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Abstract

Inferring the structure of molecular networks from time series protein or gene expression

data provides valuable information about the complex biological processes of the cell.

Causal network structure inference has been approached using different methods in the

past. Most causal network inference techniques, such as Dynamic Bayesian Networks and

ordinary differential equations, are limited by their computational complexity and thus make

large scale inference infeasible. This is specifically true if a Bayesian framework is applied in

order to deal with the unavoidable uncertainty about the correct model. We devise a novel

Bayesian network reverse engineering approach using ordinary differential equations with

the ability to include non-linearity. Besides modeling arbitrary, possibly combinatorial and

time dependent perturbations with unknown targets, one of our main contributions is the use

of Expectation Propagation, an algorithm for approximate Bayesian inference over large

scale network structures in short computation time. We further explore the possibility of

integrating prior knowledge into network inference. We evaluate the proposed model on

DREAM4 and DREAM8 data and find it competitive against several state-of-the-art existing

network inference methods.

Introduction

Cellular components function through their interaction in form of biological networks, such as

regulatory and signaling pathways [1]. With the advances of experimental methods and the emer-

gence of high-throughput techniques, such as DNA microarray and next generation sequencing,

the measurement of expression values of genes on whole genome scale is now possible. These

advances have motivated attempts to learn molecular networks from experimental data. How-

ever, network inference from experimental data is computationally nontrivial, because the num-

ber of variables (typically genes, or proteins) usually exceeds the number of samples. Moreover,

the number of possible network structures increases super-exponentially with the number of
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network nodes. Therefore the search space to look for the true network is very large even for

small graph instances and thus prevents the use of exact methods.

With the emergence of targeted perturbation techniques such as RNAi [2] and more

recently CRISPR-Cas9 [3], it becomes possible to study the effect of specific gene silencing on

a whole molecular network in a systematic manner, thus enabling identification of causal net-

works based on multiple intervention effects. Based on this fact, several groups of researchers

have focused their work on network learning from perturbation data.

A large number of network computational methods exist, ranging from purely graph based

[4–6] over Bayesian Networks [7–12], factor graphs [13] and epistasis analysis [14] to mecha-

nistic models [15, 16]. Moreover, specifically for high-dimensional indirect perturbation

effects (Dynamic) Nested Effects Models [16–18] have been proposed.

In this work, we follow a mechanistic ODE modelling framework such as one described in

[15, 19–21]. Molinelli et al. described an efficient inference method based on Belief Propaga-

tion (BP) and showed that their method has similar performance as exact Bayesian inference

[16]. That method relies on a steady state assumption and searches over a finite set of edge

weights in order to ensure convergence. The required data discretization is a principal limita-

tion of the method and potential source of error in a practical application. Furthermore, the

steady state assumption is only valid in specific applications, excluding time series data.

In contrast, the proposed method called FBISC (Fast Bayesian Inference of Sparse Causal

networks), neither requires any data discretization step nor does it rely on a steady state

assumption. It can be applied to time series as well as steady state data. Akin to Molinelli et al.

we allow for modeling non-linear regulatory relationships between molecules. To enable

causal inference we allow for arbitrary, possibly combinatorial interventions. Our method is

Bayesian and thanks to the employed Expectation Propagation (EP) scheme [22] computation-

ally attractive.

Sometimes prior information is available about the structure of the network we wish to

infer. The Bayesian framework used in our method allows us to incorporate prior knowledge

into the network inference procedure in a natural and flexible way. This is achieved via a

“spike and slab” prior [23], which at the same time enforces sparsity of the network. The spike

and slab prior is known to yield less biased estimates than lasso-type L1 penalties, as e.g.

employed in the “Inferelator” [24].

Materials and methods

2.1 Modeling perturbations and dynamics

To ease the representation of our model, we first assume we have time-series data. The case of

steady state data will be explained later. Let Y = {Y1,Y2,. . .,Yn} be the molecules (genes, pro-

teins, etc.) for which we have available measurements at different time points (t). We would

like to estimate the unknown network topology underlying their interaction. The time-series

dataset can be described as D ¼ fycirðtÞji ¼ 1; . . . ; n; r ¼ 1; . . . ; qi; c ¼ 1; . . . ;mg, where qi is

the number of replicate measurements for molecule i, andm is the number of perturbations.

