; and/or

B. has a potential site for attachment of a chelator.
3. The DDRi has already been radiolabeled with a diagnostic isotope and was studied in GB.

Exclusion Criteria

1. Clinical trials results indicate candidate exclusion by way of:
A. findings in GB patients revealed unwanted safety/tolerability issues (single agent), serious

adverse events that were irreversible or responsible for treatment discontinuation, and/or
B. occurrence of unfavorable pharmacokinetic properties.

2. The DDRi does not contain a halogen or any possible site for chelator attachment.
3. The DDRi has already been radiolabeled (diagnostic and/or therapeutic radionuclide) but was

not studied in GB.
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The consideration of using a chelator would be that the increase in size, molecular
weight, and the possible change in overall charge of the inhibitor could affect pharmacolog-
ical properties (lipophilicity, metabolism, biological half-life, target binding), and especially
for GB targeting, the BBB crossing [43]. Attachment of chelators to biomolecules is generally
carried out through a nucleophilic reaction between a bifunctional chelating agent and
a primary amine. Insertion of a chelator into the structure of a DDRi would require the
replacement of the substituent on an N- or O-atom with a functionalized chelating agent
through a variety of available reactions.

6.1. ATMi AZD1390

AZD1390, developed by AstraZeneca, is a highly potent ATMi (10.000-fold more
specific for ATM than for other PIKK members) that blocks ATM autophosphorylation
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at Ser-1981 and phosphorylation of KAP1 at Ser-824 [281]. AZD1390 has been converted
to a 11C-radiolabeled drug that showed good BBB penetration (1% ID at Tmax[brain] =
21 min) in healthy volunteers. Results on the aspects of safety, tolerability, and pharma-
cokinetics of [11C]-AZD1390 in combination with RT are expected by 2024 [29,59]. The fast
localization of AZD1390 to the brain limits the use of AZD1390 in TRT to those therapeutic
radionuclides that match its biodistribution characteristics. AZD1390 has a piperidine
moiety, an isopropyl moiety, and fluorine at the ortho-position of ring two. There are no
crystal structures of ATM reported to date, and the ATM model developed by Degorce
et al. was used in this review for SAR rationalization [282]. SAR studies have reported
the need for the 4-amino and 3-carboxamide derivative within the structure, as well as
the importance of the internal hydrogen bond that is formed between this moiety and
the bioactive conformation of ATM [282]. It has a potential radiohalogenation site at the
fluoride atom at the ortho-position of ring two. Direct radiohalogenation can potentially
add a therapeutic radioiodine or radioastatine to that position. A chelator could possibly
replace the piperidinyl moiety; however, it sits within the hydrophobic pocket and would
most likely affect binding [75,283].

6.2. DNA-PKi Nedisertib (M3814)

Nedisertib (M3814, Peposertib, MSC2490484A), developed by BioVision Inc., Milpitas,
CA, USA is an orally bioavailable, highly potent, and selective DNA-PKi. Nedisertib
was well-tolerated as monotherapy in AST patients, and two clinical trials are currently
evaluating nedisertib (peposertib) in combination with chemo/RT. The maximum systemic
concentration of nedisertib occurred between 1–2 h after administration. The BBB penetra-
tion capabilities are still under investigation (CilinicalTrials.gov Identifier: NCT04555577).
Based on the structural interactions between nedisertib and the active site of the DNA-PK,
both the quinazoline and morpholino moieties bind into the hydrophobic pocket, while
the pyridazine ring rotates to have π-π interactions with the quinazoline plane [284]. The
chloro-fluorobenzene ring in the active site is directed towards the N-lobe, thus potentially
allowing radiohalogenation at positions one and three of the ring. However, it is noted
that the fluorine points towards the hydrophobic pocket, and thus, radioiodination or
radioastatination at this position might not be feasible. The binding model further indicates
that the methoxy group on the pyridazine ring is orientated outwards towards the solvent
region. The methyl group could potentially be amended to a longer alkyl chain that will
extend further into the solvent area and be functionalized with a chelator group in the
terminal position. A chelator would be able to complex metallic radioisotopes for TRT.

6.3. CHK1i SAR-020106 and MK-8776 (SCH900776)

The kinase domain of CHK1/2 consists of an N- and C-terminal lobe with a hinge
region connecting the two lobes. The hinge forms the ATP-binding pocket, and the majority
of CHK1i will compete with ATP for binding to this site. Inhibitors bind through hydrogen
bonding to peptides (typically Glu-85, Tyr-86, and Cys-87), as well as peptide-bound water
within the active site. Generally, polar substituents of the inhibitors are orientated into the ri-
bose pocket, with more lipophilic groups being directed toward the surface where the hinge
cleft opens to the solvent. A substituent projecting into the solvent area could be modified
with more hydrophilic groups in order to improve inhibitor pharmacokinetics [163].

