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Knowledge about protein-protein interactions is beneficial in understanding cellular
mechanisms. Protein-protein interactions are usually determined according to their
protein-protein interaction sites. Due to the limitations of current techniques, it is still a
challenging task to detect protein-protein interaction sites. In this article, we
presented a method based on deep learning and XGBoost (called DeepPPISP-
XGB) for predicting protein-protein interaction sites. The deep learning model
served as a feature extractor to remove redundant information from protein
sequences. The Extreme Gradient Boosting algorithm was used to construct a
classifier for predicting protein-protein interaction sites. The DeepPPISP-XGB
achieved the following results: area under the receiver operating characteristic
curve of 0.681, a recall of 0.624, and area under the precision-recall curve of
0.339, being competitive with the state-of-the-art methods. We also validated the
positive role of global features in predicting protein-protein interaction sites.
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INTRODUCTION

Proteins are one of the most important components of the cell, and also are the principal undertaker
of the activities of life. The functions of proteins are manifested mainly by interacting with various
molecules such as DNA/RNA, proteins, or other ligands (Dias and Kolaczkowski, 2017). The
protein-protein interaction (PPI) plays a key role in the cellular process such as signal transduction,
transport, and metabolism (Li et al., 2019) and also is involved in the pathogenesis of diseases such as
Alzheimer’s cervical cancer, bacterial infection, and prion diseases (Cohen and Prusiner, 1998;
Selkoe, 1998; Loregian et al., 2002). Therefore, knowledge of PPI is critical for understanding the
molecular mechanisms hidden in the phenomenon of life (Das and Chakrabarti, 2021). Many
experimentally verified or computationally predicted PPIs have been hosted for scientific research in
public databases such as the Human Protein Reference Database (Keshava Prasad et al., 2009),
STRING (Von Mering et al., 2005), the database of interacting proteins (Salwinski et al., 2004), and
the protein interaction database (Kerrien et al., 2007). The protein-protein interaction site (PPIS) is
defined as surface residues where proteins interact with each other (Aumentado-Armstrong et al.,
2015). The identification of PPIS is the premise for determining PPI (Wang et al., 2019). The
knowledge about PPIS holds vast potential to infer cell regulatory mechanisms, locate drug targets,
identify structures and functions of protein complexes (Deng et al., 2009; Orii and Ganapathiraju,
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2012), and uncover disease pathogenesis (Kuzmanov and Emili,
2013). Drug discovery and development are also closely
associated with PPIS (Sperandio, 2012; Petta et al., 2016).
Therefore, identifying PPIS is of great importance in the field
of molecule biology.

It is not only costly but also time-consuming and labor-
intensive to identify PPIS by experimental methods such as
alanine scanning mutagenesis and crystallographic complex
determination (Aumentado-Armstrong et al., 2015; Krï¿ ½ger
and Gohlke, 2010; Bradshaw et al., 2011). Since Jones and
Thornton pioneered a computational method for predicting
and analyzing PPIS in 1997 (Jones and Thornton, 1997; Jones
and Thornton, 1997), more than thirty other computational
methods have been developed (Zhou and Shan, 2001;
Fernandez-Recio et al., 2004; Neuvirth et al., 2004; Bradford
and Westhead, 2005; Chen and Zhou, 2005; Chung et al.,
2006; Liang et al., 2006; Patel et al., 2006; Li et al., 2007;
Ofran and Rost, 2007; Porollo and Meller, 2007; Qin and
Zhou, 2007; Tjong et al., 2007; Chen and Jeong, 2009;
Dosztányi et al., 2009; Du et al., 2009; Engelen et al., 2009;
Šikić et al., 2009; Fiorucci and Zacharias, 2010; Murakami and
Mizuguchi, 2010; Shoemaker et al., 2010; Segura et al., 2011; Xue
et al., 2011; Zhang et al., 2011; Chen et al., 2012; Jordan et al.,
2012; La and Kihara, 2012; Li et al., 2012; Qiu and Wang, 2012;
Zellner et al., 2012; Bendell et al., 2014; de Moraes et al., 2014;
Singh et al., 2014; Wang et al., 2014; Aumentado-Armstrong
et al., 2015; Bagchi, 2015; Dayal et al., 2015; Maheshwari and
Brylinski, 2015; Dick and Green, 2016; Jia et al., 2016; Kuo and Li,
2016; Wei et al., 2016; Hou et al., 2017; Zhao et al., 2017; Guo
et al., 2018; Northey et al., 2018; Wang et al., 2019; Wang et al.,
2019; Zhang and Kurgan, 2019; Zhang and Kurgan, 2019; Deng
et al., 2020; Li, 2020; Zeng et al., 2020; Zhu et al., 2020;Wang et al.,
2021; Wang et al., 2021). Due to their efficiency, computational
methods are becoming essentially complementary to
experimental methods. Most computational methods for
identifying PPIS are based on machine learning algorithms
where the prediction performance depends heavily on learning
algorithms and feature extractions. The learning algorithms used
for PPIS prediction generally include conditional random fields
(Li et al., 2007), support vector machines (Bradford and
Westhead, 2005), random forest (Chen and Jeong, 2009),
XGBoost (Deng et al., 2020), logistic regression (Zhang and
Kurgan, 2019), Bayes method (Murakami and Mizuguchi,
2010), and artificial neural networks (Singh et al., 2014). These
learning algorithms are not suitable for enough large number of
training samples. Recently, deep learning algorithms have been
developed that have achieved significant superiority over
traditional learning algorithms, especially in many difficult
cases such as image classification (Krizhevsky et al., 2012; He
et al., 2016) and protein structure prediction (Callaway, 2020).
Features used for PPIS prediction generally include evolutionary
information (Caffrey et al., 2004; Carl et al., 2008; Choi et al.,
2009), secondary structure (Guharoy and Chakrabarti, 2007;
Ofran and Rost, 2007; Li et al., 2012) and physicochemical,
biophysical and statistical features such as accessible surface
area (de Vries and Bonvin, 2008; Hou et al., 2017) and
backbone flexibility (Bendell et al., 2014). According to its

source, features are divided into sequence-based, structure-
based, and hybrid features, which are a combination of
sequence and structure features (Zeng et al., 2020). The
sequence-based feature is cheaper to calculate but does not
contain any information from structures that might be
responsible for protein functions. The structures of most
proteins are not available, while structural information
generally obtained by computational prediction contain noise,
which sometimes heavily effected subsequent discrimination.
Information from neighboring residues of interaction sites is
important to determine protein-protein interaction sites. In
addition, there exists binding signals far from interaction sites.
Zeng et al. (2020) demonstrated that inclusion of global features
increased the performance of predicting protein-protein
interaction sites. Both the local and the global features were
obtained by non-linear degeneration. That is to say, during the
transformation from proteins to features, information is lost. In
addition, the local and the global features also contained noise.
The deep learning-based encoder answers these issues above.
Inspired by this, we used the DeepPPISP proposed by Zeng et al.
(2020) to refine features of protein-protein interaction sites,
Extreme Gradient Boosting (XGBoost) to learn a classifier for
unknown PPIS prediction.

DATASETS

For a fair comparison with other state-of-the-art methods, we
used the same three datasets as in the literature (Zeng et al.,
2020). These datasets are named respectively Dset_186,
Dset_72 (Murakami and Mizuguchi, 2010), and Dset_164
(Singh et al., 2014). The procedure of collecting them is
briefly described as follows. All the data originated from
the PDB database (Berman et al., 2000). Dset_186,
Dset_72 and Dset_164 consisted of 186, 72, and 164 non-
repetitive protein sequences with the resolution less than
3.0 Å, respectively. In each dataset, sequence homology
between any two sequences was less than 25%. Three
datasets were integrated, containing in total 422 protein
sequences. Two proteins had no definition of secondary
structure of proteins (DSSP) file without which their
features cannot be computed. Thus these two protein
sequences were removed by Zeng et al. (2020). Finally, the
remaining 420 protein sequences were used.