C = {1,2,. . .,m} represents the set of all perturbation experiments, in which each c 2 C can

either directly influence one molecule or a subset of molecules Yc� Y, i.e. perturbations can

be targeted or combinatorial.

We have to take into account that perturbations may not exhibit the same quantitative

effect on all directly influenced molecules. For example, we can think c to consist of a treat-

ment with two ligands A and B. At given concentrations Amight strongly inhibit protein P1,

whereas Bmight exhibit a moderate effect on protein P2. In our model, we capture this behav-

ior by including a set of extra nodes in our network, and a set of extra edges connecting
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perturbations with perturbed molecules. All the edges in our network are weighted, and with

our model, we will infer the difference in the perturbation strength on different target mole-

cules based on data. In conclusion, our network is a graph Γ = (Y[C,ε), with the set of nodes

Y[C and set of edges �. The set of edges for this graph consists of all possible connections

between regular nodes (i.e. all nodes except the perturbation nodes) and also the connections

from our perturbation nodes to our regular nodes. So, our adjacency matrix to be inferred is a

(n+m)×(n+m)weight matrixW = (wij). We do not aim to infer any edge pointing to the per-

turbation nodes. By means of this representation we are able to model interactions between

our network nodes (genes, proteins), and also between perturbation nodes and their targets as

shown in Fig 1.

In general c 2 C can be time dependent, represented as xc(t), which can be Boolean (1 indi-

cating perturbation, 0 no perturbation) or fully quantitative. A special case is when xc(t) = 1 for

all t = 1,. . .,T. Targets of perturbation nodes do not have to be fully known; they can be inferred

from data with our method. The technique for that (Expectation Propagation) is described

later.

We can in principle model perturbations either as perfect (ideal) interventions or as soft

interventions: Perfect interventions remove the influence of any other on the perturbed node,

whereas soft interventions just increase the probability of the target node to be perturbed [25].

By using explicit intervention nodes and correspondingly weighted edges we here rely on a

soft intervention scheme, which we believe to be closer to biological reality.

We assume an ordinary differential equation system (ODE) for describing the dynamics of

the molecular network relative to known interventions:

dy
dt
¼ f y tð Þ; xc tð Þð Þ ð1Þ

Function f can be linear or non-linear [26]. Linear ODEs are not capable of capturing impor-

tant biological phenomena such as coupled perturbation effects, nonlinear interactions, and

switch-like behavior [15]. Inspired by [15], we thus propose the following approach for repre-

senting the time dependent behavior of system measurements, fycirðtÞg, via a set of coupled

non-linear differential equations:

d
dt
ycir ¼ bi

1

1þ expð�
X

p6¼i
wpiz

c
prðtÞÞ

� aiy
c
ir tð Þ ð2Þ

Fig 1. An example network of 3 genes (g1, g2, g3) and 2 perturbation nodes (p1, p2) and its related

weight matrix. The goal is to infer network edges (w elements). The matrix is interpreted in the sense that

elements in each row represent the weights of all incoming edges to a specific node (here: g1). The last two

rows are zero, because we do not have edges directed towards perturbation nodes.

doi:10.1371/journal.pone.0171240.g001
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Here zcprðtÞ represents the time series of a measurement or perturbation node. The upper and

lower bounds of d
dt y

c
ir are controlled by positive parameters αi and βi.

