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Abstract

As the fundamental unit of eukaryotic chromatin structure, nucleosome plays critical roles in gene expression and
regulation by controlling physical access to transcription factors. In this paper, based on the geometrically transformed
Tsallis entropy and two index-vectors, a valid nucleosome positioning information model is developed to describe the
distribution of A/T-riched and G/C-riched dimeric and trimeric motifs along the DNA duplex. When applied to train the
support vector machine, the model achieves high AUCs across five organisms, which have significantly outperformed the
previous studies. Besides, we adopt the concept of relative distance to describe the probability of arbitrary DNA sequence
covered by nucleosome. Thus, the average nucleosome occupancy profile over the S.cerevisiae genome is calculated. With
our peak detection model, the isolated nucleosomes along genome sequence are located. When compared with some

published results, it shows that our model is effective for nucleosome positioning. The index-vector component
nWWW

nW

is
identified to be an important influencing factor of nucleosome organizations.
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Introduction

As the basic structural unit of eukaryotic chromatin, nucleosome

is composed of DNA with 147 bp wrapped 1.65 turns around a

protein complex of eight histones. A stretch of around 10–100 bp

free DNA termed linker DNA joined two neighboring nucleo-

somes together (Luger et al. 1997; Richmond and Davey 2003).

The presence (absence) of nucleosomes directly (indirectly) affects

a variety of processes of life, including recombination, replication,

centromere formation and DNA repair.

The developments of the high-thoughput techniques such as

chromatin immunoprecipitation (CHIP) coupled with microarrays

(CHIP-chip) and CHIP coupled with sequencing techniques

(CHIP-Seq) have enabled landmark genome-wide studies of

nucleosome positions for several model organisms, like Yeast,

Caenorhabditis elegans, Drosophila and Human, which allow the

researchers to establish models for nucleosome positioning as well

as explore the internal relations between them and the expression

and regulation among the whole genome.

Nucleosome formation along genome depends on multiple

factors, including perference of DNA sequence, physical con-

straints and epigenetic factors like activities of ATP-dependent

remodeling complex. Thus, the precise mechanism of nucleosome

formation remains unknown. In the initial research of nucleosome,

some researchers have demonstrated that AA/TT/TA have a

periodility of 10.4 bp along the genome, poly-A contents and some

conserved sequence motifs are important signals for nucleosome

positioning. A few computational models were also proposed

based on the preference of DNA sequences itself. Segal et al.

established a probabilistic model to characterize the possibility that

one DNA sequence is occupied by nucleosome [5]. Peckham et al.

introduced a supervised classification algorithm: support vector

machine to do the binary classification [8]. Yuan and Liu

proposed an N-score model to discriminate nucleosome and linker

DNA sequences with wavelet transformation and logarithmic

regression in 2008 [6]. In the same year, a web-interface called

‘nuScore’ was developed for estimating the affinity of histone core

to DNA and predicition of nucleosome positioning. However, the

success achieved by these models are limited, some research

institutions have begun to study the structural characteristics of

DNA sequences as well as the conformation mechanism of

nucleosomes. Some physicochemical properties of nucleosome

have shown their significant influence on the nucleosome

positioning, such as tilt, twist and free energy, Tolstorukov et al.

[24], Miele et al. [20], Morozov et al. [26] have done excellent

work focusing on the role that structural features play in the

nucleosome positioning. Therefore, it is very necessary to

systematically analyze the different structural characteristics as

well as identifying the structural characteristics that play roles in

the formation of nucleosome. Furthermore, it is desirable to

integrate those structural features that contribute to the formation

of nucleosome to improve the prediction of nucleosome.

In this paper, we proposed three main models: nucleosome

positioning information model, nucleosome occupancy model,

peak detection model to form the complete nucleosome position-

ing model. The nucleosome positioning information model was

developed based on the geometrically transformed Tsallis entropy

combined with two index-vectors. We showed that our model has

PLOS ONE | www.plosone.org 1 November 2014 | Volume 9 | Issue 11 | e109395

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0109395&domain=pdf


better performance in the discrimination of known nucleosomal

and linker DNA sequences across five organisms (Human,

Medaka, Nematode, Candida and Yeast) compared with the

previous work of Segal et al. [5,9,22], Miele et al. [20], Gupta et al.

[21] and Zhang et al. [16–19]. Moreover, we adopted the concept

of relative distance to donate the potential that one sequence

belongs to nucleosomal DNA. The average nucleosome occupan-

cy profile over the S.cerevisiae genome was calculated and

compared with the previous work of Kaplan et al. [9], Segal et al.

[5], good correlations (correlation coefficients of 0.6858 and

0.7626, respectively) were shown. Furthermore, by identifying the

real peaks with peak detection model, we located the isolated

nucleosomes along the yeast genome. By comparing with some

published maps [5,6], we demonstrate that our model is simple

and efficient for predicting nucleosome positions along genome.

Materials and Methods

Genomic DNA and nucleosome positioning data
The genome sequences were downloaded from the S.cerevisiae

Genome Database (http://www.yeastgenome.org/), which corre-

spond to the sequences of Chromosomes I-XVI on January 2006.

The data of five organisms (Human, Medaka, Nematode, Candida

and Yeast) used to validate the performance of nucleosome

positioning information model was obtained from the published

work of Tanaka et al. [1]. In their work, 100 nucleosomal and 100

linker DNA sequences whose length are between 100 bp and

200 bp were extracted from the genome-scale nucleosome map.

These processes were repeated 10 times. Besides, the data referring

to nucleosome positioning was collected from the published works

(Kaplan et al. [9], Segal et al. [5], Yuan et al. [4,6,10], Lee et al.

[7], Mavrich et al. [11], Albert et al. [12]).

Tsallis entropy theory
Tsallis entropy theory was first introduced in 1988 by

Constantino Tsallis [2]. It can be described as follows:

In a system, set fpig be a discrete set of probabilities with the

condition:
P

i pi~1. q is a real parameter sometimes called

entropic-index. The Tsallis entropy of the system is defined by

T~(1{
Xn

i~1

pi
q)=(q{1) ð1Þ

In the information theory, entropy is a measure of the

uncertainty and an index that shows the state of one material

system. Since the year 2000, an increasingly wide spectrum of

natural, artificial and social complex systems have been identified

which confirm the predictions and consequences that are derived

from this nonadditive entropy. Here, the Tsallis entropy theory

was used to measure the conservativeness of information of

nucleosomal and linker DNA.