Protein-protein interaction binding sites are determined by
the absolute solvent accessibility of amino acids. If the absolute
solvent accessibility was less than 1 Å2, the amino acid was
considered to be a binding site, and otherwise it was a non-
interaction site. There were 5,517, 6,096, and 1,923 binding sites,
as well as 30,702, 27,585, and 16,217 non-interaction sites in the
Dset_186, Dset_164, and Dset_72 datasets respectively. 83.3% of
the protein sequences were randomly selected as the training set
and 16.7% of the protein sequences as the testing set. The training
set was further divided into two parts: 90% of the training set was
used for training and 10% was used for verification. Finally, 300
protein sequences were used for training (containing 65,869
amino acid residues), 50 protein sequences for verification
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(containing 7,319 amino acid residues), and 70 protein sequences
for independent testing (containing 11,791 amino acid residues)
(Zeng et al., 2020).

METHODS

The proposed method called DeepPPISP-XGB consisted of three
main steps: extracting features, training a classifier, and
predicting PPIS (Figure 1A). The DeepPPISP was a deep
learning model proposed by Zeng et al. (Zeng et al., 2020) for
PPIS (Figure 1B). Here, we used it as an encoder of amino acid
sequences, because the deep learning algorithms have a powerful
ability to represent objects. We trained the DeepPPISP model
with the training set. The input of the first fully connected layer in
the trained DeepPPISP was used as a representation of the input.
The XGBoost classifier was trained by the preprocessing features
of the encoder. For unknown protein sequences which have
secondary structure, raw protein sequence, and position-
specific scoring matrix feature, the trained DeepPPISP
extracted preprocessing features firstly and then the trained
XGBoost classifier predicted PPIS.

DeepPPISP
As shown in Figure 1B, the DeepPPISP proposed by Zeng et al.
(Zeng et al., 2020) for PPIS prediction had three types of input:
position-specific scoring matrix (PSSM), secondary structure,
and raw protein sequences. The PSSM is an excellent feature

extractor for protein sequences and thus have widely been applied
to problems in the field of computational biology, such as
predicting protein post-translational modification (Huang
et al., 2013; Huang et al., 2014; Dehzangi et al., 2017),
membrane type (Wang et al., 2019), protein-RNA binding site
(Liu et al., 2021), and structure (Guo et al., 2021). The quality of
PSSM features is closely associated with the underlying multiple
sequence alignments. Although there are manymultiple sequence
alignment algorithms including HIMMER (Eddy, 2011; Wheeler
and Eddy, 2013) (Johnson et al., 2010) and Hhbilits (Remmert
et al., 2012), PSI-BLAST (Altschul et al., 1997) is still a popular
multiple sequence alignment and homology search algorithm.
Here, PSI-BLAST was used to search NCBI’s non-redundant
(NR) sequence database with three iterations and an E-value
threshold of 0.001.

Many protein-protein interfaces are related to secondary
structures (Taechalertpaisarn et al., 2019). Information about
protein secondary structure is helpful to predict PPIS. The
DSSP program (Touw et al., 2015) was used to generate nine
state secondary structures: α-helix, 310- helix, π-helix, β-bridge,
β-strand, β-turn, bend, loop or irregular, and no secondary
structure. Therefore, each amino acid residue corresponded to
a 9-dimensional vector. The primary protein sequence is valuable
information and thus is essential to predict protein properties.
One-hot encoding was used to encode the protein sequences.
There are 20 kinds of common amino acids in the protein
sequences, so each amino acid residue corresponds to a 20-
dimensional 0/1 vector. The protein-protein interaction is

FIGURE 1 | The architecture of DeepPPISP-XGB model. (A) Illustration of the DeepPPISP-XGB workflow, which consists of three modules: extracting feature,
training classifier, predicting PPIS. (B) The architecture of DeepPPISP model, which contain embedding layer, different scale convolutions, fully connected layers and
output layer.
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closely associated with neighboring residues of interaction sites.
The local feature of interaction sites contributes to the
identification of PPIS. The sliding window method was used
to collect the neighboring residues of the interaction sites. The
size of the sliding window was seven. For example, if the
interaction site was at position i, residues at position i-3, i-2, i-
1, i, i+1, i+2, and i+3 were separated. Because each residue
corresponds to a 20-dimensional PSSM feature, a 9-
dimensional secondary structure feature, and a 20-dimensional
one-hot feature vector, a window of seven amino acid residues
was encoded into a 343-dimensional vector which was called the
local feature.

Protein-protein interaction is not only linked to the local
information of interacting sites, but also to global information.
Zeng et al. (2020) demonstrated that the inclusion of global
information improved the performance of predicting PPIS. A
500-residue peptide was used to represent the global feature of
PPIS. If the number of amino acid residues in the protein
sequence was less than 500, it was padded with a 0. Each
peptide corresponds to a 500*49-dimensional vector called a
global feature.

The local and the global features were fed into the DeepPPISP
(Zeng et al., 2020). The DeepPPISP was made up of one
embedding layer, three different scale convolutions, two fully
connected layers, and an output layer (Figure 1B). For more
detail, readers can refer to the reference (Zeng et al., 2020).

Both the local features or global features would contain a
certain degree of noise. The dimension is large, especially for
global features. The DeepPPISP was used to extract a more
informative representation. The DeepPPISP was trained on the
training data in a supervised manner. The local and global
features were fed into the trained DeepPPISP, and the input to
the first fully connected layer was the abstract representation of
the raw features. Compared with the raw features, the abstract
representation was of low dimension and had low noise.

XGBoost Algorithm
The XGBoost proposed by Chen and Guestrin, 2016 belongs to
Gradient Boosting Decision Tree (GBDT) (Ke et al., 2017), and
both are tree boosting algorithms. Compared with traditional tree
boosting, the XGBoost used a theoretically justified weighted
quantile sketch for approximate learning, a novel sparsity aware
algorithm for handling sparse data, and an effective cache-aware
block structure for out-of-core tree learning (Chen and Guestrin,
2016). In addition, the XGBoost performed faster as it exploited
parallel and distributed computing. The XGBoost has such a
significant superiority that it has widely been used in many areas
including machine learning and data mining challenges.

The XGBoost is an addition model. At each iteration, the
XGBoost learns a new tree that fits the residual between the
predicted result of the previous trees and the true values of the
training samples.

