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A B S T R A C T   

Objective: We sought to understand spatial-temporal factors and socioeconomic disparities that shaped U.S. 
residents’ response to COVID-19 as it emerged. 
Methods: We mined coronavirus-related tweets from January 23rd to March 25th, 2020. We classified tweets by 
the socioeconomic status of the county from which they originated with the Area Deprivation Index (ADI). We 
applied topic modeling to identify and monitor topics of concern over time. We investigated how topics varied by 
ADI and between hotspots and non-hotspots. 
Results: We identified 45 topics in 269,556 unique tweets. Topics shifted from early-outbreak-related content in 
January, to the presidential election and governmental response in February, to lifestyle impacts in March. High- 
resourced areas (low ADI) were concerned with stocks and social distancing, while under-resourced areas shared 
negative expression and discussion of the CARES Act relief package. These differences were consistent within 
hotspots, with increased discussion regarding employment in high ADI hotspots. 
Discussion: Topic modeling captures major concerns on Twitter in the early months of COVID-19. Our study 
extends previous Twitter-based research as it assesses how topics differ based on a marker of socioeconomic 
status. Comparisons between low and high-resourced areas indicate more focus on personal economic hardship 
in less-resourced communities and less focus on general public health messaging. 
Conclusion: Real-time social media analysis of community-based pandemic responses can uncover differential 
conversations correlating to local impact and income, education, and housing disparities. In future public health 
crises, such insights can inform messaging campaigns, which should partly focus on the interests of those most 
disproportionately impacted.   

1. Introduction 

Early in the course of the COVID-19 pandemic, with no specific 
treatment for the disease available and fears of the burden of illness 
overwhelming health systems, the primary public health focus was on 
disease mitigation strategies [1–3] – and it still is almost a year later. 
New concepts were introduced to the general public, such as social 
distancing and recommendations for routine masking. These mitigation 
efforts along with others, including travel bans, shelter-in-place orders, 
and school closures, were anticipated to negatively affect many sectors 
of the United States (U.S.) economy, and they have drastically changed 

the quotidian lives of most Americans. Given marked community-level 
socioeconomic disparities and segregation in the U.S. that predated 
COVID-19, these measures were likely to have disparate uptake by and 
impact on Americans depending on where they live [4]. 

With the expansive geography of the U.S. and modern-day travel 
patterns, the disease initially was largely localized in a few cities, and 
these so-called “hotspots” were a primary focus of much of the initial 
media coverage [5]. However, as expected, other COVID-19 hotspots 
with large marginalized populations later emerged [6,7]. This brought 
to the forefront the need to understand differential reactions to the crisis 
as a tool for shaping public health communication and allocation of 
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health resources. 
Social media has been a prominent venue for personal and public 

health communication, both in previous public health crises and now 
with COVID-19. Twitter, in particular, has the advantage over some 
other social media platforms of providing brief, real-time content 
availability with access to networks of similar discussions through 
hashtags. Twitter has been used to assess mitigation strategies such as 
social distancing [8,9] and estimate mobility dynamics within and 
across states [10]. However, Twitter has not, to our knowledge, been 
used as a tool to identify trends in public responses to a health crisis at 
the local level, while factoring in socioeconomic status. Understanding 
the public responses and reactions at the initial stage of the pandemic 
across areas with socioeconomic disparities better inform future public 
health guidelines and communication under similar circumstances. 

In this study, we sought to leverage a novel approach that utilizes 
Twitter to understand how social media analysis can provide insight on 
local level concerns that can guide future public health pandemic 
messaging. Specifically, we investigated two hypotheses that: 1. there 
are differential concerns across less-resourced areas (low ADI) and high- 
resourced areas (high ADI) and, 2. there exist differential concerns 
across hotspots and non-hotspots. 

In the following section, we provide a brief review of the related 
literature, and in Material and Methods, we describe the Twitter data 
and implemented methods used for analysis. In the Results section, we 
present our findings and discuss and comment on them in the Discussion 
section. We also report the limitations of the study in the Limitation 
subsection and finally conclude the paper in the Conclusion section. 