To describe the nucleosome positioning information in arbitrary

DNA sequence, the geometrically transformed Tsallis entropy

component T ’ was introduced.

T ’~(1{p
q
i )=(1{pi) ð2Þ

where q is a real number and pi is a probability between 0 and 1.

Nucleosome positioning information model
Inspired by the pioneering work of Trifonov [15] that AT-

riched and GC-riched dimeric and trimeric motifs were contrib-

uted to nucleosome organization, we further explored the role that

A/T-riched and G/C-riched dimeric and trimeric motifs play in

nucleosome organization.

Given four nucleotides (A, T, G, C), we calculated the Pearson

correlation coefficients between the nucleosome occupancy and

the single-nucleotide frequencies across five organisms, respective-

ly (Table 1). We noticed that expect for Medaka, the other four

organisms shared the same role: A and T are both negatively

related with nucleosome occupancy while C and G are both

positively related. The result of Yeast is consistent with the findings

that the single-nucleotide frequencies C+G were nucleosome

forming features while A+T were nucleosome inhibiting features in

Peckham’s work [8]. This may be the reason for the phenomenon

that the AT-rich intergenic regions in S.cerevisiae are nucleosome-

free [25]. Tanaka and Nakai [1] have pointed out that the

nucleosomal DNAs in Medaka were quite different from other

four species. In summary, A and T shared the same relation with

nucleosome occupancy across five organisms, so were C and G.

Then, the four nucleotides can be divided into two classes: W and

S (where W is A or T, S is C or G). In this way, each DNA

sequence was converted to a vector composed by S and W.

We considered a DNA sequence read and its reverse

complement together in a 59 to 39 fashion, the occurrences of k-

mers, k~1,2,3 were counted, donated by nW , nS , nWW , nSS and

nXXX (where X is W or S). Thus, we proposed two index-vectors:

V1~½
nWW

4
,

nSS

4
� ð3Þ

V2~½
nWWW

nW

,
nWWS

nW

,
nWSW

nW

,
nSWW

nW

,
nSSS

nS

,
nSSW

nS

,
nSWS

nS

,
nWSS

nS

� ð4Þ

V1 extracts the frequencies of A/T-riched and G/C-riched

dimeric motifs along each sequence. V2 depicts the relative

frequency of A/T-riched (G/C-riched) trimeric motifs when A/T

(C/G) appears. Furthermore, combined with the geometrically

transformed Tsallis entropy, two 4-dimensional vector s1 and s2

were constructed to represent the conservation of A/T-riched and

G/C-riched motifs along each DNA duplex, respectively.

s1~½li
1{V2(i)V1(1)

1{V2(i)
�, i~1,2,3,4 ð5Þ

s2~½li
1{V2(i)V1(2)

1{V2(i)
�, i~5,6,7,8 ð6Þ

Here, li is a coefficient donated to illustrate the relative

conservation between the distributions of trinucleotides along one

DNA strand and its reverse complement. Suppose that the

distribution of one trinucleotide along a single DNA strand is

Distribution1, while the distribution along its reverse complement

is Distribution2. Next, we consider the relationship between

Distribution1 and Distribution2 for all eight trinucleotides.

When the trinucleotide and its reverse complimentary element

are the same, such as WWW , WSW , SWS, SSS, which means

that the locations of these trinucleotides along one DNA strand

can determine the positions that these trinucleotides along the

other DNA strand totally. We consider the two distributions of

these trinucleotides along DNA duplex are completely conserva-
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tive and li~1. For the other four trinucleotides, Distribution1 and

Distribution2 along DNA duplex are independent, so li~2.

However, the lengths of nucleosomes extracted by different

ways are different for different organism, even the same organism.

In order to eliminate the impact of length difference, we took the

length of nucleosome sequences in Saccharomyces cerevisiae

(147 bp) as a standard.

Therefore, the nucleosome positioning information model can

be established as:

s~½s1, s2� ð7Þ

S~
147

length
� s ð8Þ

Here, S can be used to describe the conservation of A/T-riched

and G/C-riched dimeric and trimeric motifs along arbitrary DNA

duplex.

Nucleosome occupancy model
We proposed a concept of relative distance to weight the

potential that arbitrary DNA sequence belongs to nucleosomal

DNAs. In this study, we constructed a training set consisting of the

1000 highest (nucleosome forming) and 1000 lowest (nucleosome

inhibiting) scoring 50-bp fragments from chromosome III of the

data set [4]. According to nucleosome positioning information

model, the sequences in positive training dataset and negative

training dataset can be translated into 8-component vectors,

donated by P1,P2, � � � ,P1000 and N1,N2, � � � ,N1000, respectively.

In the Cartesian coordinate axis systems, Nandy [27] denoted

mx~
1

N

XN

i~1
xi, my~

1

N

XN

i~1
yi as the geometrical center (a

weighted mean of the coordinate values of the representative

points) of the points in a 2-D graph, where N represents the total

number of points, xi and yi are the coordinates of the i-th point in

the Cartesian coordinate system. By considering P1,P2, � � � ,P1000

and N1,N2, � � � ,N1000 as the points in two high-dimensional

Cartesian coordinate axis systems, we took their geometrical

centers �PP and �NN as the representative vector of the two systems,

respectively.

Furthermore, the relative distance parameter for any given

DNA fragment can be defined as:

D~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(X{ �NN)(X{ �NN)T

q
{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(X{�PP)(X{�PP)T

q
ð9Þ

where X is the 8-dimension vector corresponding to given DNA

fragment.

Next, we sought to learn the average nucleosome occupancy

along genomic sequence. Consider a genomic sequence S with n

bases from the 592 to 392 end. A 147-bp sliding window was used

to scan it from start to end in 1-bp step. Suppose the relative

distance between the sequence in the ith(iƒn{146) window to

the negative training data and positive training data is Di . It is

obvious that Di can measure the potential of starting a nucleosome

at position i.