Assume that D � {(xi, yi)||D| � n, xi ∈Rm, yi ∈R} denotes a
training set, where m and n represented the numbers of features
and samples, respectively. At the t-th iteration, the aim of the
XGBoost is to learn a function ft so that

ŷti � ŷt−1i + f t(xi) (1)

where ŷt−1
i is the fitting value of the previous t−1 trees for the i-th

sample. To search for ft, the loss function with the regularization
was used as the objective function:

obj � ∑n
i�1

l(yi, ŷti) +∑n
i�1
Ω(f t(xi))

� ∑n
i�1

l(yi, ŷt−1i + f t(xi)) +Ω(f t) + constant, (2)

where l was the loss function which was generally defined as

l(yi, ŷti) � (yi − ŷti)2. (3)

∑t
i�1 Ω(fi) denotes the regularization. The loss function l was

approximated by the second-order Taylor series, namely

l(yi, ŷt−1i + f t(xi)) ≈ l(yi, ŷt−1i ) + gi f t(xi) +
1
2
hif

2
t (xi), (4)

where gi � zl((yi ,̂y
t−1
i )

zŷ
t−1
i

and hi � z2l((yi,̂y
t−1
i )

zŷ
t−1
i zŷ

t−1
i

were the first- and the

second-order gradients of the loss function with respect to ŷt−1
i

respectively. Ω(ft) was defined by

Ω(f t) � γT + 1
2
∑T
j�1

ω2
j , (5)

where T was the number of leaf nodes and ωj was the weight of
the j-th leaf node. The objective function was equivalently
rewritten as

obj � ∑n
i�1
[gi f t(xi) + 1

2
hif

2
t (xi)] + γT + 1

2
λ∑T

j�1
ω2
j . (6)

The set of instances of the leaf node j was defined by

Ij � {xi|q(xi) � j}. (7)

The objective function was further represented as

obj � ∑T
j�1
⎛⎝∑

i∈Ij

gi⎞⎠ωj + 1
2
∑T
j�1
⎛⎝∑

i∈Ij

hi + λ⎞⎠ω2
j + γT (8)

Given a fixed tree q(x), the optimal value of each leaf node was
calculated by

ω*
j �

∑i∈Ijgi∑i∈Ijhi + λ
, (9)

and the optimal value of the whole tree was calculated by

obj* � −1
2
∑T
j�1

(∑i∈Ij gi)2

∑i∈Ijhi + λ
+ γT. (10)

It was expensive and impossible to exhaust all the possible
trees for the training data. In practice, the greedy algorithm was
used, which started from one node and iteratively split the node.
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Assume that before the node was split, the objective function of
the tree was

obj1 � −1
2
∑T−1
j�1

(∑i∈Ijgi)2

∑i∈Ijhi + λ
+ γT − 1

2

(∑i∈Ikgi)2∑i∈Ikhi + λ
. (11)

After the node k was split into the left tree IL and the right tree
IR, the objective function was

obj2 � −1
2
∑T−1
j�1

(∑i∈Ij gi)2

∑i∈Ijhi + λ
+ γ(T + 1)

− 1
2

(∑i∈IL gi)2∑i∈ILhi + λ
—
1
2

(∑i∈IRgi)2∑i∈IRhi + λ
. (12)

The gain of node splitting was calculated by

gain � obj1 − obj2

� 1
2

(∑i∈IL gi)2∑i∈ILhi + λ
+ 1
2

(∑i∈IR gi)2∑i∈IRhi + λ
− 1
2

(∑i∈Ik gi)2∑i∈Ikhi + λ
− γ. (13)

The gain was used to assess the split candidates.

EVALUATION METRICS

In the area of machine learning, the frequently used evaluation
metrics include accuracy (ACC), Recall, Precision, F1-score (F1),
and Matthews correlation coefficient (MCC) which are
respectively calculated by the following formulas:

ACC � TP + TN
TP + FP + TN + FN

(14)

FIGURE 2 | UMAP diagrams of (A) raw features of the training set, (B) preprocessing features of the training set, (C) raw features of the testing set, and (D)
preprocessing feature of the testing set.
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Recall � TP
TP + FN

(15) Precision � TP
TP + FP

(16)

F1 � 2 × Sensitivity × Precision
Sensitivity + Precision

(17)

MCC � TP × TN − FP × FN������������������������������������������(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)√
(18)

where TP and TNdenote respectively the numbers of the true positive
and the true negative samples, and FP and FN denote the numbers of
the false positive and false negative samples. The F1-score ranges from
0 to 1. F1-score values close to 1 indicated the best prediction. The
MCC represents the correlation coefficient between the actual
classification and the predicted classification. The range of MCC
values is −1 to 1, where 1 meant perfect prediction, and −1 indicated
the worst prediction. The area under the receiver operating

TABLE 1 | Comparison with other state-of-the-art methods.

Method ACC Precision Recall F1 AUROC AUPRC MCC

SPPIDERa 0.622 0.209 0.459 0.287 — 0.23 0.089
ISISa 0.694 0.211 0.362 0.267 — 0.24 0.097
PSIVERa 0.653 0.253 0.468 0.328 — 0.25 0.138
SPRINGSa 0.631 0.248 0.598 0.35 — 0.28 0.181
RF.PPIa 0.598 0.173 0.512 0.258 — 0.21 0.118
IntPreda 0.672 0.247 0.508 0.332 — — 0.165
SCRIBERa 0.616 0.274 0.569 0.37 0.635 0.307 0.159
DeepPPISPa 0.655 0.303 0.577 0.397 0.671 0.32 0.206
DeepPPISP-XGB 0.633 0.296 0.624 0.402 0.681 0.339 0.209

aResults reported by DeepPPISP (Zeng et al., 2020).
The highest results are highlighted in bold and the second-highest results are marked in italics. Values that were not reported by the corresponding source are indicated by “—”.

FIGURE 3 | The ROC curves of (A) 5-fold cross validation and (B)
independent test. The red dotted line is a control line on which AUROC � 0.5.

FIGURE 4 | The ROC curves of 10-fold cross validation on the train set.
The minimum AUROC value cross validation is 0.730 at the first fold. The
maximum value of the cross validation is 0.752 at the ten-th fold. The green
line represents the ROC curve of the cross validation mean. The mean
value of AUROC is 0.741. The red dotted line is a control line on which AUROC
� 0.5.
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characteristic curve (AUROC) and area under the precision-recall
curve (AUPRC) were also used to evaluate the performances.

EXPERIMENTS

Visualization of Preprocessing Features
To investigate the ability of the features to discriminate protein-protein
interaction sites from non-interaction sites, we used the Uniform
Manifold Approximation and Projection (UMAP) (McInnes et al.,
2020) to depict the first two principal components. The UMAP is a
powerful tool for dimension reduction and visualization. As shown in
Figure 2, the features processed by the DeepPPISP demonstrated a
tighter cluster than the raw features, indicating that features generated

by the DeepPPISP were more discriminative. To further evaluate the
performance of the preprocessed features, we performed 5-fold cross-
validation and independent tests. Figure 3A showed the ROC curves
of the 5-fold cross-validation over both the preprocessing features and
raw features, while Figure 3B depicted the ROC curves of the
independent tests. The performance of preprocessed features is
equivalent to or better than those of raw features. It must be
pointed out that the user-defined parameters were identical in the
XGBoost classifiers. Comparison with other methods

Due to its versatile roles in the cellular process, the identification of
protein-protein interaction sites is increasingly becoming a hot topic
and is also a challenging task. Over the past decades, more than 10
methods have been proposed to predict protein-protein interaction
sites (Patel et al., 2006; Du et al., 2009; Murakami and Mizuguchi,
2010;Wang et al., 2014; Zhang andKurgan, 2019; Northey et al., 2018;
Zeng et al., 2020; Chen et al., 2012; Šikić et al., 2009; Fiorucci and
Zacharias, 2010; Dosztányi et al., 2009; La and Kihara, 2012; Bradford
and Westhead, 2005; Chen and Jeong, 2009; Chung et al., 2006;
Fernandez-Recio et al., 2004; Shoemaker et al., 2010; Ofran and Rost,
2007; Qin and Zhou, 2007; Liang et al., 2006; Li et al., 2007; Zhou and
Shan, 2001; Neuvirth et al., 2004; Porollo and Meller, 2007; Segura
et al., 2011;Qiu andWang, 2012;Wei et al., 2016; Zhu et al., 2020; Guo
et al., 2018; Kuo and Li, 2016; Wang et al., 2021; Maheshwari and

FIGURE 5 | The ROC curves (A) and precision-recall curves (B) for 5 algorithms on the independent test.

TABLE 2 | Predictive performance when using local features and using combined
local and global features with the DeepPPISP-XGB model.