2. Related work 

To provide greater context for understanding our use of Twitter in 
this study, we first provide a general and brief review of how natural 
language processing and analytics of Twitter data have been used as 
research and public health tools to characterize, contextualize and 
monitor health conditions. Pre-COVID-19, social media research in the 
context of health was primarily focused on examining the patient 
experience [13–17]. Comments and reviews on Twitter were used to 
measure healthcare quality [15] and monitor patient health status along 
with sentiment level [17]. It has also been useful in understanding social 
networks, public health messaging, and forecasting spread [19–22]. 
Twitter played an important role in Ebola outbreak surveillance by 
contributing to disease surveillance efforts – detecting an epidemic 
nearly a week before its first case [20]. Influenza infection rate [21] and 
Zika Virus case number [22] predictions, learned from the tweet count 
pattern of disease-related tweets, have also proven successful. 

During COVID-19, Twitter has been used to capture self-reported 
symptoms of COVID-19 [23] and explore fake news and rumors 
related to the pandemic [24]. Many studies have explored the utility of 
using advanced data analytics such as neural networks to study the 
spread and impact of COVID-19 [25]. Different types of data were uti-
lized in these studies, including; medical image data harnessed for early 
detection of COVID-19 [26], mortality and recovery rates leveraged to 

measure the security levels of the pandemic [27], and mobility data of 
cellphone users for monitoring impacts on the spread of COVID-19 [28, 
29]. Twitter data has also been used to learn more about COVID-19 
spread and impact. It has been used to assess mitigation strategies 
such as social distancing [18,19], capture self-reported symptoms of 
COVID-19 [20], and identify differential psychological impacts of 
lockdowns using hashtags [30]. 

3. Materials and methods 

3.1. Twitter dataset 

The dataset we used for this analysis is composed of Twitter entries 
(tweets) in English posted by users in the United States from January 
23rd to March 25th, 2020. We mined the tweets with Twitter’s standard 
search API, which returns a sampling of relevant tweets matching a 
specific query [31]. This search service is not meant to be an exhaustive 
source of tweets, and is instead optimized for relevance to the query. We 
queried for keywords ‘coronavirus’, ‘corona virus’, ‘corona’, ‘covid’, 
‘covid-19’, ‘covid 19’, and ‘covid19’. For each tweet, the Twitter stan-
dard search API provides detailed tweet attributes, including unique 
de-identified user ID, time and text of the tweet, and four geographic 
coordinates (latitude and longitude) delineating the bounding box [32] 
from which the tweet was posted. For privacy reasons, Twitter does not 
provide the exact location from which tweets were posted. Fig. 1 dem-
onstrates the overall workflow of the analysis given these tweet attri-
butes, which will be further detailed in the following sections. 

3.2. Preprocessing of tweets 

We pre-processed the tweets following standard data cleaning 
practices [33] through the removal of punctuation marks, numbers, 
emojis, URLs, stop words, and end of line characters. We then shortened 
the remaining words to the root using the stemmer package provided by 
the NLTK toolkit [34]. We removed tweets that were with missing or 
invalid data such as those without a month or date of entry, valid user ID 
entry, or valid stemmed tweet text. Finally, we filtered out tweets con-
taining only words that occurred in less than 20 documents or more than 
50% of all documents (of which only “coronavirus” was excluded) in 
order to achieve better topic models. This is a common approach [35, 
36], used to avoid spurious associations by excluding words based on 
their frequency distribution. 

3.3. Reverse geocodes of tweets 

We employed GeoPy [37] to reverse geocode the coordinates and 
output the county and state names of each tweet. As the bounding box 
provides enough information to confidently geotag the tweet at the 
county resolution, we used the midpoint of the rectangle of latitude and 
longitude coordinates of each tweet as the effective location. This 
location was then linked to a five-digit FIPS code, a code designed to 
uniquely identify counties and states in the U.S., to determine the 

Fig. 1. Data integration and analysis workflow.  

Y. Su et al.                                                                                                                                                                                                                                       



Computers in Biology and Medicine 132 (2021) 104336

3

location of tweets at the county level. We followed a similar approach in 
our previous work [9] to map tweets to the county level. 