After applying the Range normalization transformation to Di,

we calculated the average nucleosome occupancy of a basepair i of

S covered by any nucleosome by defining the probability p(i), as

follows:

D?
i ~

Di{ min
1ƒiƒn{146

Di

max
1ƒiƒn{146

Di{ min
1ƒiƒn{146

Di

ð10Þ

p(i)~

Pi
j~1 D?

j

i
, iƒ146 ð11Þ

p(i)~

Pi
j~i{146 D?

j

147
, 146viƒn{146 ð12Þ

p(i)~

Pn{146
j~i{146 D?

j

n{iz1
, n{146viƒn ð13Þ

Peak detection model
After mapping the average nucleosome occupancy profile, we

identified the peaks as well-positioned properties indicating the

positions of nucleosome. Suppose the nucleosome occupancy

profile is M. After finding out all the ‘peaks’ along M with a sliding

window of 147-bp in 10-bp step, we sought to identify the ‘real

peaks’ with peak detection model.

Firstly, despite some latest researches have shown that there

exist ‘fuzzy’ nucleosome, which means that two nucleosomes are

‘overlapping’ on the same location along DNA strands [23], our

goal is to locate isolated nucleosomes. Based on this, if the distance

between any two identified peaks is less than 147 bp, the peak with

smaller value will be filtered out.

Secondly, according to the definition of p(i), its value can give

partial decision for the classification. We tried to train a threshold

D0. If the value of peak is less than D0, the peak will be identified

as a ‘dummy peak’ and filtered out. Hence, the choose of D0 is

crucial, as the smaller value is not sufficient for filtering out all

Table 1. The correlation coefficients between four nucleotides and the nucleosome occupancy across five organisms.

Organisms A T G C

Human 20.2419 20.1861 0.2483 0.2356

Medaka 0.0511 0.0119 20.0229 20.0453

Nematode 20.1749 20.2394 0.2526 0.2635

Candida 20.1382 20.1093 0.1547 0.2098

Yeast 20.2276 20.1997 0.3299 0.2962

doi:10.1371/journal.pone.0109395.t001
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‘dummy peaks’, while the bigger value has too strong filtration

effect. Here, we chose 0.5 as the optimal cutoff, which represents

the random level.

After identifying all the ‘real peaks’, we denoted the position

with the maximal value is Pm, which is considered to be

chromosomal coordinate. Then, the beginning Pl and ending Pr

of this identified nucleosome are correspondingly determined as:

Pl~Pm{73, Pr~Pmz73, since the length of a well-positioned

nucleosome in S.cerevisiae is 147 bp. By mapping the identified

nucleosome positions onto the genomic sequence, the nucleosome

organization graph can be obtained.

Results

Geometrically transformed Tsallis entropy analysis of the
nucleosomal and linker DNAs

In this work, the geometrically transformed Tsallis entropy was

raised to describe the nucleosome positioning information in

nucleosomal and linker DNA fragments. The average values of

S~½S(1),S(2),S(3),S(4),S(5),S(6),S(7),S(8)� across five organ-

isms (Human, Medaka, Nematode, Candida, Yeast) were listed in

Table 2.

The average value of S~½S(1),S(2),S(3),S(4),S(5),S(6),S(7),
S(8)� deciphers the average level of conservation of the

distribution of A/T-riched and G/C-riched dimeric and trimeric

motifs along DNA duplex. We noticed that the average value of S

in nucleosomal DNA regions are all lower than that in linker DNA

regions across five organisms. In other words, the distribution of

A/T-riched and G/C-riched dimeric and trimeric motifs along

nucleosomal DNA duplex was more conservative than that along

linker DNA duplex. This result may be interpreted by the specific

underlying interaction between the core histone octamer and

DNA sequences in the structure of nucleosomes. As expected, the

average value of vector S can apparently distinguish the

nucleosomal and linker DNA sequences. The observation revealed

that the geometrically transformed Tsallis entropy can efficiently

extract the nucleosomal positioning information across five

organisms.

Evaluation of nucleosome positioning information model
As a supervised classification algorithm, SVM separates two or

more groups according to the given characteristics [29]. The

working theory is to map the data in training set onto a higher

dimensional feature space. Then, the optimal plane separating the

positive and negative examples can be obtained by finding the

maximum margin from any point in the training set. The data in

test set can be determined on which side of the separating plane by

mapping it to the higher dimensional feature space.

Our study used the LIBSVM (http://www.csie.ntu.edu.tw/

cjlin) for SVM classification [3]. In our application, the sequences

were presented by the vector in function (8) and the two groups are

‘Nucleosomal DNAs’ and ‘Linker DNAs’. For the two parameters

of LIBSVM, we set c~4 and g~2 in this study.

We evaluated the quality of resulting classifier using a 5-fold

crossvalidation procedure. In this procedure, the sequences both in

positive and negative set will be divided into five subsets at

random. A SVM is trained on 80% of the data (i.e. using 1600

sequences) and tested on the rest. Afterwards, the 1st, 2ed, 3rd, 4th

and 5th set will be used as a test set in turn, while the rest four sets

were retained as training set, which were used to train and

construct a binary classification model. After obtaining the trained

model, the sequences in the test set will be predicted with labels of

1 or {1, which means it being divided into the positive or

negative set.
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The performance of our model was measured by four

parameters: total accuracy (Accuracy), the sensitivity (Sensitivity),

positive predictive value (Precision) and Matthews correlation

coefficient (MCC), defined as follows:

Accuracy~
TPzTN

TPzTNzFPzFN
ð14Þ

Sensitivity~
TP

TPzFN
ð15Þ

Precision~
TP

TPzFP
ð16Þ

MCC~
(TP|TN){(FP|FN)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TPzFP)|(TNzFN)|(TPzFN)|(TNzFP)
p ð17Þ

Where TP, TN, FP and FN represent the number of correctly

predicted positive sequences, the number of correctly predicted

negative sequences, the number of incorrectly predicted positive

sequences and the number of incorrectly predicted negative

sequences, respectively.