Features ACC Precision Recall F1 MCC

Local features 0.654 0.276 0.461 0.345 0.138
Global & local features 0.633 0.296 0.624 0.402 0.209

FIGURE 6 | The ROC curves (A) and the precision-recall curves (B) for both local and global & local features on the independent test.
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Brylinski, 2015; Li, 2020; Dick and Green, 2016; Wang et al., 2019;
Zhao et al., 2017; Jia et al., 2016; Deng et al., 2020; Singh et al., 2014;
Hou et al., 2017; Li et al., 2012; Wang et al., 2019; Bagchi, 2015 #412;
Zhang and Kurgan, 2019). We compared the proposed method with
six other state-of-the-art methods. These six competing methods were
DeepPPISP (Zeng et al., 2020), SCRIBER (Zhang et al., 2019), IntPred
(Northey et al., 2018), RF_PPI (Hou et al., 2017), SPRINGS (Singh et al.,
2014), PSIVER (Murakami and Mizuguchi, 2010), ISIS (Ofran and
Rost, 2007), and SPPIDER (Porollo and Meller, 2007). PSIVER was a
Naïve Bayes-based classifier that used features from PSSM and
accessibility, while SPPIDER combined fingerprints with information
from the sequences and structures for PPIS predictio. Both SPRINGS
and ISIS were neural network-based methods. The former used
evolutionary information, averaged cumulative hydropathy, and
predicted relative solvent accessibility, while the latter used structural
features and evolutionary information. RF_PPI was a random forest-
based classifier for PPIS prediction, while the DeepPPISP was a deep
learning-based classifier. The performances of these sevenmethods over
the independent test were listed in Table 1.

The DeepPPISP-XGB method achieved the highest value in
terms of Recall, F1-score, AUROC, AUPRC, and MCC, and it
reached the second-highest performance in terms of Precision.
Although ISIS got the best ACC, its performance in other
respects was lower than those of DeepPPISP-XGB. The
DeepPPISP-XGB method improved the Recall by 4.7%, 5.5%,
11.6%, 11.2%, 2.6%, 15.6%, 26.2%, and 16.5%, in comparison
with DeepPPISP, SCRIBER, IntPred, RF.PPI, SPRINGS,
PSIVER, ISIS, and SPPIDER, respectively. The DeepPPISP-
XGB method increased F1-score and MCC by 0.5% and
0.3%, and the AUROC by 1%, in comparison with DeepPPISP.

K-fold cross-validation is a common method in regression or
classification questions. In the k-fold cross-validation, the training
set was split into k parts. One part was tested and other k−1 parts
were trained. The procedure was performed k times. We carried
out 10-fold cross-validations, and the principle was shown
(Supplementary Figure S1). Figure 4 showed ROC curves for
the 10-fold cross-validations. The mean and the standard
deviation of the AUROCs were 0.741 and 0.006, respectively.
Supplementary Table S1 lists the ACC, Precision, Recall, F1-
score, AUROC, AUPRC, and MCC for each cross-validation.

To further evaluate the predictive performance of the
DeepPPISP-XGB method, four machine learning algorithms
were used for PPIS prediction. Decision tree (Safavian and
Landgrebe, 1991) is a widely utilized classification algorithm,
which is made up of the root node, internal nodes, and leaf
node. Random forest (RF) (Breiman, 2001) is an ensemble
learning algorithm. It consists of many weak classifiers which
determine the sample category. Extremely randomized tree
(ERT) (Geurts et al., 2006) is similar to RF but the decision tree
of ERT is randomly divided. Support vector machine (SVM) is a
statistical algorithm proposed by Boser et al. (Boser et al., 1992).
These classifiers were implemented in the Scikit-Learn package
(v0.24.2) which has been widely utilized in computational biology.
The ROC curves and the precision-recall curves are shown in
Figure 5. The XGBoost classifier obtained an AUROC value of
0.681 and an AUPRC value of 0.339 on the independent test,
significantly better than four classifiers.

The Effects of the Global Features
After removing global features, we trained DeepPPISP-XGB. The user-
defined parameters of the DeepPPISP-XGB were the same as the
previous. Table 2 shows the performance of predicting PPIS by
using local features alone. The ROC and the precision-recall curves
were displayed in Figure 6. The experimental results showed that the
inclusion of the global featureswas beneficial to improvePPISprediction,
which was in agreement with the findings of Zeng et al. (2020).

CONCLUSION

We presented a PPIS prediction algorithm based on the
DeepPPISP and the XGBoost. The DeepPPISP served as a
feature extractor to remove redundant information of the
protein sequences. The XGBoost was used to construct a
classifier for predicting PPIS. The DeepPPISP-XGB achieved
competitive performances with other state-of-the-art methods.

SOURCE CODE

Source code is available at: https://github.com/fatancy2580/
DeepPPISPXGB-master.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

GH and Z-GY conceived a concept and methodology. PW collected
data, conducted the experiments, analyzed the results, and wrote the
manuscript. GZ analyzed results. GH revised the manuscript.

FUNDING

This work is supported by theNational Natural Science Foundation of
China (11871061), by the Natural Science Foundation of Hunan
Province (2020JJ4034), by the Scientific Research Fund of Hunan
Provincial Education Department (19A215), by the open project of
Hunan Key Laboratory for Computation and Simulation in Science
and Engineering (2019LCESE03), and by Shaoyang University
Innovation Foundation for Postgraduate (CX2021SY041,
CX2021SY001).

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fgene.2021.752732/
full#supplementary-material

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 7527328

Wang et al. Protein-Protein Interaction Site Prediction

https://github.com/fatancy2580/DeepPPISPXGB-master
https://github.com/fatancy2580/DeepPPISPXGB-master
https://www.frontiersin.org/articles/10.3389/fgene.2021.752732/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2021.752732/full#supplementary-material
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


REFERENCES

Altschul, S., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., et al.
(1997). Gapped BLAST and PSI-BLAST: a new generation of protein database
search programs. Nucleic Acids Res. 25 (17), 3389–3402. doi:10.1093/nar/
25.17.3389

Aumentado-Armstrong, T. T., Istrate, B., and Murgita, R. A. (2015). Algorithmic
approaches to protein-protein interaction site prediction. Algorithms Mol. Biol.
10, 1–21. doi:10.1186/s13015-015-0033-9

Bagchi, A. (2015). Use of Machine Learning Features to Detect Protein-Protein
Interaction Sites at the Molecular Level. Inf. Syst. Des. Intell. Appl., 49–54.
Springer. doi:10.1007/978-81-322-2247-7_6

Bendell, C. J., Liu, S., Aumentado-Armstrong, T., Istrate, B., Cernek, P. T., Khan, S.,
et al. (2014). Transient protein-protein interface prediction: datasets, features,
algorithms, and the RAD-T predictor. BMC bioinformatics 15, 1–12.
doi:10.1186/1471-2105-15-82

Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., et al.
(2000). The protein data bank. Nucleic Acids Res. 28, 235–242. doi:10.1093/nar/
28.1.235

Boser, B. E., Guyon, I. M., and Vapnik, V. N. (1992). A training algorithm for
optimal margin classifiers. Proc. fifth Annu. Workshop Comput. Learn. Theor.,
144–152. doi:10.1145/130385.130401

Bradford, J. R., and Westhead, D. R. (2005). Improved prediction of protein-
protein binding sites using a support vector machines approach. Bioinformatics
21, 1487–1494. doi:10.1093/bioinformatics/bti242

Bradshaw, R. T., Patel, B. H., Tate, E. W., Leatherbarrow, R. J., and Gould, I. R.
(2011). Comparing experimental and computational alanine scanning
techniques for probing a prototypical protein-protein interaction. Protein
Eng. Des. Selection 24, 197–207. doi:10.1093/protein/gzq047