3.4. Area Deprivation Index (ADI) designation 

We leveraged ADI from The Neighborhood Atlas [38], a 
location-based socioeconomic index at the census-block-group level, 
which incorporates income, education, employment, and housing data 
and has been used to inform health delivery and policy. ADI scores range 
from 0 to 100, where 0 corresponds to low deprivation and 100 corre-
sponds to high deprivation. We mapped the location of each tweet, 
derived from the reverse geocoding tweets process, to the median ADI 
score of all the census block groups within the county using its FIPS 
code. Counties were considered “low”, “mid”, or “high” ADI based on 

the ADI distribution of the unique counties represented in the dataset. 
Low ADI designation was assigned to counties from the lowest quintile 
of the ADI distribution of represented counties, and high ADI designa-
tion was assigned to counties from the highest quintile of the distribu-
tion as has been done with other studies using ADI [39,40]. 

3.5. Hotspot identification 

We defined hotspots in January and February as areas with any cases 
of COVID-19 because there were few U.S. cases in these months and they 
were concentrated (as published by the New York Times [41]). For 
analyzing hotspots in March, we leveraged the curated resource The U.S. 
COVID-19 Atlas [42], defining a tweet as from a hotspot if the county 
was listed among the published population-adjusted hotspots. 

Fig. 2. Object process diagram of tweet pre-processing.  
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3.6. Topic modeling 

We used the Latent Dirichlet Allocation (LDA) approach [43] for 
topic modeling. LDA is an unsupervised approach and has shown to be 
successful at modeling topics in tweets [44]. We leveraged LDA from the 
MALLET package [45] and “gensim” package in Python to detect topics 
from COVID-related tweets. To determine the optimal number of topics, 
we compared topics by their coherence scores, which act as a proxy for 
interpretability by measuring the degree of semantic similarity between 
top words in the topic [46]. We used the topic-word distribution to 
annotate topics. We first ranked words of a topic and then assigned the 
underlying theme. 

3.7. Spatiotemporal analysis 

We leveraged the document-topic probability distribution for this 
analysis. We compared topic prevalence over time, across low and high 
ADI areas, between hotspots and non-hotspots areas, and within hot-
spots between low ADI and high ADI areas. 

3.7.1. Temporal analysis of topic prevalence 
To understand how the public reactions to COVID-19 varied 

temporally, we averaged the topic distributions of all tweets for each 
month. We then compared the average scores of all topics over time. For 
selected topics, we plotted out the daily topic dynamic to demonstrate 
how the topic distribution changed. 

3.7.2. Spatial analysis of topic prevalence 
We anticipated that the topic differences across areas with differing 

ADIs would be skewed, thus we used the log of odds ratio (log odds 
ratio), a common approach to transform skewed data to a normal dis-
tribution [47], to compare the topic differences across area groups. To 
compare the dominant topics in counties of low versus high ADI desig-
nation, we computed the log odds ratios of dominant topics in both 
groups. We first identified the dominant topics – the topics with the 
highest probability – for all tweets, then we calculated the log odds ratio 
of dominant topics among both groups to achieve a fair comparison. The 
log odds ratio of a topic can be interpreted as the probability of domi-
nance of that topic in one group over another. 

The odds that any topic T dominates in a group G are calculated as: 

odd(T,G) =
number of tweets that topic T is dominant in group G

total tweets in group G  

The log odds ratio of any topic T between two groups G0, G1 is calculated 
as: 

log odds ratio (T, G0, G1) = log(
odd(T,G0)

odd(T,G1)
)

We used the same approach to compare topic prevalence between hot-
spots and non-hotspots. All of the calculations above were done in Py-
thon, using the packages “NumPy” and “math”. 

3.8. Statistical validation 

We implemented the chi-squared test and independent t-test to assess 
the differences in discussed topics across geographically grouped tweets. 
More specifically, the chi-squared test was used to validate the hy-
potheses stated in the Introduction Section that 1. there are differential 
concerns across less-resourced areas (low ADI) and high-resourced areas 
(high ADI) and, 2. there exist differential concerns across hotspots and 
non-hotspots. 

The chi-squared test determines whether there were statistically 
significant differences between the expected dominant topic frequencies 
and observed dominant topic frequencies across the ADI groups and 
hotspot groups. And according to related researches, we acknowledged 

the nature of Twitter data might be imbalanced [48,49] and further 
leveraged Welch’s unequal variances t-test, which is more robust than 
Student’s t-test for skewed distributions and unequal sample sizes [50], 
to identify the topics that have significant differences between the 
groups. Formally, the t-test determines whether there was a difference 
between the means of the dominant topic probabilities in the low and 
high ADI groups. All of the statistical validations above were conducted 
through SPSS. 