Eq (2) can be linearly approximated as

d
dt
ycir �

ycirðt þ 1Þ � ycirðtÞ
Dt

ð3Þ

yielding

ycir t þ 1ð Þ ¼ Dtbi
1

1þ expð�
X

p6¼i
wpiz

c
prðtÞÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≔RcirðtÞ

þ ycir tð Þ 1 � aiDt½ � ð4Þ

where Δt is the length of the known time interval between subsequent measurements t and t

+1. There is no constraint on equality of interval lengths. Δt weights the influence of measure-

ments at time t on those at time point t+1. Shorter time intervals increase the influence of

ycirðtÞ and decrease the effect of RcirðtÞ.
Under steady state conditions we have d

dt y
c
ir ¼ 0 and hence we obtain:

ycir ¼ bi
1

1þ expð�
X

p6¼i
wpiz

c
prÞ
:

1

ai
ð5Þ

Notably, we have removed the dependency on time t in the formula here due to the steady

state condition.

2.2 Bayesian model fitting

2.2.a Likelihood model. Let miðtÞ≔DtbiRcirðtÞ þ y
c
irðtÞ½1 � aiDt� for i = 1,. . .,n. Further-

more, let σi denote the Gaussian measurement noise for molecule i. The likelihood of mea-

sured data D given weight matrixW and known measurement noise can then be written as:

pðDjW; s2Þ ¼
Y

c2C

YT� 1

t¼1

Yn

i¼1

Yqi

r¼1

Nðycirðt þ 1ÞjmiðtÞ; siÞ

Typically the number of replicate measurements qi per molecule is small, and thus the

empirical variance is an unreliable estimate of the true s2
i In order to account for this fact we

assume the true noise variance s2
i to be drawn from an inverse gamma distribution:

s2

i � IGða; bÞ

With this setting themarginal likelihood pðycirðtÞjmiðtÞÞ, integrating out the unknown s2
i , can

be computed in closed analytical form [27]:

p ycir tþ 1ð Þjmi tð Þ
� �

¼
G aþ 1

2

� �

GðaÞ
1

ð2pbÞ
1
2

1

1þ 1

2b ðmiðtÞ � ycirðtþ 1ÞÞ
2

� �aþ1
2

Accordingly, the marginal likelihood of the data given weight matrixW is given by

pðDjWÞ ¼
Y

c2C

YT� 1

t¼1

Yn

n¼1

Yqi

r¼1

pðycirðt þ 1ÞjmiðtÞÞ ð6Þ
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Notably, using Eq (5) in the steady state situation Eq (6) changes into:

pðDjWÞ ¼
Y

c2C

Yn

i¼1

Yqi

r¼1

pðycirjmiÞ ð7Þ

Note that we dropped t here to make the independence of time explicit.

In our method we use Eq (6) and Eq (7) to score weight matrices for time series and steady

state data, respectively.

2.2.b Prior knowledge and network sparsity. To enforce sparsity ofW we use a spike-

and-slab prior [23] on the edge weights: We introduce a binary latent variable, γij, for each wij
indicating the presence (γij = 1) or absence (γij = 0) of edge i!j. Given γij the spike-and-slab

prior on is defined as:

oij � gijN ð0; s
2

1
Þ þ ð1 � gijÞN ð0; s

2

2
Þ ð8Þ

The variance σ1 of the slab distribution can be set sufficiently large (here: 10) in order to

achieve a low bias of weight estimates for present edges. On the other hand, σ2 is set close to

zero (σ2!0) to approximate a delta function centered at zero (the spike). The mixture coeffi-

cient γij is drawn from a Bernouli distribution:

gij � BernoulliðrijÞ

Hence, γij selects either the spike (if it is zero) or the slab distribution (if it is one) for wij. Param-

eter ρij reflects the prior probability for that. This allows us to incorporate prior knowledge in a

similar way as e.g. described in [28].

2.2.c Bayesian model inference via expectation propagation. Expectation propagation

(EP) has been introduced by [22] as a computationally efficient approximation of full Bayesian

inference. It extends the technique of moment matching [29].