Breiman, L. (2001). Random forests. Machine Learn. 45, 5–32. doi:10.1023/A:
1010933404324

Caffrey, D. R., Somaroo, S., Hughes, J. D., Mintseris, J., and Huang, E. S. (2004). Are
protein-protein interfaces more conserved in sequence than the rest of the
protein surface. Protein Sci. 13, 190–202. doi:10.1110/ps.03323604

Callaway, E. (2020). ’It will change everything’: DeepMind’s AI makes gigantic leap
in solving protein structures. Nature 588, 203–204. doi:10.1038/d41586-020-
03348-4

Carl, N., Konc, J., and Janežič, D. (2008). Protein surface conservation in binding
sites. J. Chem. Inf. Model. 48, 1279–1286. doi:10.1021/ci8000315

Chen, C.-T., Peng, H.-P., Jian, J.-W., Tsai, K.-C., Chang, J.-Y., Yang, E.-W., et al.
(2012). Protein-protein interaction site predictions with three-dimensional
probability distributions of interacting atoms on protein surfaces. PloS one
7, e37706. doi:10.1371/journal.pone.0037706

Chen, H., and Zhou, H.-X. (2005). Prediction of interface residues in protein-
protein complexes by a consensus neural network method: Test against NMR
data. Proteins 61, 21–35. doi:10.1002/prot.20514

Chen, T., and Guestrin, C. (2016). “Xgboost: A scalable tree boosting system,” in
Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining. New York, NY: ACM, 785–794.

Chen, X.-w., and Jeong, J. C. (2009). Sequence-based prediction of protein
interaction sites with an integrative method. Bioinformatics 25, 585–591.
doi:10.1093/bioinformatics/btp039

Choi, Y. S., Yang, J.-S., Choi, Y., Ryu, S. H., and Kim, S. (2009). Evolutionary
conservation in multiple faces of protein interaction. Proteins 77, 14–25.
doi:10.1002/prot.22410

Chung, J.-L., Wang, W., and Bourne, P. E. (2006). Exploiting sequence and
structure homologs to identify protein-protein binding sites. Proteins 62,
630–640. doi:10.1002/prot.20741

Cohen, F. E., and Prusiner, S. B. (1998). Pathologic conformations of prion
proteins. Annu. Rev. Biochem. 67, 793–819. doi:10.1146/
annurev.biochem.67.1.793

Das, S., and Chakrabarti, S. (2021). Classification and prediction of protein-protein
interaction interface using machine learning algorithm. Sci. Rep. 11, 1–12.
doi:10.1038/s41598-020-80900-2

Dayal, P. V., Singh, H., Busenlehner, L. S., and Ellis, H. R. (2015). Exposing the
Alkanesulfonate Monooxygenase Protein-Protein Interaction Sites.
Biochemistry 54, 7531–7538. doi:10.1021/acs.biochem.5b00935

de Moraes, F. R., Neshich, I. A. P., Mazoni, I., Yano, I. H., Pereira, J. G. C., Salim,
J. A., et al. (2014). Improving predictions of protein-protein interfaces by
combining amino acid-specific classifiers based on structural and
physicochemical descriptors with their weighted neighbor averages. Plos one
9, e87107. doi:10.1371/journal.pone.0087107

de Vries, S., and Bonvin, A. (2008). How proteins get in touch: interface prediction
in the study of biomolecular complexes. Cpps 9, 394–406. doi:10.2174/
138920308785132712

Dehzangi, A., López, Y., Lal, S. P., Taherzadeh, G., Michaelson, J., Sattar, A., et al.
(2017). PSSM-suc: Accurately predicting succinylation using position specific
scoring matrix into bigram for feature extraction. J. Theor. Biol. 425, 97–102.
doi:10.1016/j.jtbi.2017.05.005

Deng, A., Zhang, H., Wang, W., Zhang, J., Fan, D., Chen, P., et al. (2020).
Developing computational model to predict protein-protein interaction sites
based on the XGBoost algorithm. Ijms 21, 2274. doi:10.3390/ijms21072274

Deng, L., Guan, J., Dong, Q., and Zhou, S. (2009). Prediction of protein-protein
interaction sites using an ensemble method. BMC bioinformatics 10, 1–15.
doi:10.1186/1471-2105-10-426

Dias, R., and Kolaczkowski, B. (2017). Improving the accuracy of high-throughput
protein-protein affinity prediction may require better training data. BMC
bioinformatics 18, 7–18. doi:10.1186/s12859-017-1533-z

Dick, K., and Green, J. (2016). Comparison of sequence-and structure-based
protein-protein interaction sites. IEEE EMBS Int. Student Conf. (Isc), 1–4.
IEEE. doi:10.1109/embsisc.2016.7508605

Dosztányi, Z., Mészáros, B., and Simon, I. (2009). ANCHOR: web server for
predicting protein binding regions in disordered proteins. Bioinformatics 25,
2745–2746. doi:10.1093/bioinformatics/btp518

Du, X., Cheng, J., and Song, J. (2009). Improved prediction of protein binding sites
from sequences using genetic algorithm. Protein J. 28, 273–280. doi:10.1007/
s10930-009-9192-1

Eddy, S. R. (2011). Accelerated profile HMM searches. Plos Comput. Biol. 7,
e1002195. doi:10.1371/journal.pcbi.1002195

Engelen, S., Trojan, L. A., Sacquin-Mora, S., Lavery, R., and Carbone, A. (2009).
Joint evolutionary trees: a large-scale method to predict protein interfaces based
on sequence sampling. Plos Comput. Biol. 5, e1000267. doi:10.1371/
journal.pcbi.1000267

Fernández-Recio, J., Totrov, M., and Abagyan, R. (2004). Identification of Protein-
Protein Interaction Sites from Docking Energy Landscapes. J. Mol. Biol. 335,
843–865. doi:10.1016/j.jmb.2003.10.069

Fiorucci, S., and Zacharias, M. (2010). Prediction of protein-protein interaction
sites using electrostatic desolvation profiles. Biophysical J. 98, 1921–1930.
doi:10.1016/j.bpj.2009.12.4332

Geurts, P., Ernst, D., and Wehenkel, L. (2006). Extremely randomized trees.Mach.
Learn. 63, 3–42. doi:10.1007/s10994-006-6226-1

Guharoy, M., and Chakrabarti, P. (2007). Secondary structure based analysis and
classification of biological interfaces: identification of binding motifs in protein-
protein interactions. Bioinformatics 23, 1909–1918. doi:10.1093/
bioinformatics/btm274

Guo, H., Liu, B., Cai, D., and Lu, T. (2018). Predicting protein-protein interaction
sites using modified support vector machine. Int. J. Mach. Learn. Cyber. 9,
393–398. doi:10.1007/s13042-015-0450-6

Guo, Y., Wu, J., Ma, H., Wang, S., and Huang, J. (2021). EPTool: A New Enhancing
PSSM Tool for Protein Secondary Structure Prediction. J. Comput. Biol. 28,
362–364. doi:10.1089/cmb.2020.0417

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 770–778. doi:10.1109/cvpr.2016.90

Hou, Q., De Geest, P., Vranken, W. F., Heringa, J., and Feenstra, K. A. (2017).
Seeing the Trees through the Forest: Sequence-based Homo- and Heteromeric
Protein-protein Interaction sites prediction using Random Forest.
Bioinformatics 33, btx005–1487. doi:10.1093/bioinformatics/btx005

Huang, G., Lu, L., Feng, K., Zhao, J., Zhang, Y., Xu, Y., et al. (2014). Prediction of
S-nitrosylation modification sites based on kernel sparse representation
classification and mRMR algorithm. Biomed. Research International 2014,
1–10. doi:10.1155/2014/438341