4. Results 

4.1. Preprocessing and integration of tweets 

Pre-processing resulted in 269,556 tweets from 119,611 Twitter 
users (out of which only 63 users had more than 100 tweets). This 
dataset represents 1331 counties from all 50 states, the District of 
Columbia, and Puerto Rico. The range of the ADI is from 3 to 98. Fig. 2 
diagrams the pre-processing workflow. Table 1 summarizes the char-
acteristics of the final dataset. 

4.2. Topic modeling 

We evaluated models ranging from 10 to 50 topics and selected the 
model with the highest coherence score, (coherence score 0.571) and 45 
topics. Coherence scores for 10 to 50 topics are plotted in Supplementary 
Fig. 1. We named topics based on the common theme of the top words. 
For example, we defined topic 1 as “Shopping” due to top words “toilet”, 
“paper”, “store”, “shop”, “walmart”, and “groceri” (stemmed version of 
groceries). The top 10 words in each topic are shown using word clouds 
in Fig. 3, wherein the font size in each plot reflects the importance of a 
word in a specific topic. Representative tweets (tweets with the highest 
probability of belonging to the given topic) for all topics are available in 
Supplementary Table 1. 

4.3. Comparing topic prevalence over time 

We present the topic-dynamics from January to March including the 
average distribution of topics that peaked by month. For each month, 
topic prevalence compared to both of the other months had a signifi-
cance of p < .0001 unless indicated otherwise. 

In January (Fig. 4), there were significant peaks in topics such as 
intense expression, negative expression, and personal expression (vs. 
Mar, p < .001). These topics are associated with profanity, anxiety, and 
emotions. There was also a peak in discussion regarding an early un-
derstanding of the novel disease, namely symptoms, flu deaths, and 
preventative measures (vs. Feb, p < .01; vs. Mar, p < .05). Further, there 
was significant discussion regarding China, international outbreak 
events (vs. Feb, p < .01), and ethnicity, as well as tweets concerning case 
counts (vs. Feb, p < .05), hotspots (vs. Feb, ns), and confirmed cases. 

In February (Fig. 5), there was a significant rise in the discussion 

Table 1 
Characteristics of Dataset. Summary statistics of Twitter dataset in terms of 
user, geographic, and socioeconomic distribution.  

Tweet Characteristics (n = 269,556) 

Southern States 36.65% (n = 98,792) 
Western States 28.10% (n = 75,745) 
Northeastern States and DC 20.42% (n = 55,043) 
Midwestern States 14.64% (n = 39,462) 
Puerto Rico 0.19% (n = 514) 
Low ADI (3-43) 50.07% (n = 134,967) 
Mid ADI (43.5–77) 45.65% (n = 123,052) 
High ADI (77.5–98) 4.29% (n = 11,537) 
Mean Tweet Count per User 2.25 tweets 
Median Tweet Count per User 1 tweet 
Max Tweet Count per User 456 tweets  

Y. Su et al.                                                                                                                                                                                                                                       
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Fig. 3. Visualization of the top 10 words in all topics.  
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surrounding the election, President Trump, news articles, stocks, the 
task force conference, and the CDC (Centers for Disease Control and 
Prevention). February also saw a significant discussion surrounding 
vaccines and travel (vs. Jan, p < .05). 

In March (Fig. 6), there was a rise in discussions related to social 
distancing and disease mitigation strategies, namely closures, cancella-
tions (vs. Feb, p < .001), social distancing, staying home, online media 
(vs. Jan, p < .05), and education. In general, there were higher topic 
proportions of activities related to quarantine, in particular exercising, 
sport, shopping, prayers, words related to time, and adaptation. March 
also resulted in more dissemination of information, discussion regarding 
the CARES Act, discussion of cases in Florida and New York, and tweets 
related to employment and local business support. Finally, in March 
there was a significantly higher proportion of tweets related to the 
pandemic (vs. Feb, p < .001), public health measures, tests and test 
results, and also a higher prevalence of COVID-related hashtags. 

