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Abstract: In this paper, the influence of disinfection on structural and mechanical properties of
additive manufactured (AM) parts was analyzed. All AM parts used for a fight against COVID19
were disinfected using available methods—including usage of alcohols, high temperature, ozonation,
etc.—which influence on AM parts properties has not been sufficiently analyzed. During this
research, three types of materials dedicated for were tested in four different disinfection times and
two disinfection liquid concentrations. It has been registered that disinfection liquid penetrated
void into material’s volume, which caused an almost 20% decrease in tensile properties in parts
manufactured using a glycol-modified version of polyethylene terephthalate (PETG).

Keywords: additive manufacturing; structural analysis; mechanical properties; polymers; COVID19

1. Introduction

COVID19 pandemic caused a massive gap in deliveries of first-aid tools for human
life and health protection against the virus. At the beginning of lockdown in 2020 all
companies, freelancers, and hobbyists connected with additive manufacturing (AM) of
polymers started to produce face shields, diving masks high-efficiency particulate air
(HEPA) connectors, anti-dust masks HEPA connectors, and other different tools.

Material extrusion additive manufacturing (ME-AM) plays a significant role in many
industries because of its advantages, such as easy digitization based on three-dimensional
CAD data, fast, and low-cost efficient creation of customized, on-demand, and prototype
products, and reflecting accurately very complex geometries. One of the most common
and popular methods is fused filament fabrication (FFF), where thermoplastic material
(filament) is heated in a range of 175–265 ◦C (depends on material type). The plasticized
filament is being deposited layer by layer in the building plate in such a way to allow
reaching the desired shape of the same part. There is a variety of filaments used in this
technology. Poly(lactic acid) (PLA) and acrylonitrile butadiene styrene (ABS) are the most
characteristic materials used in that type of ME-AM. PLA is non-toxic, biodegradable,
biocompatible therefore, it is used in the field of medicine [1–5]. However, objects made
of PLA are characterized by low mechanic properties [6], especially at a temperature near
plasticizing point (about 60 ◦C) [7] and are influenced by low fatigue resistance, too [4].
That is why this material has not been used during AM of parts dedicated for protection
against COVID19 [2].

Many researchers analyzed the influence of FFF technology parameters (layer thick-
ness, infill density, and pattern) on the final product properties and used the material itself.
One material commonly used is polyethylene terephthalate glycol (PETG), which is more
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flexibly and resistant to temperature than PLA, and has high durability, low shrinkage, and
is hydrophobic [8]. These specific properties of polyethylene terephthalate glycol led to it
being chosen as the sufficient material for 3D printing of masks during the beginning of
the COVID-19 pandemic [3,9,10]. Srinivasan et al. [11] studied the mechanical properties
of PETG. Their research noted that the tensile strength of the printed models is directly
proportional to infill density and inversely proportional to layer thickness. Additionally,
it is characterized by reverse relations in surface roughness. Durgashyam et al. [12] in-
vestigated PETG materials not only tensile but also flexural strength while considering
the specifications mentioned above. The main conclusion was that, among tested param-
eters, layer thickness had the highest contribution in affecting mechanical properties of
produced objects.

On the one hand, Hanon et al. [13], after evaluating the outcome of their analyses
deduced that PETG used in FFF technology demonstrates anisotropic properties, but on the
other hand, Mercado-Colmenero et al. [14], after complex research proved that in numerical
simulations FFF manufactured PETG could be treated as an isotropic material.

Since the world is currently struggling with COVID19, AM has been exploited to
the boundaries of its possibilities. In medicine, it filled significant gaps where traditional
subtractive manufacturing is lacking, injection molding is not ready for mass production,
or is economically unjustified. AM is a technology in which the product is constructed by
adding material in cross-sectioned layers, this way of processing influences the fatigue
performance of the element.

The main reason for using PETG for the health protection during the beginning
of the COVID19 pandemic is two-fold. The first is related to the material properties—
it is more resistant to temperature than the PLA—it can withstand temperatures up to
75 ◦C and its properties are not affected by the UV radiation. Also, it is characterized
by better chemical resistance than ABS and PLA and is less fragile than the PLA parts.
Such characteristics allow bettering disinfection using high temperature or alcohols which
made it better customized to medical solutions than the PLA and other commonly used
materials in ME-AM. On the other hand, the usage of the PETG at the beginning of the
COVID19 pandemic was related to low filament diameter tolerance increase after winding
increase (prusament.com) to allow the increase of manufactured material dedicated to
FFF technology.