Huang, G., Zhou, Y., Zhang, Y., Li, B.-Q., Zhang, N., and Cai, Y.-D. (2013).
Prediction of carbamylated lysine sites based on the one-class k-nearest
neighbor method. Mol. Biosyst. 9, 2729–2740. doi:10.1039/c3mb70195f

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 7527329

Wang et al. Protein-Protein Interaction Site Prediction

https://doi.org/10.1093/nar/25.17.3389
https://doi.org/10.1093/nar/25.17.3389
https://doi.org/10.1186/s13015-015-0033-9
https://doi.org/10.1007/978-81-322-2247-7_6
https://doi.org/10.1186/1471-2105-15-82
https://doi.org/10.1093/nar/28.1.235
https://doi.org/10.1093/nar/28.1.235
https://doi.org/10.1145/130385.130401
https://doi.org/10.1093/bioinformatics/bti242
https://doi.org/10.1093/protein/gzq047
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1110/ps.03323604
https://doi.org/10.1038/d41586-020-03348-4
https://doi.org/10.1038/d41586-020-03348-4
https://doi.org/10.1021/ci8000315
https://doi.org/10.1371/journal.pone.0037706
https://doi.org/10.1002/prot.20514
https://doi.org/10.1093/bioinformatics/btp039
https://doi.org/10.1002/prot.22410
https://doi.org/10.1002/prot.20741
https://doi.org/10.1146/annurev.biochem.67.1.793
https://doi.org/10.1146/annurev.biochem.67.1.793
https://doi.org/10.1038/s41598-020-80900-2
https://doi.org/10.1021/acs.biochem.5b00935
https://doi.org/10.1371/journal.pone.0087107
https://doi.org/10.2174/138920308785132712
https://doi.org/10.2174/138920308785132712
https://doi.org/10.1016/j.jtbi.2017.05.005
https://doi.org/10.3390/ijms21072274
https://doi.org/10.1186/1471-2105-10-426
https://doi.org/10.1186/s12859-017-1533-z
https://doi.org/10.1109/embsisc.2016.7508605
https://doi.org/10.1093/bioinformatics/btp518
https://doi.org/10.1007/s10930-009-9192-1
https://doi.org/10.1007/s10930-009-9192-1
https://doi.org/10.1371/journal.pcbi.1002195
https://doi.org/10.1371/journal.pcbi.1000267
https://doi.org/10.1371/journal.pcbi.1000267
https://doi.org/10.1016/j.jmb.2003.10.069
https://doi.org/10.1016/j.bpj.2009.12.4332
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1093/bioinformatics/btm274
https://doi.org/10.1093/bioinformatics/btm274
https://doi.org/10.1007/s13042-015-0450-6
https://doi.org/10.1089/cmb.2020.0417
https://doi.org/10.1109/cvpr.2016.90
https://doi.org/10.1093/bioinformatics/btx005
https://doi.org/10.1155/2014/438341
https://doi.org/10.1039/c3mb70195f
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Jia, J., Liu, Z., Xiao, X., Liu, B., and Chou, K.-C. (2016). iPPBS-Opt: a sequence-
based ensemble classifier for identifying protein-protein binding sites by
optimizing imbalanced training datasets. Molecules 21, 95. doi:10.3390/
molecules21010095

Johnson, L. S., Eddy, S. R., and Portugaly, E. (2010). Hidden Markov model speed
heuristic and iterative HMM search procedure. BMC bioinformatics 11, 1–8.
doi:10.1186/1471-2105-11-431

Jones, S., and Thornton, J. M. (1997). Analysis of protein-protein interaction sites
using surface patches 1 1Edited by G.Von Heijne. J. Mol. Biol. 272, 121–132.
doi:10.1006/jmbi.1997.1234

Jones, S., and Thornton, J. M. (1997). Prediction of protein-protein interaction sites
using patch analysis 1 1Edited by G. von Heijne. J. Mol. Biol. 272, 133–143.
doi:10.1006/jmbi.1997.1233

Jordan, R. A., el-Manzalawy, Y., Dobbs, D., and Honavar, V. (2012). Predicting
protein-protein interface residues using local surface structural similarity. BMC
bioinformatics 13, 1–14. doi:10.1186/1471-2105-13-41

Ke, G., Meng, Q., Finley, T., Wang, T., Chen,W., Ma,W., et al. (2017). Lightgbm: A
highly efficient gradient boosting decision tree. Adv. Neural Inf. Process. Syst.
30, 3146–3154.

Kerrien, S., Alam-Faruque, Y., Aranda, B., Bancarz, I., Bridge, A., Derow, C., et al.
(2007). IntAct--open source resource for molecular interaction data. Nucleic
Acids Res. 35, D561–D565. doi:10.1093/nar/gkl958

Keshava Prasad, T. S., Goel, R., Kandasamy, K., Keerthikumar, S., Kumar, S.,
Mathivanan, S., et al. (2009). Human Protein Reference Database--2009 update.
Nucleic Acids Res. 37, D767–D772. doi:10.1093/nar/gkn892

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2017). Imagenet classification with deep
convolutional neural networks. Commun. ACM 60, 84–90. doi:10.1145/3065386

Krï¿½ger, D. M., and Gohlke, H. (2010). DrugScorePPI webserver: fast and
accurate in silico alanine scanning for scoring protein-protein interactions.
Nucleic Acids Res. 38, W480–W486. doi:10.1093/nar/gkq471

Kuo, T.-H., and Li, K.-B. (2016). Predicting Protein-Protein Interaction Sites Using
Sequence Descriptors and Site Propensity of Neighboring Amino Acids. Ijms
17, 1788. doi:10.3390/ijms17111788

Kuzmanov, U., and Emili, A. (2013). Protein-protein interaction networks: probing
disease mechanisms using model systems. Genome Med. 5, 37–12. doi:10.1186/
gm441

La, D., and Kihara, D. (2012). A novel method for protein-protein interaction site
prediction using phylogenetic substitution models. Proteins 80, 126–141.
doi:10.1002/prot.23169

Li, B.-Q., Feng, K.-Y., Chen, L., Huang, T., and Cai, Y.-D. (2012). Prediction of
Protein-Protein Interaction Sites by Random Forest Algorithm with mRMR
and IFS. PLoS ONE 7, e43927. doi:10.1371/journal.pone.0043927

Li, M.-H., Lin, L., Wang, X.-L., and Liu, T. (2007). Protein protein interaction site
prediction based on conditional random fields. Bioinformatics 23, 597–604.
doi:10.1093/bioinformatics/btl660

Li, M., Gao, H., Wang, J., and Wu, F.-X. (2019). Control principles for complex
biological networks. Brief. Bioinformatics 20, 2253–2266. doi:10.1093/bib/
bby088

Li, Y. (2020). Computational Methods for Predicting Protein-protein Interactions
and Binding Sites. London: Western University.

Liang, S., Zhang, C., Liu, S., and Zhou, Y. (2006). Protein binding site prediction
using an empirical scoring function. Nucleic Acids Res. 34, 3698–3707.
doi:10.1093/nar/gkl454

Liu, Y., Gong, W., Yang, Z., and Li, C. (2021). SNB-PSSM : A spatial neighbor-
based PSSM used for protein-RNA binding site prediction. J. Mol. Recognit 34,
e2887. doi:10.1002/jmr.2887

Loregian, A., Marsden, H. S., and Palù, G. (2002). Protein-protein interactions as
targets for antiviral chemotherapy. Rev. Med. Virol. 12, 239–262. doi:10.1002/
rmv.356

Maheshwari, S., and Brylinski, M. (2015). Prediction of protein-protein interaction
sites from weakly homologous template structures using meta-threading and
machine learning. J. Mol. Recognit. 28, 35–48. doi:10.1002/jmr.2410

McInnes, L., Healy, J., and Melville, J. (2020). UMAP: uniform manifold
approximation and projection for dimension reduction. ArXiv [Preprint].
arXiv:1802.03426.