4.4. Comparing topic prevalence between low and high ADI areas 

The ADI-specific analysis revealed significant differences in topic 
prevalence between low and high ADI areas. Comparing areas at the 
highest and lowest quintiles of ADI designation demonstrated differen-
tial effects (p < .001) in tweets by county-level socioeconomic 

resourcing. Topics that are more likely to dominate in high ADI (lower 
resourced) counties and low ADI (higher resourced) counties are shown 
in Fig. 7A. Topic prevalence comparisons between low and high ADI 
designated tweets had a significance of p < .0001 unless indicated 
otherwise. Tweets from high ADI areas are more likely to share 
emotional content with intense, negative (p < .01), personal expression 
(p < .01) or prayers (p < .05), as well as news regarding confirmed cases, 
the outbreak in China, flu deaths, and the CARES Act. On the other hand, 
tweets from low ADI areas were more likely to discuss the impact of 
COVID-19 on hotspots, local businesses, and New York status. Topics 
related to the larger public health crisis (p < .001) and pandemic (p =
.001), as well as dissemination of information, stocks (p < .01), and the 
task force conference (p = .01), were also significantly more prevalent in 
tweets from lower ADI areas. These areas were also more concerned 
about the progress of potential treatments like vaccines (p < .001). 
While tweets with political topics about elections (p = .937) and Pres-
ident Trump (p = .605) were more likely to come from low ADI areas, 
the differences were not statistically significant. 

Observing the topic proportion progress from January through 
March (Fig. 7B), we noticed that “Intense Expression” and “CARES Act” 
topics had consistent trends at both high and low ADI areas, with the 
high ADI areas having an overall higher daily average topic probability. 
Furthermore, topics associated with public health policies and disease 

Fig. 4. Distribution of topics with higher proportions in tweets posted in January. Topics that had the same proportions for all months not shown. Significance 
testing results from two-sided Welch’s t-test with Bonferroni correction. Significance legend: ns: 5.00e-02 < p ≤ 1.00e+00. *: 1.00e-02 < p ≤ 5.00e-02. **: 1.00e-03 
< p ≤ 1.00e-02. ***: 1.00e-04 < p ≤ 1.00e-03. ****: p ≤ 1.00e-04. 
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mitigation strategies in March such as “Social Distancing” and “Local 
Business Support” arose in tweets from low ADI areas at a higher 
prevalence than tweets from high ADI areas. 

4.5. Comparing topic prevalence between hotspots and non-hotspots 

There were significant differences in the dominant topics between 
hotspots and non-hotspot areas. Tweets from hotspots were more likely 
to include topics relating to New York, social distancing, public health 
and pandemic, information dissemination, exercise/sport, education, 
time, closures, and employment (Fig. 8). Tweets that were not posted 

from hotspots were more likely to include topics pertaining to negative 
or intense emotion, concern regarding the CDC guidelines and task force 
conference, international events and flu deaths, as well as stocks and 
shopping. 

4.6. Comparing topic prevalence within hotspots between low and high 
ADI areas 

Comparing the topic prevalence of the within-hotspots-tweets be-
tween areas of high ADI and low ADI demonstrated that topics including 
confirmed cases, closures, intense expression, and hashtags were more 

Fig. 5. Distribution of topics with higher proportions in tweets posted in February. Topics that had the same proportions for all months not shown. Significance 
testing results from two-sided Welch’s t-test with Bonferroni correction. Significance legend: ns: 5.00e-02 < p ≤ 1.00e+00. *: 1.00e-02 < p ≤ 5.00e-02. **: 1.00e-03 
< p ≤ 1.00e-02. ***: 1.00e-04 < p ≤ 1.00e-03. ****: p ≤ 1.00e-04. 
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prevalent from high ADI hotspots (Fig. 9A). Notably, tweets regarding 
employment concerns were also more likely to come from high ADI 
hotspots (p < .001), which wasn’t significant in the previous analysis 
comparing ADI and hotspots separately. Tweets from low ADI hotspots 
were significantly more concerned with exercise, stocks, information 
dissemination, vaccine treatment, and cases in New York. We next 
observed the topic dynamics for selected topics from tweets collected in 
March (note that no high ADI areas were hotspots in January and 
February) (Fig. 9B). There were notable spikes in employment concerns 
and intense expression from high ADI hotspots, whereas these topics 
remain consistent throughout the month for tweets from low ADI hot-
spots. Tweets about New York and social distancing remained consis-
tently high in low ADI tweets throughout March. 