Let Ө denote the set of all inferable parameters (W,α,β) of our model. Similar to Variational

Bayesian methods, EP minimizes Kullback-Leibler (KL) divergence between the true joint dis-

tribution p(Ө,D) and some approximation, q(Ө,D). For that purpose it is essential to factorize

the joint distribution p(Ө,D), for example as:

p y;Dð Þ ¼ p yð Þ
Y

c2C

1

Zc
expf�

XT� 1

t¼1

Xn

i¼1

Xqi

r¼1

ðycirðtþ 1Þ � DtbiR
c
irðtÞ � ycirðtÞ½1 � aiDt�Þ

2
g

¼
Ym

c¼0

fcðyÞ

with f0(Ө): = p(Ө). Each factor fc(Ө) is approximated by a multivariate Gaussian ~f cðyÞ. EP then

iteratively minimizes the KL-divergence KL pkq½ � ¼

Z

p xð Þlog
pðxÞ
qðxÞ

dx between the original

distribution pðy;DÞ ¼
Y

fcðyÞ and the Gaussian approximation qðy;DÞ ¼
Y

~f cðyÞ. This is

done using matching first moments, i.e. expectations. Notably, the EP algorithm always con-

verges when the approximating factors are in the exponential family [22].

2.2.d Implementation. For the implementation of the EP algorithm we use microsoft

Infer.NET [30], a framework for Bayesian inference on graphical models. Our proposed model

can be interpreted as a special type of Dynamic Bayesian Network (DBN), connecting each

network node to its parents i.e. the node values in previous time-step (Fig 2). The code of our

model–written in C#–is provided in the Supplemental material (S1 Code).

EP for Bayesian inference of molecular networks
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The same weight matrix (or the same set of weight parameters) is used for all layers of our

DBN; for example if we assume w12 as the weight of the edge from g1 at time-point 0 to g2 at

time-point 1, the edge connecting the same two nodes from time-point 1 to time-point 2

would have same weight parameter. This implies that we assume the network structure not to

change over time.

2.3 Dealing with non-linearity within the EP framework

The non-linear sigmoid function shown in Eq (4) yields severe convergence issues within the

EP inference framework. We thus use a piece-wise approximation of the sigmoid function

g Zð Þ ¼ 1

1þexpð� ZÞ appearing on the right hand side of Eqs (4) and (5):

gðFðZÞÞ ¼

FðZÞ : if minðyÞ < FðZÞ < maxðyÞ

maxðyÞ : if FðZÞ > maxðyÞ

minðyÞ : if FðZÞ < minðyÞ

ð9Þ

8
><

>:

wheremax(y) andmin(y) denote the maximally and minimally measured concentrations for

one particular molecule (per replicate) in a certain condition over a complete time series.

Note Eq (9) provides an upper an lower bound for the concentration dependent change of

each molecular in dependency of its regulators. The function F in the simplest case could be

the identity function, as proposed in Bonneau, Reiss et al. (2006). In that case between the

upper and lower bound the function g is fully linear, and deviates significantly from the origi-

nal sigmoid curve if the argument Z is far away from 0.5. Furthermore, a linear concentration

change is principally non-physiological. In order to account for these facts we thus suggest to

define F in Eq (9) as a non-parametric B-spline basis expansion [31]. The B-spline expansion

can be computed in a pre-processing step of our method, which maps the original time-series

data into a cubic B-spline space. That means we replace each zcpr in Eqs (4) and (5) by

FðZc
prÞ ¼

X

k
x
cpr
k B

cpr
k ðz

c
prÞ ð10Þ

and use Eq (9) as an approximation of the sigmoid function. In Eq (10) Bcprk denotes a (cubic)

B-spline basis function and the sum runs over the different spline knots k. After choosing an

appropriate number of spline knots, functions of the form of Eq (10) can be fitted to each mea-

sured time series (on log scale). These functions can in principle be evaluated up to every

Fig 2. The proposed model can be interpreted as a Dynamic Bayesian Network. The network has two

types of node: 1) regular nodes, demonstrated by circles, representing the genes(proteins) in the underlying

biological process; 2) perturbation sources (p1, . . ., pC), represented as diamonds.

doi:10.1371/journal.pone.0171240.g002
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desired resolution. Correspondingly, interpolated input data can now be fed to our model

rather than the original raw data.