Another parameter used to evaluate the performance of our

new model is the ROC curve (Relative Operating Characteristic

curve), which plots the rate of true positives as a function of the

rate of false positives for various classification thresholds. It is a

comprehensive index to reflect the sensitivity and specificity of

continuous variables. ROC curve sets the true positive rate as y-

axis and the false positive rate as x-axis. The quality of a classifier

can be evaluated by calculating the percentage(AUC) of the area

under the ROC curve. If the value of AUC is 0.5, the

experimental effect is equivalent to random separation, which

means our work is meaningless, if between 0.5 and 0.7, this

experiment is with poor effect. The value between 0.7 and 0.9

indicates good separation effect and above 0.9 is corresponding to

excellent separation.

Results of classifier based on nucleosome positioning
information model compared with other publications

In Yoshiaki Tanaka’s work [1], they compared the represen-

tative algorithms from three typical classes of prediction methods

over the same dataset: Segal et al. [5,9,22] constructed their model

mainly based on the 10-bp sequence periodicity. Miele et al. [20]

studied the roles that physical properties played in determining

nucleosome occupancy from yeast to fly. Gupta et al. [21] used the

statistic of oligomer frequency to train SVM. In a recent study,

Zhang et al. [17] trained SVM based on the dinucleotide absolute

frequency of DNA sequence.

To evaluate the performance of our model, the averaged ROC

curves of our new model were shown in Figure 1 with a mean

AUC value equal to 0.8927. The result showed that the prediction

accuracy of our model was significantly higher than the previous

methods above (Table 3). Besides, it was shown that except for

Candida and Medaka, the AUC values of other three species were

Figure 1. Classification performance of the SVM based on nucleosome positioning information model for five organisms. Values in
parentheses indicate the area under the receiver operating characteristic curve (AUC) for each organism.
doi:10.1371/journal.pone.0109395.g001
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all above 0.9, which meant the abilities of our model for these

three species (Human, Nematode, Yeast) were excellent. However,

even for Candida and Medaka, the AUC values have been

improved from 0.766 to 0.8261, 0.884 to 0.8922 respectively. The

result again suggests that the proposed two index vectors can

efficiently capture some aspects of the sequence-dependent affinity

of the histone octamer. Meanwhile, the geometrically transformed

Tsallis entropy is a valid indicator to extract the nucleosome

positioning information.

Genome-wide prediction of nucleosome in S.cerevisiae
The average nucleosome occupancy profile along the S.cerevi-

siae genome can be obtained based on nucleosome occupancy

model. To illustrate the validity of our approach, the comparisons

with some experimental results should be done. In 2008, Kaplan

et al. [9] compared the nucleosome occupancy of extracted

20000 bp typical genomic regions of S.cerevisiae under different

growth conditions (YPD, ethanol and galactose) in vivo with vitro.

The average nucleosome occupancy profile of the same extracted

region is also done in this work.

Examining Figure 2, we found a high similarity between the

average nucleosome occupancy profile predicted by our model

and experimental map of nucleosome occupancy in vitro (0.7116),

in vivo growing in ethanol (0.5654). According to peak detection

model, peaks along average nucleosome occupancy profile are

critical positioning signals. Comparing these five graphs, peaks

match well, which provides us basis for the accurate nucleosome

positioning. These results imply that our model has an excellent

predictive ability on recognizing the nucleosome-enriched and

nucleosome-depleted regions in the S.cerevisiae genome.

We have summarized some existing nucleosome maps of

Saccharomyces cerevisiae [5,6] and compared our result with

their publications. In Segal’s work [5], they provided the

probability that any basepair is covered by nucleosome and

nucleosome positions with higher probability (.0.2). All data can

be downloaded from their website (http://genie.weizmann.ac.il/

pubs/nucleosomes06). In the work of Yuan et al. [6], the

researchers constructed a N-score model{a wavelet analysis

based model for predicting nucleosome positions from DNA

sequence information.

Figure 3 shows two different average nucleosome occupancy

profile of the GAL1-10 locus (chromosome II : 276930-279990) in

the first top two panels: the Segal’s average binding score and our

average nucleosome occupancy. Nucleosome predictions by our

model, Yuan et al. [6], Segal et al. [5] were listed in the third,

fourth and fifth panel respectively. The figure shows that the

average nucleosome occupancy profile of our model and Segal’s

are apparently similar with a correlation of 0.7846. Besides,

comparing three nucleosome positioning maps, we found a

significant correspondence. High degree of similarity was seen

between our predictions and Yuan’s result. Eight nucleosomes of

Yuan’s eleven predictions were identified with only a small shift.

When compared with Segal’s map, only seven nucleosomes among

Segal’s predictions were identified.

Here, we also downloaded the predicted nucleosome positions

with Yuan (N-score) [6] and the 2003 version of yeast genome

(http://bcb.dfci.harvard.edu/). We presented a complete nucleo-

some positions map along Chromosome III and compared with

Yuan’s result. A set of 1281 central locations of well-positioned

nucleosomes along Chromosome III were listed in Yuan’s result

while in our work, a set of 1053 nucleosome positions have been

predicted. In order to evaluate our predictions more intuitively, we

defined two parameters. One is the fraction of the positions in the

Yuan’s work that are within X nucleotides of a predicted position.

Another is the fraction of the positions in our work that are within

X nucleotides of a predicted position by Yuan et al.

The result shows that nearly all the central positions of

nucleosomes (94:3%) in Yuan’s predictions are within 147 bp

(the length of one nucleosome) of our results, in other words,

94:3% of Yuan’s result were overlapping with our predictions. In

addition, 85:25% of our predicted nucleosomes are within 147 bp

of Yuan’s result, which means the majority of our predictions are

valid. Both these two fractions significantly exceeded random

prediction. These results indicate that, taking the work of Yuan

et al. [6] as reference, our model is valid in the predictions of

nucleosome positions along genome.

Model comparisons
In recent years, with the advances in high-throughput DNA

sequencing technology, a number of high-resolution genome-wide

maps of nucleosomes in S.cerevisiae have been derived experi-

mentally. However, nucleosome positions are determined by

numerous factors, among which the DNA sequence has been

proved to play an important role. Thus, some prediction

Table 3. AUC values of our model compared with previous work.