Murakami, Y., and Mizuguchi, K. (2010). Applying the Naïve Bayes classifier with
kernel density estimation to the prediction of protein-protein interaction sites.
Bioinformatics 26, 1841–1848. doi:10.1093/bioinformatics/btq302

Neuvirth, H., Raz, R., and Schreiber, G. (2004). ProMate: A Structure Based
Prediction Program to Identify the Location of Protein-Protein Binding Sites.
J. Mol. Biol. 338, 181–199. doi:10.1016/j.jmb.2004.02.040

Northey, T. C., Barešić, A., and Martin, A. C. R. (2018). IntPred: a structure-based
predictor of protein-protein interaction sites. Bioinformatics 34, 223–229.
doi:10.1093/bioinformatics/btx585

Ofran, Y., and Rost, B. (2007). ISIS: interaction sites identified from sequence.
Bioinformatics 23, e13–e16. doi:10.1093/bioinformatics/btl303

Orii, N., and Ganapathiraju, M. K. (2012). Wiki-pi: a web-server of annotated
human protein-protein interactions to aid in discovery of protein function. PloS
one 7, e49029. doi:10.1371/journal.pone.0049029

Patel, T., Pillay, M., Jawa, R., and Liao, L. (2006) Information of binding sites
improves prediction of protein-protein interaction. In 2006 5th International
Conference on Machine Learning and Applications (ICMLA06) pp. 205–212.
IEEE. doi:10.1109/icmla.2006.29

Petta, I., Lievens, S., Libert, C., Tavernier, J., and De Bosscher, K. (2016).
Modulation of Protein-Protein Interactions for the Development of Novel
Therapeutics. Mol. Ther. 24, 707–718. doi:10.1038/mt.2015.214

Porollo, A., and Meller, J. (2007). Prediction-based fingerprints of protein-protein
interactions. Proteins 66, 630–645. doi:10.1002/prot.21248

Qin, S., and Zhou, H.-X. (2007). meta-PPISP: a meta web server for protein-protein
interaction site prediction. Bioinformatics 23, 3386–3387. doi:10.1093/
bioinformatics/btm434

Qiu, Z., and Wang, X. (2012). Prediction of protein-protein interaction sites using
patch-based residue characterization. J. Theor. Biol. 293, 143–150. doi:10.1016/
j.jtbi.2011.10.021W

Remmert, M., Biegert, A., Hauser, A., and Söding, J. (2012). HHblits: lightning-fast
iterative protein sequence searching by HMM-HMM alignment. Nat. Methods
9, 173–175. doi:10.1038/nmeth.1818

Safavian, S. R., and Landgrebe, D. (1991). A survey of decision tree classifier
methodology. IEEE Trans. Syst. Man. Cybern. 21, 660–674. doi:10.1109/
21.97458

Salwinski, L., Miller, C. S., Smith, A. J., Pettit, F. K., Bowie, J. U., and Eisenberg, D.
(2004). The database of interacting proteins: 2004 update. Nucleic Acids Res. 32,
449D–451D. doi:10.1093/nar/gkh086

Segura, J., Jones, P. F., and Fernandez-Fuentes, N. (2011). Improving the prediction
of protein binding sites by combining heterogeneous data and Voronoi
diagrams. BMC bioinformatics 12, 1–9. doi:10.1186/1471-2105-12-352

Selkoe, D. (1998). The cell biology of β-amyloid precursor protein and presenilin in
Alzheimer’s disease. Trends Cell Biology 8, 447–453. doi:10.1016/s0962-
8924(98)01363-4

Shoemaker, B. A., Zhang, D., Thangudu, R. R., Tyagi, M., Fong, J. H., Marchler-
Bauer, A., et al. (2010). Inferred Biomolecular Interaction Server-a web server to
analyze and predict protein interacting partners and binding sites.Nucleic Acids
Res. 38, D518–D524. doi:10.1093/nar/gkp842

Šikić, M., Tomić, S., and Vlahoviček, K. (2009). Prediction of Protein-Protein
Interaction Sites in Sequences and 3D Structures by Random Forests. Plos
Comput. Biol. 5, e1000278. doi:10.1371/journal.pcbi.1000278

Singh, G., Dhole, K., Pai, P. P., and Mondal, S. (2014). SPRINGS: prediction of
protein-protein interaction sites using artificial neural networks.
PeerJ PrePrints. doi:10.13188/2572-8679.1000001

Sperandio, O. (2012). Editorial: [Hot Topics: Toward the Design of Drugs on
Protein-Protein Interactions]. Cpd 18, 4585. doi:10.2174/
138161212802651661

Taechalertpaisarn, J., Lyu, R.-L., Arancillo, M., Lin, C.-M., Perez, L. M., Ioerger, T.
R., et al. (2019). Correlations between secondary structure- and protein-protein
interface-mimicry: the interface mimicry hypothesis. Org. Biomol. Chem. 17,
3267–3274. doi:10.1039/c9ob00204a

Tjong, H., Qin, S., and Zhou, H.-X. (2007). PI2PE: protein interface/interior
prediction engine. Nucleic Acids Res. 35, W357–W362. doi:10.1093/nar/
gkm231

Touw, W. G., Baakman, C., Black, J., te Beek, T. A. H., Krieger, E., Joosten, R. P.,
et al. (2015). A series of PDB-related databanks for everyday needs. Nucleic
Acids Res. 43, D364–D368. doi:10.1093/nar/gku1028

VonMering, C., Jensen, L. J., Snel, B., Hooper, S. D., Krupp, M., Foglierini, M., et al.
(2004). STRING: known and predicted protein-protein associations, integrated
and transferred across organisms. Nucleic Acids Res. 33, D433–D437.
doi:10.1093/nar/gki005

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 75273210

Wang et al. Protein-Protein Interaction Site Prediction

https://doi.org/10.3390/molecules21010095
https://doi.org/10.3390/molecules21010095
https://doi.org/10.1186/1471-2105-11-431
https://doi.org/10.1006/jmbi.1997.1234
https://doi.org/10.1006/jmbi.1997.1233
https://doi.org/10.1186/1471-2105-13-41
https://doi.org/10.1093/nar/gkl958
https://doi.org/10.1093/nar/gkn892
https://doi.org/10.1145/3065386
https://doi.org/10.1093/nar/gkq471
https://doi.org/10.3390/ijms17111788
https://doi.org/10.1186/gm441
https://doi.org/10.1186/gm441
https://doi.org/10.1002/prot.23169
https://doi.org/10.1371/journal.pone.0043927
https://doi.org/10.1093/bioinformatics/btl660
https://doi.org/10.1093/bib/bby088
https://doi.org/10.1093/bib/bby088
https://doi.org/10.1093/nar/gkl454
https://doi.org/10.1002/jmr.2887
https://doi.org/10.1002/rmv.356
https://doi.org/10.1002/rmv.356
https://doi.org/10.1002/jmr.2410
https://doi.org/10.1093/bioinformatics/btq302
https://doi.org/10.1016/j.jmb.2004.02.040
https://doi.org/10.1093/bioinformatics/btx585
https://doi.org/10.1093/bioinformatics/btl303
https://doi.org/10.1371/journal.pone.0049029
https://doi.org/10.1109/icmla.2006.29
https://doi.org/10.1038/mt.2015.214
https://doi.org/10.1002/prot.21248
https://doi.org/10.1093/bioinformatics/btm434
https://doi.org/10.1093/bioinformatics/btm434
https://doi.org/10.1016/j.jtbi.2011.10.021W
https://doi.org/10.1016/j.jtbi.2011.10.021W
https://doi.org/10.1038/nmeth.1818
https://doi.org/10.1109/21.97458
https://doi.org/10.1109/21.97458
https://doi.org/10.1093/nar/gkh086
https://doi.org/10.1186/1471-2105-12-352
https://doi.org/10.1016/s0962-8924(98)01363-4
https://doi.org/10.1016/s0962-8924(98)01363-4
https://doi.org/10.1093/nar/gkp842
https://doi.org/10.1371/journal.pcbi.1000278
https://doi.org/10.13188/2572-8679.1000001
https://doi.org/10.2174/138161212802651661
https://doi.org/10.2174/138161212802651661
https://doi.org/10.1039/c9ob00204a
https://doi.org/10.1093/nar/gkm231
https://doi.org/10.1093/nar/gkm231
https://doi.org/10.1093/nar/gku1028
https://doi.org/10.1093/nar/gki005
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Wang, B., Mei, C., Wang, Y., Zhou, Y., Cheng, M.-T., Zheng, C.-H., et al. (2021).
Imbalance data processing strategy for protein interaction sites prediction. Ieee/
acm Trans. Comput. Biol. Bioinf. 18, 985–994. doi:10.1109/TCBB.2019.2953908