In practice we tried the following different spline interpolation methods here:

1. Smoothing B-splines, as implemented in the “smooth.spline” function in R [32]

2. Interpolated cubic B-splines, as implemented in the “spline” function in R [33]

Results

3.1 Simulation studies

In order to better understand the principle behavior of our method named FBISC (Fast Bayes-

ian Inference of Sparse Causal networks) under different conditions, we performed several

simulation experiments. A rigorous comparison against competing methods is shown in later

Sections.

Network topologies with 10, 50 and 100 nodes and corresponding time series data with 5,

10, 15 and 20 measurement time points were simulated via the GeneNetWeaver tool [34]. Gen-

eNetWeaver samples random sub-networks from known large-scale yeast and E. coli transcrip-

tional networks. The network topologies used in this paper are shown in the (S1 Fig). Data

simulation for each of these topologies was repeated 5 times, and no perturbations were

applied at first place.

The area under ROC (AUROC) and area under precision-recall curve (AUPR) are used to

evaluate prediction of method. Notably, these measures are independent of a specific confi-

dence or p-value cutoff. Fig 3 depicts the influence of the number of time points and the num-

ber of network nodes on reconstruction performance when using the most basic version of

our method without spline interpolation (i.e. a piecewise linear approximation of the sigmoid

curve). As expected, AUPR and AUROC values increase with more time points. For networks

Fig 3. Effect of number of time points and number of network nodes on network reconstruction

performance with FBISC. (a) AUPR. (b) AUROC.

doi:10.1371/journal.pone.0171240.g003

EP for Bayesian inference of molecular networks
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with 10 nodes and 15 time points, AUROC and AUPR reach 60% and 85%, respectively, while

for networks with 100 nodes AUPR drops to 15%, but the AUROC is still close to 60%.

Next we investigated the effect of using perturbation data with the same basic version of

FBISC. For that purpose, we randomly picked 20% of the nodes of the network with 100 nodes

and each of them affected by a different perturbation. Perturbations were assumed to represent

a constant signal over time, and ten time points were simulated for time courses of each net-

work node. We compared three situations 1) targets of perturbations are fully known; 2) tar-

gets of perturbations are unknown; 3) purely observational data. Fig 4 represents our results

for four network structures for each of these situations.

As indicated by Fig 4 perturbation data generally increased AUPR and AUROC compared

to purely observational data dramatically: AUPR was at least twice as high than with purely

observational data, and the AUROC increased by more than 10%. If targets of individual per-

turbations were fully known to the algorithm (i.e. the prior probability for edges connecting

perturbations to their targets was one) AUPR and AUROC values were on average ~5% higher

than in the case were targets of perturbations were unknown.

In the last experiment we compared the different spline methods discussed in Section 2.3

against each other and against the piecewise linear approximation of the sigmoid curve. This

was done for the network with 100 nodes and 7 simulated measurement time points. No per-

turbations were simulated at this point. The results shown in Fig 5 indicate a significant

increase of AUPR and AUROC with both spline techniques and increasing the number of

interpolated measurement time points. At the same time the difference between B-spline inter-

polation and smooting B-splines was marginal.

In conclusion, our simulations demonstrate that our method can successfully exploit per-

turbation information and profits from spline interpolated time series data. Furthermore,

reconstruction performance is expected to be relatively robust, even if large networks are

estimated.

Fig 4. Effect of perturbation data on network reconstruction performance (a and b represent AUPR and AUROC

respectively). unknownPert = targets of perturbations are not known; knownPert = targets of perturbations are fully

known; observationsl = purely observational data.

doi:10.1371/journal.pone.0171240.g004

EP for Bayesian inference of molecular networks
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3.2 Evaluation on DREAM challenge data and comparison against

competing methods

We downloaded data from the DREAM4 [35] and DREAM8 [36, 37] challenges for the further

evaluation of our approach and comparison to competing methods (see http://dreamchallenges.

org/project-list/closed/). The gold standard networks provided in these data are used for evalua-

tion. DREAM4 provides simulated data for five networks of size 10 nodes and five networks of

size 100 nodes. For each network perturbation time series and steady state data were retrieved.