Human Medaka Nematode Candida Yeast Average

Segal(ver.3) 0.694 0.516 0.708 0.722 0.764 0.681

Segal(ver.2) 0.684 0.53 0.717 0.752 0.804 0.697

Segal(ver.1) 0.487 0.565 0.492 0.51 0.514 0.514

Miele 0.333 0.508 0.319 0.425 0.313 0.379

Gupta(Linear) 0.611 0.605 0.696 0.678 0.802 0.678

Gupta(Quadratic) 0.611 0.605 0.697 0.682 0.794 0.678

Gupta(Cubic) 0.596 0.634 0.702 0.673 0.799 0.681

Gupta(RBF1) 0.695 0.705 0.743 0.69 0.811 0.729

Gupta(RBF5) 0.641 0.659 0.744 0.703 0.796 0.709

Gupta(RBF10) 0.657 0.642 0.736 0.705 0.798 0.707

Zhang et al. [17] 0.872 0.884 0.836 0.766 0.831 0.838

Our model 0.9182 0.8922 0.9163 0.8261 0.9109 0.8927

doi:10.1371/journal.pone.0109395.t003
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algorithms based on DNA sequences are also proposed. Therefore,

it requires an objective and impartial comparison of different

nucleosome maps. Here, we presented six high-resolution genome-

wide maps of S.cerevisiae nucleosome positions (five published [5–

7,11,12], and one published here (Table 4, Table 5). The

experimentally measured maps from multiple labs and detection

platforms and the nucleosome positions achieved by mathematical

and physical algorithms are all listed.

We compared the three experimentally determined nucleosome

maps [7,11,12] with those obtained by score-dependent proce-

dures [5,6]. In order to resolve the disagreement between datasets,

packaging DNA is represented by 1 and DNA without nucleosome

to 0. As a result, a set of binary data corresponding to the yeast’s

Chromosome III are constructed. To get a rough assessment of

the discrepancies and consistency between the six datasets, we

calculated the Pearson correlation coefficients between the

nucleosome positioning maps along Chromosome III , see

Figure 4. Even if the purpose of these six experiments are all to

get genome-wide nucleosome map, their focus, priorities and

platforms are different. And there is no standard nucleosome

positioning map now. As a result, all six maps showed only a

modest correlation with maximal correlation coefficient of

0.2712(Our model and Yuan(N-score)). Here, we don’t take the

correlation between Segal(0.2) and Segal(0.5) into consideration

because they are two results in one paper [5]. Notably, we found

that the six maps can be divided into four groups: Our model

versus Yuan(N-score), Albert(H2A.Z) versus Maverich(H3/H4),

Segal(0.5) versus Segal(0.2), Lee(HMM).

Firstly, three listed algorithms [5,6] depend only on the DNA

sequence, while the nucleosome positions in vivo are determined

by the combination of many factors. Thus, it is not necessary to

mind the difference between these three predictions and exper-

imentally determined maps. However, our result show that

nucleosome positions in vivo depend, at least partially, on DNA

sequences. Comparing nucleosome maps determined experimen-

tally and predicted maps, the modest correspondence can be

attributed, in part, to additional factors that influence nucleosome

positioning. Besides, the three prediction algorithms are only

trained on a small number of nucleosomal and Linker DNA

sequences (Table 4, Table 5), which allowed only a rough

estimation of the parameters in their algorithms, such that the

model scores are also only of approximate nature.

However, Albert(H2A.Z)(Mavrich(H3/H4)) were constructed

by direct sequencing of the nucleosomal-sized DNA fragments

with H2A.Z (H3 or H4) containing nucleosomes. In the work of

Lee et al. [7], the chromatin was digested to mononucleosomal

DNAs by MNase. Then, as a control, the corresponding

nucleosomal DNA fragments and fragmented genomic DNA were

hybridized to tiling microarrays with four base pair resolution. For

nucleosome positions detection, Lee(HMM) used HMM to obtain

the nucleosome positions. Thus, the different experiment proce-

dure should influence not only on the analyzed data but also on

the raw data.

From Table 5, we learned that both Yuan(N-score) and

Segal(0.2), Segal(0.5) used the same positive training dataset, but

Yuan(N-score) also constructed a negative training dataset

consisting of 296 Linker DNAs. However, we can find that

Yuan(N-score), Segal(0.2) and Segal(0.5) are all trained on the

experimentally extracted nucleosomal and linker DNA sequences.

In our study, the training dataset is from Yuan et al. [4]. In Yuan’s

work, they designed a microarray to score 13742 50-bp fragments

from chromosome III . We ranked these sequences according to

scores and chose 1000 fragments with the highest scores as the

positive dataset, 1000 fragments with the lowest scores as the

negative dataset.

Figure 2. The average nucleosome occupancy predicted by our model compared with some experimental results for a typical
20,000-bp-long genomic region. The top line represents the average nucleosome occupancy predictions from our model. The second graph
represents the experimental map in vitro. The third, fourth and fifth graphs represent in vivo experimental maps for three growth conditions (YPD,
galactose and ethanol), respectively.
doi:10.1371/journal.pone.0109395.g002
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Besides, they also differed in the methods of extracting

nucleosome positioning information and detecting nucleosomes.

For the extraction of nucleosome positioning information,

Yuan(N-score) involves wavelet decomposition of the three point

average dinucleotide frequencies using the Haar wavelet. Segal’s

work defined a function called the apparent free energy to

compute the probability that a sequence S is generated by

considering the space barrier and the competition of neighboring

nucleosomes. While in our study, we proposed a new nucleosome

positioning information model by proposing the geometrically

transformed Tsallis entropy to extract the conservation of A/T-

riched and G/C-riched dimeric and trimeric motifs along

arbitrary DNA duplex. These three algorithms extracted nucle-

osome positioning information from different aspects.

Apart from the different nucleosome positioning information

model and training set, we also compared the nucleosome

detection methods. In Segal’s work, they constructed a nucleo-

some-DNA interaction model and used the popular hidden

Figure 3. Detailed view of the predictions of intrinsic nucleosome organization along GAL1-10 locus (Chromosome II: 276930-
279990) and comparison to Segal’s and Yuan’s results. The first top two line are nucleosome occupancy profile predicted by our model and
Segal’s. The black boxes in the third, fourth and fifth line are the identified nucleosome positions in this study, Yuan (N-score) [6] and Segal et al. [5],
respectively.
doi:10.1371/journal.pone.0109395.g003

Table 4. Summary of experimental methods.