Wang, D. D., Wang, R., and Yan, H. (2014). Fast prediction of protein-protein
interaction sites based on Extreme Learning Machines. Neurocomputing 128,
258–266. doi:10.1016/j.neucom.2012.12.062

Wang, S., Li, M., Guo, L., Cao, Z., and Fei, Y. (2019). Efficient utilization on PSSM
combining with recurrent neural network for membrane protein types
prediction. Comput. Biol. Chem. 81, 9–15. doi:10.1016/
j.compbiolchem.2019.107094

Wang, X., Yu, B., Ma, A., Chen, C., Liu, B., and Ma, Q. (2019). Protein-protein
interaction sites prediction by ensemble random forests with synthetic minority
oversampling technique. Bioinformatics 35, 2395–2402. doi:10.1093/
bioinformatics/bty995

Wang, X., Zhang, Y., Yu, B., Salhi, A., Chen, R.,Wang, L., et al. (2021). Prediction of
protein-protein interaction sites through eXtreme gradient boosting with kernel
principal component analysis. Comput. Biol. Med. 134, 104516. doi:10.1016/
j.compbiomed.2021.104516

Wang, Y., Mei, C., Zhou, Y., Wang, Y., Zheng, C., Zhen, X., et al. (2019). Semi-
supervised prediction of protein interaction sites from unlabeled sample
information. BMC bioinformatics 20, 1–10. doi:10.1186/s12859-019-3274-7

Wang, Y., Xu, Y., Yang, Z., Liu, X., and Dai, Q. (2021). Using Recursive Feature
Selection with Random Forest to Improve Protein Structural Class Prediction
for Low-Similarity Sequences. Comput. Math. Methods Med., 2021.
doi:10.1155/2021/5529389

Wei, Z.-S., Han, K., Yang, J.-Y., Shen, H.-B., and Yu, D.-J. (2016). Protein-protein
interaction sites prediction by ensembling SVM and sample-weighted random
forests. Neurocomputing 193, 201–212. doi:10.1016/j.neucom.2016.02.022

Wheeler, T. J., and Eddy, S. R. (2013). nhmmer: DNA homology search with profile
HMMs. Bioinformatics 29, 2487–2489. doi:10.1093/bioinformatics/btt403

Xue, L. C., Dobbs, D., and Honavar, V. (2011). HomPPI: a class of sequence
homology based protein-protein interface prediction methods. BMC
bioinformatics 12, 1–24. doi:10.1186/1471-2105-12-244

Zellner, H., Staudigel, M., Trenner, T., Bittkowski, M., Wolowski, V., Icking, C.,
et al. (2012). Prescont: Predicting protein-protein interfaces utilizing four
residue properties. Proteins 80, 154–168. doi:10.1002/prot.23172

Zeng, M., Zhang, F., Wu, F.-X., Li, Y., Wang, J., and Li, M. (2020). Protein-protein
interaction site prediction through combining local and global features with

deep neural networks. Bioinformatics 36, 1114–1120. doi:10.1093/
bioinformatics/btz699

Zhang, B., Li, J., Quan, L., Chen, Y., and Lü, Q. (2019). Sequence-based prediction
of protein-protein interaction sites by simplified long short-term memory
network. Neurocomputing 357, 86–100. doi:10.1016/j.neucom.2019.05.013

Zhang, J., and Kurgan, L. (2019). SCRIBER: accurate and partner type-specific
prediction of protein-binding residues from proteins sequences. Bioinformatics
35, i343–i353. doi:10.1093/bioinformatics/btz324

Zhang, Q. C., Deng, L., Fisher, M., Guan, J., Honig, B., and Petrey, D. (2011).
PredUs: a web server for predicting protein interfaces using structural
neighbors. Nucleic Acids Res. 39, W283–W287. doi:10.1093/nar/gkr311

Zhao, X., Bao, L., Zhao, X., and Yin, M. (2017). PPIs Meta: A Meta-predictor of
Protein-Protein Interaction Sites with Weighted Voting Strategy. Cp 14,
186–193. doi:10.2174/1570164614666170306164127

Zhou, H.-X., and Shan, Y. (2001). Prediction of protein interaction sites from
sequence profile and residue neighbor list. Proteins 44, 336–343. doi:10.1002/
prot.1099

Zhu, H., Du, X., and Yao, Y. (2020). ConvsPPIS: identifying protein-protein
interaction sites by an ensemble convolutional neural network with feature
graph. Cbio 15, 368–378. doi:10.2174/1574893614666191105155713

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Wang, Zhang, Yu and Huang. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 75273211

Wang et al. Protein-Protein Interaction Site Prediction

https://doi.org/10.1109/TCBB.2019.2953908
https://doi.org/10.1016/j.neucom.2012.12.062
https://doi.org/10.1016/j.compbiolchem.2019.107094
https://doi.org/10.1016/j.compbiolchem.2019.107094
https://doi.org/10.1093/bioinformatics/bty995
https://doi.org/10.1093/bioinformatics/bty995
https://doi.org/10.1016/j.compbiomed.2021.104516
https://doi.org/10.1016/j.compbiomed.2021.104516
https://doi.org/10.1186/s12859-019-3274-7
https://doi.org/10.1155/2021/5529389
https://doi.org/10.1016/j.neucom.2016.02.022
https://doi.org/10.1093/bioinformatics/btt403
https://doi.org/10.1186/1471-2105-12-244
https://doi.org/10.1002/prot.23172
https://doi.org/10.1093/bioinformatics/btz699
https://doi.org/10.1093/bioinformatics/btz699
https://doi.org/10.1016/j.neucom.2019.05.013
https://doi.org/10.1093/bioinformatics/btz324
https://doi.org/10.1093/nar/gkr311
https://doi.org/10.2174/1570164614666170306164127
https://doi.org/10.1002/prot.1099
https://doi.org/10.1002/prot.1099
https://doi.org/10.2174/1574893614666191105155713
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	A Deep Learning and XGBoost-Based Method for Predicting Protein-Protein Interaction Sites
	Introduction
	Datasets
	Methods
	DeepPPISP
	XGBoost Algorithm

	Evaluation Metrics
	Experiments
	Visualization of Preprocessing Features
	The Effects of the Global Features

	Conclusion
	Source Code
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References