Time series data comprise 21 time points (t0 = 0 to t20 = 1000) reflecting measurements of each

network node. Perturbations are always applied at time 0 and removed at time 500. Information

regarding to the exact targets of perturbations are not available. Each time series is measured

with 5 replicates for the 10-node network and 10 replicates for the 100-node network. Each rep-

licate represents a perturbation experiment in which different nodes (about one-third of the

network) are perturbed.

In addition to time series different kinds of steady state data are available from DREAM4.

Here we employed knock-out, knock-down, and multifactorial perturbation data. Knock-out

and knock-down data reflect steady state measurements of all network nodes after perturba-

tion of exactly one known node. Multifactorial data corresponds to combinatorial perturba-

tions of unknown nodes in each experiment. No replicate measurements are available for

steady state data.

DREAM8 provides experimental data of a signaling network with 20 nodes at 11 time

points. Here the perturbations correspond to compound treatments. Exact concentrations of

perturbation sources are not given but specified with qualitative values (high/low). Following

Young et al. [38] we normalized each measured time series by subtracting its mean.

We compared FBISC with ScanBMA [38], iBMA [39], LASSO [40], ebdnet (Empirical

Bayes Estimation of Dynamic Bayesian Networks [41], ARACNE [42], and CLR [43]. As

Fig 5. Effect of using spline interpolation and smoothing spline. The plot shows the AUPR and AUROC (a and

b respectively) as a function of an increasing number of interpolated measurement time points. 7 time points

corresponds to the original data in combination with a piecewise linear approximation of the sigmoid curve.

doi:10.1371/journal.pone.0171240.g005
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opposed to the first three methods LASSO, ARACNE and CLR are not per se designed for

time series data. In order to adapt these methods to our situation we considered for each net-

work gene of interest all other genes as potential regulators. For each potential regulator its

measurements excluding the last time point were used. We then asked, which subset of regula-

tors could predict the measured time series of the network gene of interest excluding the first

time point. This estimation procedure was repeated for all network genes.

Notably, information about perturbations was included into all methods competing with

our FBISC approach. This was done by adding perturbations as additional potential “regula-

tors” of each node (similar to the way that FBISC treats perturbations). In case that perturba-

tion targets were known, perturbations were only considered as potential regulators of directly

targeted nodes.

All tested network inference algorithms produce either a confidence measure (FBISC,

ScanBMA, iBMA) or a p-value (ebdnet, CLR, ARACNE) for each possible edge. Correspond-

ingly, AUROC and AUPR are used to evaluate prediction performances of methods. Notably,

these measures are independent of a specific confidence or p-value cutoff.

3.3 Results for DREAM4 data

Using the above described time series perturbation data we compared results obtained by

our method with the ones reported in Young et al. [38]. Results generated by our method

are shown in the last two rows of Table 1, indicating a higher AUROC/AUPR for 10-gene

and higher AUPR for 100-gene networks than competing methods, specifically when using

the B-spline method. ROC and PR curves regarding DREAM4 networks of size 100 are pro-

vided in S2 Fig.

Next we compared our method to the competing approaches on the basis of various kinds

of steady state data (Table 2), showing a clear improvement compared to ARACNE, LASSO

and CLR (which are the only competing methods using steady state data) in all cases. As

expected, AUROC and AUPR values for steady state data are typically a bit below those

observed for time series data. However, FBISC using knock-out data could still achieve an

AUROC of 70% for the 100-gene network.

3.4 Results for DREAM8 data

Next, we focused on the DREAM8 challenge data. In contrast to before, results for this dataset

were obtained by our own implementation of competing methods. More specifically, we used

R package NetworkBMA [44] for ScanBMA, minet [45] for ARACNE and CLR, ebdbnet [41],

and glmnet [46] for LASSO. Results are presented in Table 3, indicating a slightly better

AUROC than the best competing approach (CLR).