Model names Strains/Culture Platform Detection strategy Number/Resolution

Albert(H2A.Z) [12] BY4741/rich media Pyrosequencing Chip-Seq ,10,000/,4 bp

Length: ,25 bp

Mavrich(H3/H4) [11] BY4741/YPD The Roche GS20 Chip-Seq 54,753/,1 bp

454 Life Sciences Length .100 bp

Lee(HMM) [7] BY4741/YPD Affymetrix HMM 70,871/4 bp

doi:10.1371/journal.pone.0109395.t004
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Markov model (HMM) to obtain the final nucleosome positions.

While, Yuan(N-score) proposed a model called N-score to measure

the probability of arbitrary sequence to be nucleosome. They also

used a stepwise procedure to select predictors and estimate the

corresponding coefficients using a program in SAS for the

distinguish of nucleosomes. In this study, based on the concept

of relative distance, we obtained the probability of any DNA

sequence occupied by nucleosomes. At last, we presented a peak

detection model with two-step filtration to get the final genome-

wide map. The advantage of our peak detection model is that it

assigns nucleosome positions in a score-dependent fashion, i.e. our

maps are dependent only on local score maxima, while the

procedure of Segal et al. and Yuan et al. require the determination

of additional parameters, such as the coefficients in both Yuan’s

stepwise procedure and Segal’s HMM to ensure comparability.

Besides, it has been suspected that when HMM is trained on the

nucleosomes with a uniform distribution, it may cause the

continuity of such uniform, even in the nucleosome-free regions

(NFR). As a result, HMM will lead to the over-estimation of the

uniformity and density of nucleosomes along genome-wide

sequence [13]. We validated this idea by the comparison of these

six maps, see Figure 5 and Figure 6.

This paper presents a new sequence-based nucleosome

positioning method. Furthermore, we will show the validity of

Table 5. Summary of algorithms.

Model names Training dataset Extraction strategy Detection strategy Number(ChrIII)

Our model Yuan et al. [4] Tsallis Entropy Peak Detection 1053

Yuan(N-score) [6] 199 nucleosomes [5] N-score Threshold method 1281

296 linkers [4]

Segal(0.2) [5] 199 nucleosomes Apparent Free Energy HMM 2068

Segal(0.5) [5] 403

doi:10.1371/journal.pone.0109395.t005

Figure 4. The correlation coefficient between cross-platform nucleosome positioning along Chromosome III. In the heat maps, the
marked number represents corresponding correlation coefficients between datasets.
doi:10.1371/journal.pone.0109395.g004
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our new model by comparing the performance of our model with

that of the Lee(HMM), Segal(0.2), Segal(0.5) and Yuan(N-score).

We downloaded the nucleosome map of 99 nucleosome positions

determined at 11 individual loci as the reference map1. Besides,

we also compiled a new genomic nucleosome positions from

Albert(H2A.z) and Mavrich(H3/H4) by logAND as reference

map2.

Four parameters have been proposed to measure the model’s

performance: total accuracy (Accuracy), the sensitivity (Sensitivity),

positive predictive value (Precision) and Matthews correlation

coefficient (MCC). Here, this paper redefines Accuracy to measure

the performance of different models in nucleosome positioning

along the genomic sequence. TP represents the number of

correctly predicted positions covered by nucleosome in the

reference map. TF is the number of correctly predicted positions

uncovered by nucleosome. Similarly, FP and FN represent the

number of incorrectly predicted positions covered or uncovered by

nucleosome in the reference map respectively. Here, an Accuracy

value of 1 indicates perfect prediction, i.e. all predicted nucleo-

somes are predicted with zero positional error comparing with the

reference map. The results are summarized in Figure 7.

In fact, all five models show only a modest predictive power

with maximal Accuracy values of 0.7895 (Figure 7a) and 0.6633

(Figure 7b). Besides, we found that the correspondence between

the experimental maps are limited(Lee(HMM) versus Reference

map1: 0.6082, Lee(HMM) versus Reference map2: 0.6213). The

Accuracy values across five maps are all changed when the

reference map changes. This can be interpreted that the

experimentally mapped nucleosome positions exhibit different

due to the different focus, emphasis and platforms. Thus, in this

study, we can not find a standard nucleosome map as the training

dataset, but to choose the dataset which performs best after many

trials. This may contribute to the low Accuracy value of our

model. However, our new model outperforms the existing models

(Yuan(N-score), Segal(0.2)). Comparing the two results of Segal’s

model, we can find that the result of Segal(0.5) was significantly

higher than Segal(0.2) in two experiments. Perhaps, if the

researchers want to locate nucleosomes by HMM, they need to

filter predictions more strictly, so as to improve the accuracy. In

summary, our results confirm the idea that the DNA sequence

determines nucleosome positions in vivo in concert with other

factors. Moreover, our model has a good performance to capture

some aspects of the sequence-dependent affinity of the histone

octamer.

Discussion

Nucleosome positioning is an important chromatin feature that

regulates gene expression. However, the precise mechanism has

not been fully understood. Many researches have revealed that

nucleosome positioning is not determined by any single factor but

rather by the combined effects of multiple factors including DNA

Figure 5. The number of predicted nucleosomes across six maps (This study, Yuan(N-score), Albert(H2A.Z), Mavrich(H3/H4),
Segal(0.5), Segal(0.2)) along Chromosome III.
doi:10.1371/journal.pone.0109395.g005
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sequence, DNA-binding proteins, nucleosome remodelers and the

RNA polymerase II transcription machinery. By constructing a

probabilistic model to represent the DNA preferences of nucleo-

somes, Segal et al. [5] demonstrated that nucleosome organization

is encoded in eukaryotic genomes and explained 50% of the in

vivo nucleosome organization. Here, we provided another

perspective to study the role that DNA sequence preferences play

in nucleosome organization.

Firstly, we calculated the correlation coefficients between four

nucleotides and the nucleosome occupancy across five organisms.

The result clearly showed that four nucleotides can be divided into

two categories donated by W and S. Secondly, inspired by the

pioneering work of Trifonov [15], which was the AT-riched and

GC-riched dimeric and trimeric motifs were contributed to

nucleosome organization, we would like to further explore the

role that A/T-riched and G/C-riched dimeric and trimeric motifs

plays in nucleosome positioning by defining two index-vectors.