Additionally, there are available in the market, materials dedicated for the ME-AM,
and usage in medical applications. The most popular are ABS-based filaments. Such
materials are mostly certified by basing on USP VI and ISO 10993-1 standards. Its usage
during the pandemic was marginalized due to its high cost and low availability.

Nowadays, many Universities and companies joined forces to produce better protec-
tion for the medical staff as they are the most endangered. AM has been used chiefly to
create protection helmets as it is a fast way to build many specific parts [15] or connectors
for HEPA filters. This equipment needs to be disinfected regularly to avoid introducing
pathogens, which are the cause of the illness. Low-level disinfection (LLD) is based on
exposing the surface to a liquid for at least 1 min. The substance used is a fluid that contains
70–90% of alcohol [16]. The aftermath of its effect should be the annihilation of viruses,
vegetative bacteria, and some fungi. Going further, high-level disinfection (HLD) results in
destroying all microorganisms except some bacterial spores with heat treatment performed
by subjecting the material to 65 to 75 ◦C for half an hour [16].

Based on Huang et al. work [17] the main categories of chemical cleaning agents can
be listed as follows: acids, alkalis, disinfectants (including alcohols), surfactants, metal
chelating agents, and enzymes. The authors of the mentioned work [17] discussed some
most important cases of disinfection mechanisms:

1. 2.2-Dibromo-3-nitrilopropionamide inhibits respiration and inactivates proteins con-
taining nucleophilic partial amino acids such as methionine and cysteine.
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2. Isothiazolones quickly inhibit the physiological functions of microorganisms, includ-
ing growth, respiration, energy production (such as adenosine triphosphate synthesis),
and destroy thiol-containing proteins.

3. Glutaraldehyde reacts with biomolecules like protein, RNA, and DNA, which contain
amino, amide, and carboxyl groups.

4. Tributyl tetradecyl phosphonium chloride inactivates bacteria by destroying and
decomposing the negatively charged membrane of bacteria.

5. Dichloroisocyanurate releases hypochlorous acid and isocyanuric acid in water to
inactivate bacteria.

6. Copper and silver ions interfere with enzymes involved in cell respiration and bind to
DNA at specific sites.

7. Ethyl lauroyl arginate inactivates microorganisms by changing their cell membrane
structure and interfering with their membrane potential.

8. Chlorhexidine gluconate acts as a biguanide and cation-active compound with sig-
nificant antibacterial activity and inhibits microorganism adherence and prevents
biofilm formation.

To render more stringent the case of polymers chemical disinfection, Roman et al. [18],
analyzed different types of disinfection that could be used for AM parts. The authors
revealed five different methods which could be used for such parts:

• ultraviolet (UV) sterilization using a germicidal fluorescent bulb,
• autoclave sterilization,
• submersion in a glutaraldehyde solution,
• hydrogen peroxide sterilization,
• alcohol disinfection.

Based on mentioned research [18], hydrogen peroxide sterilization is the best alterna-
tive to avoid the deformation of PLA and PETG AM objects. It is also preferable to steam
sterilization for PLA and PETG, as it causes only submillimeter morphological distortions,
instead of dynamically damaging the materials in consequence of high temperature (121 ◦C
for 5 min) [19].

Electron beam and gamma radiation are also a practice in the mentioned above field
and are safely used for PLA and PETG. However, ethylene oxide cannot be implemented
for PLA and PETG, as it inflicts the polymeric structures, causing weight loss and creating
a risk of inducing toxic deposits on the surface of the element [19]. On the other hand, UV
and gamma radiation does not impact the alignment of the fibers, therefore are suitable
for PLA sterilization [20]. ABS disinfection is not an often mentioned topic in studies but
hydrogen peroxide works very well with it, not altering the morphology of the filament [21].
The abovementioned methods were not available in smaller facilities that struggled with
the effects of the COVID19 pandemic. Despite many available methods, the most available
disinfection medium for most medical aid centers and social welfare facilities was alcohol.
Additionally, the usage of disinfection liquid allows better penetration of the whole volume
of each part. It is especially important in AM parts which are often characterized by
geometrical complexity.