Table 1. Average performance results based on DREAM4 10-gene and 100-gene networks (time series data). FBISC results are shown in the last two

rows; other results were taken from Young et al. (2014). FBISC-linear corresponds to the piecewise linear approximation of the sigmoid curve. FBISC-B-spline

is applied with 20 and 100 interpolated time points for the 10 and 100-gene networks, respectively.

Method AUROC (10-gene network) AUPRC (10-gene network) AUROC (100-gene network) AUPRC (100-gene network)

LASSO 0.731 0.487 0.643 0.073

Ebdnet 0.704 0.438 0.643 0.043

ARACNE 0.668 0.388 0.589 0.106

CLR 0.681 0.397 0.699 0.123

ScanBMA 0.74 0.505 0.657 0.101

FBISC-linear 0.757 0.486 0.643 0.161

FBISC-B-spline 0.810 0.510 0.650 0.122

doi:10.1371/journal.pone.0171240.t001

EP for Bayesian inference of molecular networks

PLOS ONE | DOI:10.1371/journal.pone.0171240 February 6, 2017 10 / 16



3.5 Effect of incorporating prior knowledge

Next we tested, in how far the previously presented results would change in dependency

of prior knowledge. Only time series data were used at this point. Following the approach

used by Praveen et al. [47] we considered 0, 5, 10, 25 and 50 percent of true network edges

to be known with probability of 90%, and the FBISC-B-spline method with the same setting

reported in Sections 3.3 and 3.4 was used. The results of this experiment (Fig 6) show an

increase of AUROC and AUPR as fractions of confidently known edges increase. Notably,

with 50% known edges we could achieve an AUROC of close to 75% for the 100 gene net-

work from the DREAM4 challenge and about the same performance for the DREAM8 chal-

lenge network.

3.6 Run time and parallelization

FBISC is a Bayesian approach. Frequentist methods like CLR and ARACNE are based on

mutual information and conceptually far simpler. They are thus computationally comparably

cheap. From the practical point of view, a question is thus, how the computing time of FBISC

compares to competing methods.

The run time of ScanBMA depends on the number of potential parents (nvar) per node.

Here we tested ScanBMA with nvar = 10 and nvar = 20 (for larger values of nvar the run time

Table 2. Average performance results based on DREAM4 10-gene and 100-gene networks with steady state knock-down, knock-out, and multifac-

torial data. Notably, FBISC is only applicable without spline interpolation in these situations. For the 10-gene networks LASSO failed due to low number of

available samples and is thus not shown.

Method Type of perturbation AUROC (10-gene network) AUPR (10-gene network AUROC (100-gene network) AUPR (100-gene network

ARACNE Knock-down 0.503 0.200 0.525 0.076

LASSO Knock-down - - 0.521 0.074

CLR Knock-down 0.562 0.219 0.564 0.085

FBISC Knock-down 0.629 0.246 0.607 0.091

ARACNE Knock-out 0.563 0.247 0.541 0.087

LASSO Knock-out - - 0.549 0.107

CLR Knock-out 0.603 0.261 0.594 0.097

FBISC Knock-out 0.678 0.281 0.709 0.175

ARACNE Multifactorial 0.644 0.317 0.493 0.057

LASSO Multifactorial - - 0.499 0.058

CLR Multifactorial 0.652 0.310 0.495 0.056

FBISC Multifactorial 0.657 0.268 0.524 0.060

doi:10.1371/journal.pone.0171240.t002

Table 3. Results on DREAM8 signaling data. FBISC-linear corresponds to the piecewise linear

approximation of the sigmoid curve.