4.7. Chi-squared findings 

Table 2 shows the Chi-squared testing results for our hypotheses. 
Testing for the differential concerns across less-resourced areas (low 
ADI) and high-resourced areas (high ADI), we found that the dominant 
topics differ significantly across areas with different socioeconomics 
levels (p < .01). Similarly, testing for differential concerns across hot-
spots and non-hotspots, we found that the dominant topics differ 
significantly relative to the pandemic severity (p < .01). 

5. Discussion 

Our analysis of COVID-19-related social media content demonstrates 
that Twitter can be used effectively to identify individual-level responses 
to infectious disease outbreaks in such a way that considers the impact of 
local-level socioeconomic resources and disease incidence. It shows too 
that socioeconomic disparity is associated with differential responses to 
the current COVID-19 pandemic, even among areas which are most 
severely impacted by disease cases. To our knowledge, this is the first 
study to link geocoded tweets to the ADI in order to explore the impact 
of geographic area-based socioeconomic status on tweet content. 

This analysis follows the early pandemic timeline and establishes 
that topic modeling performs well in identifying major subjects of dis-
cussion on Twitter and successfully capturing the nuances of their 
variability. Though topic modeling has been applied to COVID-19- 
related tweets in an overlapping window of time (January 23 to 
March 7, 2020) [51], limited topics were identified and no analysis was 
reported about the emergence of new topics during that period. As the 

first cases of COVID-19 broke news in January, we found the fear 
sentiment in tweets as people were broadly focused on disseminating as 
much information as possible and similar conclusions were reported by 
Xue et al. [51]. As time progressed, there was increasing focus on local 
cases and events, public health information dissemination and testing, 
and quarantine activities. 

Ordun et al. [52] explored topic prevalence over time in COVID-19 
related tweets, however, the analysis was limited to reporting trends 
and lacked extended investigations of linking the trending topics to 
other health or social factors. In our study, by linking topic prevalence to 
socioeconomic status, we found that tweets from high ADI areas were 
more likely to share content regarding personal experiences, which 
ranged from positive affirmations of hope and prayers to negative or 
intense expressions of anxiety or frustration. This was not surprising 
given that the disparate impact of the pandemic and the associated 
economic fallout have, as predicted, disproportionately impacted poorer 
communities [53]. Furthermore, centuries of structural racism in the 
United States have led to lower resourcing in these areas and higher 
rates of medical co-morbidities that have been shown to increase 
COVID-19 risk [53] – all potentially contributing factors to an increase 
in intense, negative, and personal discussion in these areas pertaining to 
the public health and economic crisis. 

Tweets from low ADI areas in March showed more discussion of 
social distancing and local business support, as quarantine policies hurt 
local businesses and resulted in discussions about bill relief to support 
these businesses. This result is consistent with the quicker response to 
stay at home orders from low ADI areas and is in line with recent reports 
of movement dynamic differences between low-income and high- 
income areas [54]. The higher prevalence of discussion surrounding 
stocks that was noted in low ADI areas was consistent with a greater 
stock market wealth residing amongst the wealthiest US households 
[55]. 

In the comparison between low and high ADI area hotspots, we 
identified that tweets with intense expression and those about employ-
ment insecurity were significantly more likely to come from high ADI 
hotspots. This reinforces the notion that, even after restricting to areas 
with high case counts, income and resource disparity result in dispro-
portionate effects due to closures and job loss [56]. Furthermore, low 
ADI counties were significantly more concerned with information 
dissemination, cases in New York (on average a large low ADI hotspot), 
stocks, and vaccine treatment showing increased focus on social and 
institutional reactions to the crisis. 

Fig. 6. Distribution of topics with higher proportions in March. Topics with same proportions for all months not shown. Significance testing results from two- 
sided Welch’s t-test with Bonferroni correction. Significance legend: ns: 5.00e-02 < p ≤ 1.00e+00. *: 1.00e-02 < p ≤ 5.00e-02. **: 1.00e-03 < p ≤ 1.00e-02. ***: 
1.00e-04 < p ≤ 1.00e-03. ****: p ≤ 1.00e-04. 