As shown, in most of the cited studies conducted over the past two years, the mechan-
ical properties of PETG are still being investigated. Still, none of them has included LLD
or HLD influence on mechanical properties of FFF manufactured PETG models such as
face shields widely used by rescue teams and hospital staff during the pandemic. Usage
of the PETG in FFF technology seems to be a good alternative in some solutions where
much more expensive AM technologies are unnecessary. This statement results from our
previous research, connected with other material also dedicated for medical solutions–316L
steel obtained during selective laser melting (SLM) process [17–21].
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2. Materials and Methods

The FFF method produced the test specimens using AM technology. The main reason
for selecting the FFF technology was using that kind of device during the 3D print of many
different parts dedicated to increasing protection against COVID19. The principle of the
FFF process is very similar to fused deposition modeling (FDM) technology, where the
plastic wire (named as 3D printing filament) is being pushed by extruder mechanism to
the heated nozzle. After that, the material is being plasticized and put into the substrate
plate. A fully automated movement algorithm of the printing nozzle and substrate plate
allows for different (often very complex) shapes creation. Regarding the additive character
of the process, the parts are built layer-by-layer until the final geometry creation.

For the research PETG filament (Rosa 3D, Hipolitów, Poland) was used. That kind of
material is prevalent for manufacturing parts dedicated to protection against COVID19. It
was also commonplace for using different colors of the material during many supporting
actions. Hence, two types of PETG were tested: with color pigment and without any
additions. All parts were manufactured using the Prusa Original MK3s device (Prusa
Research, Prague, Czech Republic), the manufacturing processes were prepared using
PrusaSlicer Software (version 2.1.0) using the default parameters for the Prusa device for
PETG materials:

• Hotend temperature (for both materials): 240 ◦C,
• Heatbed temperature: 90 ◦C,
• Layer thickness: 0.2 mm,
• Infill: 100%,
• Part cooling intensity: 40%,
• Printing speed: 60 mm/s,
• Nozzle diameter: 0.4 mm,
• Number of the contour lines: 5

Additionally, an ABS Medical (SmartMaterials 3D, Jaén, Spain) filament was used for
results compared with the PETG results. That kind of material is certified by basing on
USP VI and ISO 10993-1 standard, which assures its biocompatibility. The properties of
used materials are shown in Table 1.

Table 1. Properties of used materials: PETG and ABS medical provided by producers’ data sheets.

Material PETG ABS

Material density (g/cm3) 1.27 1.05
Flexural modulus (MPa) 2100 2600
Flexural strength (MPa) 69 75

Thermal deflection temperature (◦C) 70 98
Vicat softening temperature (◦C) 85 101

A manufacturing process with the usage of the ABS Medical was prepared in the same
software and manufactured on the same device as PETG parts. Process parameters–default
for the Prusa device for the ABS material were as follows:

• Hotend temperature: 255 ◦C,
• Heatbed temperature: 110 ◦C,
• Layer thickness: 0.2 mm,
• Infill: 100%,
• Part cooling intensity: 25%,
• Printing speed: 60 mm/s,
• Nozzle diameter: 0.4 mm,
• Number of the contour lines: 5

Based on “ASTM D638: Standard Test Method for Tensile Properties of Plastics” dog-
bone-shaped parts were made to determine the mechanical properties. For each test, five
same samples were prepared to keep mechanical properties results reliable.
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For structural analysis, Keyence VHX 7000 optical microscope (Keyence International,
Mechelen, Belgium) was used. All parts were observed using an additional scattered light
from the bottom side of the elements.

Axial tensile strength tests were carried out using the Instron 8802 (Instron, Norwood,
MA, USA) hydraulic pulsator using an extensometer with a measuring base of 50 mm.
During tensile testing, a digital image correlation (DIC) (non-contact, optical method) was
used to measure three-dimensional (3D) deformations from Dantec Dynamics (Dantec,
Ulm, Germany).

All manufactured parts were divided into four different groups for the HLD process,
each group was characterized by different disinfection times. There were four groups:

• 0.5 h disinfection,
• 12 h disinfection,
• 24 h disinfection,
• 48 h disinfection.