The first index-vector extracted the frequencies of A/T-riched and

G/C-riched dimeric motifs (WW and SS) and achieved high

correlations with nucleosome occupancy across five organisms.

Next, we sought to explain why the second index-vector (i.e. V2)

is selected to describe the distribution of A/T-riched and G/C-

riched trimeric motifs. Here, we listed another three common

reference methods to illustrate the superiority of the proposed

method: (A) The first method is put forward from the opposite

direction of our method, which is the probability vector with the

ratio of total occurrences of the A/T-riched and G/C-riched

trimeric motifs to that of the nucleotides occur once or never

appear (i.e. VA~½nWWW

nS

,
nWWS

nS

,
nWSW

nS

,
nSWW

nS

,
nSSS

nW

,
nSSW

nW

,

nSWS

nW

,
nWSS

nW

�). (B) The frequencies of A/T-riched and G/C-riched

trimeric motifs (i.e. VB~½nWWW ,nWWS,nWSW ,nSWW ,nSSS,nSSW ,
nSWS,nWSS�). This method of extracting sequence information is

very common in many studies. Peckham et al. [8] firstly

transformed each DNA sequence into a 2,772-element vector, in

which each entry is a normalized count of the occurrences of a

particular k-mer or its reverse complement, for k = 1 up to 6 to

train SVM for the discrimination of nucleosomal and linker DNAs

of Saccharomyces cerevisiae. Afterwards, Gupta et al. [21] applied

the same way on the dataset of Human. Both two methods have

achieved appreciable results. (C) This method is similar to the

dinucleotide absolute frequency proposed in the study of Zhang et

al. [17]. It is defined as the ratio of total occurrences of the

trinucleotide to that of the first dinucleotide composing it

(i.e. VC~½nWWW

nWW

,
nWWS

nWW

,
nWSW

nWS

,
nSWW

nSW

,
nSSS

nSS

,
nSSW

nSS

,
nSWS

nSW

,
nWSS

nWS

�).
We then performed a method selection step to compare these four

methods in order to identify which method is most suitable for our

study by calculating the correlation coefficients between the four

transformed vectors and nucleosome occupancy across five

organisms (Figure 8).

Figure 6. Frequency of linker lengths across five maps (This study, Yuan(N-score), Albert(H2A.z), Mavrich(H3/H4), Segal(0.5)).
doi:10.1371/journal.pone.0109395.g006
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We note that the five comparison charts showed the same result.

Obviously, our method achieved higher correlations with nucle-

osome occupancy than the reference method A and B for all eight

components. When compared with the reference method C, some

dimensions in Vc showed better performance than our model,

such as
nWWW

nWW

,
nSSS

nSS

, while some components were significantly

less correlated with nucleosome occupancy, even worse than the

preference method A and B. Thus our proposed index-vector

showed its high and stable level of correlations with nucleosome

occupancy across five organisms and so was selected as the

description of the distribution of A/T-riched and G/C-riched

trimeric motifs. In general, the result indicated that both two

proposed index-vectors had strong correlations with nucleosome

occupancy, at least 70% of nucleosomal DNAs can be explained

by the two index-vectors. Across five organisms, some common

conclusions can be obtained. The fifth vector component (i.e.
nSSS

nS

)

showed the smallest correlation with nucleosome occupancy for all

five organisms, while the first vector component (i.e.
nWWW

nW

) was

also less correlated. It may be interpreted that the trinucleotides

which are the combination of two A/T or two G/C steps are more

important for promoting nucleosome positioning among all

trinucleotides. The repetitive occurrence of CAG/CTG is known

to form a stable nucleosome DNA. In this way, we eliminated the

nucleotide differences among five organisms and proposed two

uniform index-vectors to present the distribution of A/T-riched

and G/C-riched dimeric and trimeric motifs.

To gain more direct evidence for the importance of our index-

vector to intrinsic nucleosome occupancy, we calculated Pearson

correlation coefficient between the proposed index-vector and

nucleosome occupancy along genomic sequence of Saccharomyces

cerevisiae. Here, we used the in vitro data provided by Kaplan

et al. [9] and selected 107630 bp region along chromosome 14.

The typical 20,000-bp-long genomic region in Figure 2 is included

in this region. A 147-bp sliding window was used to scan

chromosome 14 in 1-bp step. In order to get the index-vector for

each position along the selected region, we adopted the following

measures. For the index-vector of position i, we counted index-

vectors of sequences starting at position i-146 to i, which will cover

position i if the sequence is nucleosomal DNA. And the average

index-vector was taken as the index-vector for position i. Then, the

correlation coefficient of index-vector and nucleosome occupancy

was calculated. The result shows that the first vector component
nWWW

nW

correlates highly with nucleosome occupancy in vitro

(R = 0.7048) and the second and fourth vector components are less

correlated. In the work of Desiree et al. [28], both G+C and

AAAA were identified as two features correlating most highly with

nucleosome occupancy in vitro (R = 0.71 and 0.63 respectively)

Figure 7. Model-specific values of accuracy. The accuracy values is plotted for each model. The bars indicate the measured accuracy value. (a)
Accuracy values using the map1 as the reference. (b) Accuracy values using the map2 as the reference.
doi:10.1371/journal.pone.0109395.g007
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among the selected 14 features. We note that the first vector

component
nWWW

nW

shows the near level of correlation with

nucleosome occupancy in vitro. It suggests that
nWWW

nW

itself is a

good predictor for nucleosome occupancy. And,
nWWW

nW

may be an

important influencing factor of nucleosome organizations for

Saccharomyces cerevisiae.

To explore the relationship between our extracted index-vector

and structural features, we examined index-vector and structural

features in an independent data set in Kaplan’s work [9], in which

nucleosomes were assembled with synthetic 150-mer sequences

(both microarray and sequencing datasets). Here, we presented

twelve structural features: slide, rise, clash strength, free energy,

tip, enthalpy, roll, tilt, twist, wedge, propeller twist and entropy

change, which characterize various structural aspects of DNA

sequences. The structural values were calculated as the average

over each provided sequence:

aveFj
~

Pn{1
i~1 ( pijzp’ij)

2n
ð18Þ

Where aveFj
is the average value of the property Fj ,

j~1,2,3, � � � ,12 and pij and p’ij are the corresponding structural

values of the dinucleotide at position i along DNA strand and its

reverse complement strand for the property Fj .