Y. Su et al.                                                                                                                                                                                                                                       



Computers in Biology and Medicine 132 (2021) 104336

9

Fig. 7. Topic prevalence comparisons between High and Low ADI based on Log odds ratio. A. Topics with significant difference between both groups (p < .05) 
B. Topic dynamics for example topics. 
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Our approach of integrating a location-based socioeconomic index 
with Twitter topics offered increased insight into the topics inferred 
from the text, allowing a novel framework for assessing differential 
topics of conversation as they correlate to income, education, and 
housing disparities. Our integration of published COVID-19 hotspots 
further enables time-specific information of disease spread and how this 
corresponds to topics discussed on Twitter. These nuances are valuable 
for recognizing how public health communication, resource allocation 
policy, and information dissemination can respond to the needs of 
different communities, especially those with the lowest health resourc-
ing, in future waves of the pandemic and emerging infectious disease 
outbreaks. Future public health efforts may use Twitter topic modeling 
to target messaging to the unique concerns of local communities and 
study the impact of health resource utilization. Our findings emphasize 
the importance of social media as a platform for public health commu-
nication as it is freely available to communities with different levels of 
socioeconomic resources. In fact, using public health communication to 
mitigate health disparities is not a novel concept [11], and is in line with 
future directions laid out in the National Institute on Minority Health 
and Health Disparities 2019 research framework [12]. However, the 
implementation of these methods should see expansion to other national 
institutions and organizations, such as the Office of Disease Prevention 
and Health Promotion and the Centers for Disease Control and Preven-
tion. Furthermore, such initiatives need to be enhanced with more tar-
geted messages, announcements and policies addressing the community 
level social and behavioral differences. 

5.1. Limitations 

Though our study successfully explored pandemic-related topics of 
conversation across tweets, there were a number of limitations, some of 
which have also reported in other studies [57]. One limitation is related 
to missing data. Due to data privacy, although Twitter data is publicly 
available, some tweets were posted from private accounts and thus 
could not be retrieved from the Twitter API. Another limitation that 
reduced the dataset sample size was that the Twitter Search API, which 

we used in this study, retrieves tweets from a reduced sample of all 
historic tweets posted about COVID-19. This sample is reduced further 
by focusing on English, US-specific, and geocoded tweets. Furthermore, 
due to restrictions with Twitter geocoding, we accepted some degree of 
positional inaccuracy in our study design, in that we were only able to 
collect geographic coordinates to the resolution of a county, and 
therefore characterized each tweet by the county rather than the census 
tract or block group. Given the inherent geographic masking techniques 
used by Twitter to promote confidentiality, and our study design which 
involved cross-area estimation and simple geographic centroid assess-
ment [9], we acknowledge aggregation bias as a study limitation. 
However, previous work assessing the quality of deprivation indices 
shows that aggregated ADI is able to outcompete other metrics in 
capturing county and tract level information [58]. Furthermore, 
aggregated ADI has previously been used in other work to compare 
county-level socioeconomic status [59]. For our dataset, on average, the 
county ADI was distributed such that the median ADI was a reasonable 
approximation for the county. Finally, for technical reasons on our 
server, fewer tweets were scraped on some dates. However, we were still 
able to glean valuable conclusions from our data that represent the early 
pandemic progression. 

6. Conclusion 

Twitter analysis linking geocoded tweets to markers of geographic 
socioeconomic resourcing demonstrates that the COVID-19 pandemic 
has differentially impacted areas of the United States that are already 
institutionally underserved, even among areas most severely impacted. 
Highly-resourced areas were concerned with stocks, social distancing, 
and national-level policies, while low-resourced areas shared content 
with negative expression, prayers, and discussion of the CARES Act 
economic relief package. Within hotspots, increased discussion 
regarding employment in low versus high resourced areas was observed. 
This finding highlights the need to address the specific fears and con-
cerns of these communities through personalized public health 
messaging at the local level. Our work indicates the emerging utility for 

Fig. 8. Topic prevalence between hotpots vs non-hotspots based on log odds ratio.  
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Fig. 9. Topic prevalence comparisons within Hotspots between low and high ADI areas. A. Topics with significant difference between the two groups (p < .05). 
B. Topic dynamics for example topics. 
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linking natural language processing techniques to real-time social media 
data and measures of social determinants of health. In future work, we 
plan to further analyze the sentiment of U.S. residents towards COVID- 
19 vaccination in areas with socioeconomic disparities. The speed at 
which vaccine-related misinformation is being propagated is alarming 
and has negative ramifications on global population health. We plan to 
investigate whether the volume and speed of misinformation differ 
relative to socioeconomic status and, specifically, if residents in less- 
resourced areas are disproportionately impacted by misinformation. 
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