To reach desirable results, a Gigasept Instru AF (Schülke & Mayr GmbH, Norderstedt,
Germany) disinfection liquid was used. Parts were put into two disinfection can–with 4%
liquid solution with water and 100% liquid. After the process, all elements were drained
into the laboratory dryer at a temperature of 45 ◦C for one hour. Such temperature was
selected to be at the safe level below the glass temperature of the PETG (which is 70 ◦C).
All samples were held at the same temperature. Additionally, to allow better analysis, all
disinfected parts were compared to non-disinfected reference samples. All combinations
with sample type descriptions are shown in Table 2.

Table 2. All configurations of samples prepared for the research.

Material Solution
Concentration Disinfection Time Samples’

Description

PETG without
pigment

0% None P0

4%

0.5 h P4_05
12 h P4_12
24 h P4_24
48 h P4_48

100%

0.5 h P100_05
12 h P100_12
24 h P100_24
48 h P100_48

PETG with color
pigment

0% None PC0

4%

0.5 h PC4_05
12 h PC4_12
24 h PC4_24
48 h PC4_48

100%

0.5 h PC100_05
12 h PC100_12
24 h PC100_24
48 h PC100_48

ABS Medical

0% None A0

4%

0.5 h A4_05
12 h A4_12
24 h A4_24
48 h A4_48

100%

0.5 h A100_05
12 h A100_12
24 h A100_24
48 h A100_48
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3. Microscopical Investigation—Results and Discussion

To properly describe the microstructural phenomena during HLD all registered images
for each sample were compared in Tables 3 and 4. There is a visible effect of disinfection
with two different substance concentrations: 4% and 100%. Also, a comparison with
nondisinfected samples (0%) was made. Investigating samples under a light microscope has
shown no significant impact (like melting or rinsing of the material) on samples’ structure.

Table 3. Microscopic images registered for samples kept in 4% solution.

Microscope Images
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as intense flashes in the picture. Materials used in this study like most materials being 

used in FDM printing are known for their porous structure. This leads to the conclusion 

that during the disinfection process the liquid is penetrating the structure of the sample 

and does not evaporate during the drying process, as a result, it may stay inside longer. 
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orate during the drying process, as a result, it may stay inside longer. Also, in the case of 

100% solution, samples made of the ABS material has no visible liquid inside their vol-

ume. 

Accumulating high concentrations of disinfection liquids in structures of FDM/FFF 

based face shields may ensure protection from some microorganisms but on the other 

hand, it may also lead to aggregation of dirt or in worse cases, raising of bacterial biofilm, 

by creating a good habitat for pathogens, or else come into reaction with the component, 

which might be harmful to the user, this may indicate using different materials in the 

production of medical helmets or additional covers (for example resin-based). 

4. Tensile Testing and DIC Analysis—Results and Discussion 

To better understand the influence of HLD on AM parts, tensile tests were made. All 
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At 100% concentration (Table 4) brighter areas in PETG are more visible than at 4% 

concentration. Such phenomenon is connected to the lower dilution of used liquid. Per-

haps it may be caused by the high viscosity of not diluted concentrate. This leads to the 
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At 100% concentration (Table 4) brighter areas in PETG are more visible than at 4% 

concentration. Such phenomenon is connected to the lower dilution of used liquid. Per-

haps it may be caused by the high viscosity of not diluted concentrate. This leads to the 
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In the case of PETG samples held in 4% solution (Table 4), there is an outer contour
and the infill visible, between these two parts of geometry there are visible some brighter
areas—especially in samples after 12-, 24-, and 48-h during disinfection. This can be seen
as intense flashes in the picture. Materials used in this study like most materials being
used in FDM printing are known for their porous structure. This leads to the conclusion
that during the disinfection process the liquid is penetrating the structure of the sample
and does not evaporate during the drying process, as a result, it may stay inside longer. In
the case of the ABS material, the effect of penetrated water inside the object is much less
noticeable. It could be due to better filling of materials or, basically, its hygroscopicity.
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At 100% concentration (Table 4) brighter areas in PETG are more visible than at
4% concentration. Such phenomenon is connected to the lower dilution of used liquid.
Perhaps it may be caused by the high viscosity of not diluted concentrate. This leads to the
conclusion that during the disinfection process the liquid is penetrating the structure of the
sample and in cases of lower water content in used formulas, the liquid does not evaporate
during the drying process, as a result, it may stay inside longer. Also, in the case of 100%
solution, samples made of the ABS material has no visible liquid inside their volume.