Even the synthetic 150-mer nucleosome occupancy data was

described by Kaplan et al. [9] as noisier than the yeast genomic

DNA occupancy data, both the synthetic oligonucleotides

measured by microarray and synthetic oligonucleotides measured

by sequencing have been confirmed displaying the same global

trends with yeast genomic DNA, both in vitro and in vivo from the

angle of DNA structural parameters [28]. Next we would like to

explore to what extent the index-vector dictate nucleosome

structure and the Pearson correlation coefficients between the 12

structural properties of DNA sequences and index-vector were

calculated.

In Figure 9 and Figure 10, V is the second index-vector in

function (4) and V(i) denotes the ith dimension of vector V. Both

two figures showed that the proposed index-vector is not fully

independent with selected structural features. Both the first and

fifth vector components showed highly correlated with all the 12

structural features in the two datasets. While the second and fourth

vector components have the worst correlation with the structural

features. This can be explained that the distribution of trinucle-

Figure 8. Comparisons of four methods (Our method, Reference method A, Reference method B, Reference method C) across five
organisms. The point represents corresponding correlation coefficients between each vector component and nucleosome occupancy.
doi:10.1371/journal.pone.0109395.g008
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otides made up of three A/T or C/G are more important than

trinucleotides, which are the combination of two A/T or C/G

steps in the influence of nucleosome structure. Gan et al. have

shown that structural properties of DNA sequence would directly

determine nucleosome occupancy [14]. Meanwhile, this also

illustrates the importance of our index-vector to nucleosome

positioning from the structure-based perspective. Here, we pointed

out the first vector component
nWWW

nW

, which showed its high

correlations with both nucleosome occupancy along genomic

sequence and twelve structural features.

The importance of
nWWW

nW

may also be explained from the

following several aspects. Firstly,
nWWW

nW

depicts the distribution of

WWW (W is A or T) and the appearance of WWW will limit the

frequency of C+G, which has shown its high correlation with

nucleosome occupancy in the work of Desiree et al. [28]. Besides,

from the above analysis, we can find that this single parameter

affects nearly all aspects of DNA structure, which provides

evidence of another angle for its importance on nucleosome

organization. Moreover, ploy(dA:dT) tracts have been proved

being important signal for nucleosome packaging and the

occurrences of WWW tend to increases the frequency of

poly(dA:dT)-like tracts.

Then, the geometrically transformed Tsallis entropy was

introduced to describe the total ordering of DNA sequences from

the point of depicting the distribution of A/T-riched and G/C-

riched dimeric and trimeric motifs along DNA sequence. When

calculating the geometrically transformed Tsallis entropy of

nucleosomal and linker DNAs across five organisms, the average

values of the eight entropies of nucleosomal DNAs were all

obviously lower than linker DNAs for five organisms. This suggests

A/T-riched and G/C-riched dimeric and trimeric motifs are

better ordered along nucleosomal DNAs than linker DNAs, which

may be related with the *10bp periodicity of WW (W = A or T)

and SS (S = C or G) in nucleosome DNA regions. What’s more,

the validity of our model can also be verified from the performance

of distinguishing known nucleosomal and linker DNAs compared

with the results of Segal et al. [5,9,22], Miele et al. [20], Gupta

et al. [21] and Zhang et al. [17].

Moreover, our study offered an idea to describe average

nucleosome occupancy at each basepair along genomic sequences

from the point of relative distance. The effectiveness of this

method has been proved from the following two aspects. Firstly,

when tested on a randomly extracted dataset consisting of

nucleosomal DNAs with fixed-length and linker DNAs with

different lengths. The result indicates the effectiveness of this

method is not affected by the different lengths of linker DNAs.

Secondly, the genome-wide profiles of average nucleosome

occupancy is highly correlated with both Kaplan’s experimental

map and Segal’s result. The peaks of average nucleosome

occupancy profile well correspond to nucleosome regions and

the valleys match nucleosome-depleted ones. From the above, the

relative distance is a valid index describing nucleosome occupancy

Figure 9. Graphic illustration of the correlation of each of the twelve structural features with index-vector (Sequence data is the
synthetic 150-mer nucleosome occupancy data measured by microarray from Kaplan et al. [9]).
doi:10.1371/journal.pone.0109395.g009
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and the average nucleosome occupancy profile can directly

represent the nucleosome distribution along genomic sequences.

Besides, a peak detection model was introduced to locate the

accurate nucleosome positions with the consideration of compe-

tition for space between two neighboring nucleosomes. Further-

more, we defined two fractions to evaluate the accuracy of our

predicted nucleosome positions. The result shows that 94:39% in

Yuan’s result were overlapping with our predictions. Our method

shows the important role that DNA preference plays in

nucleosome positioning and further widen the idea of nucleosome

positioning research.

Conclusion

We have established a simple and efficient nucleosome

positioning model consisting of nucleosome positioning informa-

tion model, nucleosome occupancy model and peak detection

model by describing the regularity of A/T-riched and G/C-riched

dimeric and trimeric motifs along sequence. The values of AUC

across five organisms (Human, Medaka, Nematode, Candida and

Yeast) significantly outperformed the previous works (Table 3).

The index-vector component
nWWW

nW

may be an important factor

for nucleosome positioning of Saccharomyces cerevisiae, which

depicts the distribution of WWW (W is A or T). The analysis

shows that it highly correlates with nucleosome occupancy and

some structural properties. Maybe, its importance on nucleosome

organization can also be interpreted by the fact that it increases the

frequency of poly(dA:dT)- tracts. Besides, with the nucleosome

occupancy model and peak detection model, we also gave the

average nucleosome occupancy profile as well as the precise

locations of nucleosome along S.cerevisiae genome. By comparing

with some published results [5,6,9], the conclusion can be drawn

that our method is valid in predicting nucleosome occupancy and

positions along genomic sequence. Our findings suggest that the

distribution of A/T-riched and G/C-riched dimeric and trimeric

motifs along sequence have a significant influence on chromatin

structure.
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