Method AUROC AUPR

iBMA 0.488 0.238

ARACNE 0.562 0.321

LASSO 0.545 0.326

ebdnet 0.493 0.257

CLR 0.626 0.381

ScanBMA 0.47 0.242

FBISC-linear 0.618 0.346

FBISC-B-spline (30 time points) 0.643 0.342

doi:10.1371/journal.pone.0171240.t003
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increases dramatically). Results for our method compared to the competing approaches con-

sidered in this paper are reported in Table 4, indicating a good computational scalability of

our FBISC approach. Notably, our algorithm can be parallelized, because the inference prob-

lem can be solved independently for each network node. This allows for an additional gain in

computation time. Corresponding results shown in Table 4 (named FBISC parallel) refer to

the use of 2 cores (Intel1 Core™ i5-5257U dual core processor with 4 parallel threads). More

cores would reduce calculation time even more. For DREAM8 and DREAM4 networks of size

100 there is speed up by factor 2 due to parallelization (Table 4). At the same time, the memory

use was rather modest and allowed to run all computations on a standard laptop computer.

Overall, the Bayesian inference scheme used in FBISC thus seems to be applicable even for

large networks.

Fig 6. Effect of including prior knowledge into FBISC for DREAM; AUPR and AUROC represented in a and b

respectively. (10 and 100-node networks: D4-10 and D4-100) and DREAM8 (D8) data. Shown are the AUPR and

AUROC for FBISC after adding a varying percentage of true edges with 90% confidence.

doi:10.1371/journal.pone.0171240.g006

Table 4. Total run time (in seconds) on DREAM4 (10 and 100-node networks) and DREAM8 data.

Method DREAM4 (10-gene network) DREAM4 (100-gene network) DREAM8

FBISC100 EP iter 7.349 186.639 71.699

FBISC 20 EP iter 3.901 59.930 20.047

FBISC parallel (20 iter) 3.469 30.704 10.250

ScanBMA (nvar = 10) 3.978 60.547 16.266

ScanBMA (nvar = 20) 4.746 4305.107 8315.338

LASSO 1.05 38.4 2.34

Ebdbnet 0.044 25.529 0.31

CLR 0.002 0.01 0.004

ARACNE 0.002 0.013 0.124

doi:10.1371/journal.pone.0171240.t004
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Discussion

We proposed a Bayesian approach for computationally efficient inference of large scale molec-

ular networks from complex perturbation data. Our FBISC method is highly flexible and appli-

cable even in situations where the exact targets of perturbations are unknown (such as stress

experiments), which is frequently the case in biology. A further strength is that we consider

perturbations themselves as time dependent, as e.g. reflected in the DREAM4 data. FBISC uses

a biochemically inspired model to describe the non-linear dynamical behavior of molecular

networks and integrates this description into a graphical modeling framework. This allows for

the application of efficient approximate inference schemes, such as expectation propagation.

Notably, the output of our method is a posterior distribution over edge weights, which

accounts for the unavoidable uncertainty of any network inference.

We enforced sparsity of inferred networks in form of a spike and slab prior. This type of

prior forces many edge weights to exactly zero and naturally allows for the integration of prior

background knowledge, which demonstrated useful in our results. Altogether we see the com-

bination of a highly flexible modeling framework (reflected by non-linear dynamics, arbitrary

complex perturbation schemes and probabilistic integration of prior knowledge), which is

applicable to time series as well as steady state data and uses computationally scalable Bayesian

inference as differentiation of FBISC to existing techniques. The advantage for the user lies in

a unified method, which allows for automatically adapting literature derived network informa-

tion to experimental data and produces confidence measures. Our results showed an attractive

prediction performance of our method. We thus believe that our proposed FBISC method is

an attractive alternative to existing methods to learn causal network structures from complex

perturbation data. The C# code of our method is included in the supplements of this paper (S1

Code).

Supporting information

S1 Code. Code for FBISC inference model. (c# infer.net framework).

(CS)

S1 Fig. Network structures used in simulation section. (generated by geneNetWeaver).

(DOCX)

S2 Fig. ROC and PR curves for the rest of DREAM4 size 100 networks number.

(DOCX)
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specific miRNA and transcription factor activities from combined gene and microRNA expression data.

Bioinformatics. 2012; 28(13):1714–20. doi: 10.1093/bioinformatics/bts257 PMID: 22563068
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