Accumulating high concentrations of disinfection liquids in structures of FDM/FFF
based face shields may ensure protection from some microorganisms but on the other
hand, it may also lead to aggregation of dirt or in worse cases, raising of bacterial biofilm,
by creating a good habitat for pathogens, or else come into reaction with the component,
which might be harmful to the user, this may indicate using different materials in the
production of medical helmets or additional covers (for example resin-based).

4. Tensile Testing and DIC Analysis—Results and Discussion

To better understand the influence of HLD on AM parts, tensile tests were made. All
samples have been additionally analyzed by using DIC. A representative course of samples
from each group is shown to allow a more straightforward interpretation of the test results.
Strain–stress curves of PETG without pigment in three conditions: 4% liquid solution with
water, 100% liquid, and without any disinfection (P0) are shown in Figure 1.
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Figure 1. Strain-stress curves of noncolored PETG material after 4% water solution (a) and 100% concentrate (b) in
comparison to material without disinfection.

All types of HLD in 4% negatively affect tensile properties, especially in the case of
samples that were kept in disinfection solution for 48 h–where tensile strength decreased
from 53.98 MPa to 45.11 MPa, which is about 20%. More significant differences were
registered for samples subjected to HLD in 100% concentrate. The most significant decrease
was reported for samples kept in the disinfection for 12 h and 48 h, and the value was
about 25%. Results of the obtained DIC analysis are shown in Table 5.
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Table 5. DIC results for without pigment PETG samples in the condition without HLD, in 4% water solution HLD and 100%
concentrate HLD.

P0

Initial Condition Rp0.2 Rm Breaking Point Fracture Scale

Strain X Strain Y Strain X Strain Y Strain X Strain Y Strain X Strain Y
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visible strain increase along X-axis. That phenomenon could relate to a negative influence
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of the disinfection liquid, which came into the material volume between the infill and
outline perimeter shell.

The same type of analysis was conducted for colored PETG material. Stress–strain
curves for all tested samples, including reference material without any disinfection, are
shown in Figure 2.
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lower the influence of a disinfection liquid. That hypothesis could be proven by the DIC 

analysis shown in Table 6. 
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Figure 2. Strain–stress curves of colored PETG material after 4% water solution (a) and 100% concentrate (b) in comparison 

to material without disinfection. 
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Figure 2. Strain–stress curves of colored PETG material after 4% water solution (a) and 100% concentrate (b) in comparison 

to material without disinfection. 

In the case of colored PETG, there is also visible a slight decrease in tensile strength 

of samples subjected to HLD, but it is lower than 5% compared to non-disinfected sam-

ples. A base for the pigment addition could increase the material’s chemical resistance and 

lower the influence of a disinfection liquid. That hypothesis could be proven by the DIC 

analysis shown in Table 6. 
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Figure 2. Strain–stress curves of colored PETG material after 4% water solution (a) and 100% concentrate (b) in comparison 

to material without disinfection. 

In the case of colored PETG, there is also visible a slight decrease in tensile strength 

of samples subjected to HLD, but it is lower than 5% compared to non-disinfected sam-

ples. A base for the pigment addition could increase the material’s chemical resistance and 

lower the influence of a disinfection liquid. That hypothesis could be proven by the DIC 

analysis shown in Table 6. 
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Figure 2. Strain–stress curves of colored PETG material after 4% water solution (a) and 100% concentrate (b) in comparison 

to material without disinfection. 

In the case of colored PETG, there is also visible a slight decrease in tensile strength 

of samples subjected to HLD, but it is lower than 5% compared to non-disinfected sam-

ples. A base for the pigment addition could increase the material’s chemical resistance and 

lower the influence of a disinfection liquid. That hypothesis could be proven by the DIC 

analysis shown in Table 6. 
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Figure 2. Strain–stress curves of colored PETG material after 4% water solution (a) and 100% concentrate (b) in comparison 

to material without disinfection. 

In the case of colored PETG, there is also visible a slight decrease in tensile strength 

of samples subjected to HLD, but it is lower than 5% compared to non-disinfected sam-

ples. A base for the pigment addition could increase the material’s chemical resistance and 

lower the influence of a disinfection liquid. That hypothesis could be proven by the DIC 

analysis shown in Table 6. 
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Figure 2. Strain–stress curves of colored PETG material after 4% water solution (a) and 100% concentrate (b) in comparison 

to material without disinfection. 