SAR-020106 is a highly selective and potent inhibitor of CHK1 (IC50 of 13 nmol/L; >7
000-fold selectivity over CHK2) that is still in its preclinical phase. Although SAR-0020106
is highly bound (94%) to plasma proteins, the tumor drug accumulation within 24 h is
significant, with tumor/plasma ratios of 47:1 and 85:1 after 6 h and 24 h, respectively [285].
SAR-020106 is structurally classified into the ‘pyrazine scaffold’ inhibitor group, with an
ether-linked ethylamine substituent on a cyanopyrazine ring connected to a chlorinated
isoquinoline [163]. The cyanopyrazine group significantly interacts with Lys-38 and the
protein-bound water network within the active site, while the isoquinoline nitrogen and
secondary amine connect with Cys-87 and Glu-85, respectively. The chloro-group on the
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isoquinoline indicates a potential position for radiohalogenation using radioiodine or –
astatine since this chlorine atom is not involved in active site interaction. The nitrogen atom
of the tertiary amine side chain of SAR-020106 also binds to water within the protein active
site, but this amine has two methyl groups, one of which could potentially be substituted
with a longer alkyl chain extending into the solvent region. A lengthened alkyl chain
should not drastically affect the hydrogen bonding of the amine and would potentially
allow for the insertion of a chelating group at the end of the hydrocarbon chain. The
chelator could then be used for the complexation of therapeutic metal isotopes, such as
lutetium-177, for TRT.

MK-8776 (SCH900776), developed by Merck KGaA, is another highly selective and
potent inhibitor of CHK1 (IC50 of 3 nmol/L) that is currently in phase I/II clinical trials
for various cancers but has only been tested preclinically for GB therapy [286,287]. These
studies have indicated that MK-8776 enhances cellular susceptibility to chemotherapeutic
agents, such as gemcitabine and hydroxyurea [288]. The BBB penetration of MK-8776 is
currently unknown, but the drug is 49% plasma protein bound with a plasma half-life of
5.6–9.8 h [164]. The structural scaffold for MK-8776 is pyrazolo[1,5-a]pyrimidine func-
tionalized with a piperidine and 1-methyl-pyrazole ring [163,289]. MK-8776 binds to the
hinge region of the kinase ATP-binding site through N1 and C7-NH2 of the pyrazolo[1,5-
a]pyrimidine core, while the nitrogen of the 1-methyl pyrazole is within the interior pocket
bound to water. The piperidine nitrogen atom is hydrogen-bonded to Glu-91 and the amide
carbonyl of Glu-134 in the ribose pocket. Position C6 of the pyrazolo[1,5-a]pyrimidine
is functionalized with bromine which could potentially be converted to a therapeutic ra-
diohalogen. Although the C7 primary amine of MK-8776 is involved in binding to the
active site, similar compounds with a secondary amine in this position that were investi-
gated prior to the development of the clinical candidate also indicated very selective and
strong inhibition of CHK1 [163]. Therefore, alkylation of the C7-amine with a chelator-
functionalized alkyl chain (to harbor therapeutic metal radionuclides) will convert MK-8776
into a TRT-radiopharmaceutical.

7. Conclusions

DDR kinases are attractive targets to promote DNA damage and DNA replication
stress and to render GB cells more vulnerable to RT and TMZ, following the principle of
synthetic lethality. The current DDRi targeting ATM/ATR, PARP, CHK1/2, and DNA-PK
for the treatment of GB and a perspective and overview on potential radiolabeling options
for those small molecules are presented. Despite the hurdles of GB heterogeneity and
drug resistance, radiopharmaceuticals targeting DDR kinases have the potential to stratify
patients for DDRi therapy, predict response to DNA damaging treatments and guide TRT
agents to the nucleus of GB cells, ultimately increasing therapeutic effectiveness. This re-
view revealed that only a limited number of developed DDRi have been explored for their
TRT potential. Through the application of relevant selection criteria, four DDRi compounds
were identified that could potentially be converted into novel TRT radiopharmaceuticals:
AZD1390, Nedisertib (M3814), SAR-020106, and MK8776. Radiopharmaceutical devel-
opment of these candidates may greatly influence a more tailored and personalized GB
therapy.
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