In the case of colored PETG, there is also visible a slight decrease in tensile strength 

of samples subjected to HLD, but it is lower than 5% compared to non-disinfected sam-

ples. A base for the pigment addition could increase the material’s chemical resistance and 

lower the influence of a disinfection liquid. That hypothesis could be proven by the DIC 

analysis shown in Table 6. 
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Figure 2. Strain–stress curves of colored PETG material after 4% water solution (a) and 100% concentrate (b) in comparison 

to material without disinfection. 

In the case of colored PETG, there is also visible a slight decrease in tensile strength 

of samples subjected to HLD, but it is lower than 5% compared to non-disinfected sam-

ples. A base for the pigment addition could increase the material’s chemical resistance and 

lower the influence of a disinfection liquid. That hypothesis could be proven by the DIC 

analysis shown in Table 6. 
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Figure 2. Strain–stress curves of colored PETG material after 4% water solution (a) and 100% concentrate (b) in comparison 

to material without disinfection. 

In the case of colored PETG, there is also visible a slight decrease in tensile strength 

of samples subjected to HLD, but it is lower than 5% compared to non-disinfected sam-

ples. A base for the pigment addition could increase the material’s chemical resistance and 

lower the influence of a disinfection liquid. That hypothesis could be proven by the DIC 

analysis shown in Table 6. 

Table 6. DIC results for colored PETG samples in the condition without HLD, in 4% water solution HLD and 100% con-

centrate HLD 

PC0 

Initial Condition Rp0.2 Rm Breaking Point Fracture Scale 

Strain X Strain Y Strain X Strain Y Strain X Strain Y Strain X Strain Y 

 

PC4_05 

Initial Condition Rp0.2 Rm Breaking Point Fracture Scale 

Strain X Strain Y Strain X Strain Y Strain X Strain Y Strain X Strain Y 

PC4_12 

Initial Condition Rp0.2 Rm Breaking Point Fracture Scale 

Strain X Strain Y Strain X Strain Y Strain X Strain Y Strain X Strain Y 

 

12 

0 

2 

4 

8 

10 

6 

ε (%) 

12 

0 

2 

4 

8 

10 

6 

ε (%) 

12 

0 

2 

4 

8 

10 

6 

ε (%) 

Materials 2021, 14, 4823 12 of 20 

Figure 2. Strain–stress curves of colored PETG material after 4% water solution (a) and 100% concentrate (b) in comparison 

to material without disinfection. 

In the case of colored PETG, there is also visible a slight decrease in tensile strength 

of samples subjected to HLD, but it is lower than 5% compared to non-disinfected sam-

ples. A base for the pigment addition could increase the material’s chemical resistance and 

lower the influence of a disinfection liquid. That hypothesis could be proven by the DIC 

analysis shown in Table 6. 
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Figure 2. Strain–stress curves of colored PETG material after 4% water solution (a) and 100% concentrate (b) in comparison 

to material without disinfection. 

In the case of colored PETG, there is also visible a slight decrease in tensile strength 

of samples subjected to HLD, but it is lower than 5% compared to non-disinfected sam-

ples. A base for the pigment addition could increase the material’s chemical resistance and 

lower the influence of a disinfection liquid. That hypothesis could be proven by the DIC 

analysis shown in Table 6. 
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Figure 2. Strain–stress curves of colored PETG material after 4% water solution (a) and 100% concentrate (b) in comparison 

to material without disinfection. 

In the case of colored PETG, there is also visible a slight decrease in tensile strength 

of samples subjected to HLD, but it is lower than 5% compared to non-disinfected sam-

ples. A base for the pigment addition could increase the material’s chemical resistance and 

lower the influence of a disinfection liquid. That hypothesis could be proven by the DIC 

analysis shown in Table 6. 
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Figure 2. Strain–stress curves of colored PETG material after 4% water solution (a) and 100% concentrate (b) in comparison 

to material without disinfection. 

In the case of colored PETG, there is also visible a slight decrease in tensile strength 

of samples subjected to HLD, but it is lower than 5% compared to non-disinfected sam-

ples. A base for the pigment addition could increase the material’s chemical resistance and 

lower the influence of a disinfection liquid. That hypothesis could be proven by the DIC 

analysis shown in Table 6. 

Table 6. DIC results for colored PETG samples in the condition without HLD, in 4% water solution HLD and 100% con-
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Figure 2. Strain–stress curves of colored PETG material after 4% water solution (a) and 100% concentrate (b) in comparison 

to material without disinfection. 

In the case of colored PETG, there is also visible a slight decrease in tensile strength 

of samples subjected to HLD, but it is lower than 5% compared to non-disinfected sam-

ples. A base for the pigment addition could increase the material’s chemical resistance and 

lower the influence of a disinfection liquid. That hypothesis could be proven by the DIC 

analysis shown in Table 6. 
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Figure 2. Strain–stress curves of colored PETG material after 4% water solution (a) and 100% concentrate (b) in comparison 

to material without disinfection. 

In the case of colored PETG, there is also visible a slight decrease in tensile strength 

of samples subjected to HLD, but it is lower than 5% compared to non-disinfected sam-

ples. A base for the pigment addition could increase the material’s chemical resistance and 

lower the influence of a disinfection liquid. That hypothesis could be proven by the DIC 

analysis shown in Table 6. 

Table 6. DIC results for colored PETG samples in the condition without HLD, in 4% water solution HLD and 100% con-

centrate HLD 

PC0 

Initial Condition Rp0.2 Rm Breaking Point Fracture Scale 

Strain X Strain Y Strain X Strain Y Strain X Strain Y Strain X Strain Y 

 

PC4_05 

Initial Condition Rp0.2 Rm Breaking Point Fracture Scale 

Strain X Strain Y Strain X Strain Y Strain X Strain Y Strain X Strain Y 

PC4_12 

Initial Condition Rp0.2 Rm Breaking Point Fracture Scale 

Strain X Strain Y Strain X Strain Y Strain X Strain Y Strain X Strain Y 

 

12 

0 

2 

4 

8 

10 

6 

ε (%) 

12 

0 

2 

4 

8 

10 

6 

ε (%) 

12 

0 

2 

4 

8 

10 

6 

ε (%) 

Materials 2021, 14, 4823 12 of 20 

Figure 2. Strain–stress curves of colored PETG material after 4% water solution (a) and 100% concentrate (b) in comparison 

to material without disinfection. 

In the case of colored PETG, there is also visible a slight decrease in tensile strength 

of samples subjected to HLD, but it is lower than 5% compared to non-disinfected sam-

ples. A base for the pigment addition could increase the material’s chemical resistance and 

lower the influence of a disinfection liquid. That hypothesis could be proven by the DIC 

analysis shown in Table 6. 

Table 6. DIC results for colored PETG samples in the condition without HLD, in 4% water solution HLD and 100% con-
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Figure 2. Strain–stress curves of colored PETG material after 4% water solution (a) and 100% concentrate (b) in comparison 

to material without disinfection. 

In the case of colored PETG, there is also visible a slight decrease in tensile strength 

of samples subjected to HLD, but it is lower than 5% compared to non-disinfected sam-

ples. A base for the pigment addition could increase the material’s chemical resistance and 

lower the influence of a disinfection liquid. That hypothesis could be proven by the DIC 

analysis shown in Table 6. 

Table 6. DIC results for colored PETG samples in the condition without HLD, in 4% water solution HLD and 100% con-
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Figure 2. Strain–stress curves of colored PETG material after 4% water solution (a) and 100% concentrate (b) in comparison 

to material without disinfection. 

In the case of colored PETG, there is also visible a slight decrease in tensile strength 

of samples subjected to HLD, but it is lower than 5% compared to non-disinfected sam-

ples. A base for the pigment addition could increase the material’s chemical resistance and 

lower the influence of a disinfection liquid. That hypothesis could be proven by the DIC 

analysis shown in Table 6. 

Table 6. DIC results for colored PETG samples in the condition without HLD, in 4% water solution HLD and 100% con-
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Figure 2. Strain–stress curves of colored PETG material after 4% water solution (a) and 100% concentrate (b) in comparison 

to material without disinfection. 

In the case of colored PETG, there is also visible a slight decrease in tensile strength 

of samples subjected to HLD, but it is lower than 5% compared to non-disinfected sam-

ples. A base for the pigment addition could increase the material’s chemical resistance and 

lower the influence of a disinfection liquid. That hypothesis could be proven by the DIC 

analysis shown in Table 6. 

Table 6. DIC results for colored PETG samples in the condition without HLD, in 4% water solution HLD and 100% con-
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Figure 2. Strain–stress curves of colored PETG material after 4% water solution (a) and 100% concentrate (b) in comparison 

to material without disinfection. 

In the case of colored PETG, there is also visible a slight decrease in tensile strength 

of samples subjected to HLD, but it is lower than 5% compared to non-disinfected sam-

ples. A base for the pigment addition could increase the material’s chemical resistance and 

lower the influence of a disinfection liquid. That hypothesis could be proven by the DIC 

analysis shown in Table 6. 
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Regarding obtained DIC results, there is a visible a different behavior of the material
after HLD in 4% water solution and 100% concentrate. After disinfection in 4% water
solution, there was an equal strain distribution, which cannot be concluded in samples that
were sunk in 100% concentrate. Also, those samples have a visible increase in strain across
the X-axis (especially in the breaking point) in comparison to samples held in a 4% water
solution. It could be related to the significant concentration of the disinfection liquid, which
did not affect that kind of phenomenon in 4% water solution. It is worth mentioning that
after HLD in all cases, there was not any discoloration of samples and liquid after each
disinfection period. Hence, it could be stated that color pigment does not affect material
properties after different types of HLD. The only one phenomenon of that kind of addition
is the positive influence of chemical resistance.

The last type of sample was AM using the ABS medical. Strain–stress curves after
tensile testing of that kind of material are shown in Figure 3.
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ABS medical is characterized by a lack of significant influence of used HLD. The only
one registered phenomenon is a slight decrease in the ultimate tensile strength (UTS) of
samples held in 4% water solution, which could be connected with a hygroscopicity of the
ABS. Similar insights were spotted in the DIC results shown in Table 7.
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Table 7. DIC results for ABS medical samples in the condition without HLD, in 4% water solution HLD and 100%
concentrate HLD.
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Initial Condition Rp0.2 Rm Breaking Point Fracture Scale
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(a) (b) 

Figure 3. Strain–stress curves of colored PETG material after 4% water solution (a) and 100% concentrate (b) in comparison 

to material without any disinfection. 

ABS medical is characterized by a lack of significant influence of used HLD. The only 

one registered phenomenon is a slight decrease in the ultimate tensile strength (UTS) of 

samples held in 4% water solution, which could be connected with a hygroscopicity of the 

ABS. Similar insights were spotted in the DIC results shown in Table 7. 
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(a) (b) 

Figure 3. Strain–stress curves of colored PETG material after 4% water solution (a) and 100% concentrate (b) in comparison 

to material without any disinfection. 

ABS medical is characterized by a lack of significant influence of used HLD. The only 

one registered phenomenon is a slight decrease in the ultimate tensile strength (UTS) of 

samples held in 4% water solution, which could be connected with a hygroscopicity of the 

ABS. Similar insights were spotted in the DIC results shown in Table 7. 
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ABS medical material is characterized by a lack of any changes between samples
before and after HLD in all used conditions. A fracture mechanism of all samples was
similar–equal strain distribution in the UTS point and one, clearly visible fracture spot.
Hence, that kind of material seems to be the most suitable for parts production which will
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be subjected to additional HLD to allow further usage from the tensile properties point
of view.

Comparing all tested materials: PETG, colored PETG, and ABS medical, there are
visible typical phenomena for those materials: ABS is characterized by 30% lower UTS than
PETG with similar total strain values. In the case of comparison between colored PETG
and noncolored there is visible a positive influence of pigment which make the material
more resistant to disinfection but also lowered its UTS. Also, there are visible different
phenomena registered during DIC where the PETG strain mechanism is strictly affected by
the direction of material line distribution. At the same time in the ABS such behavior is
local and the highest strain values are present in the necking area.

5. Summary and Conclusions

Based on obtained research results it could be stated that there is visible a slight
influence of HLD on the material’s structure, its tensile properties, and strain mechanism.
Regarding that kind of analysis, there were some changes registered that negatively affected
PETG material. It has been proven that filament pigmentation does not affect material
properties after HLD and does not cause any discoloration of the parts. Such phenomenon
was observed during a longer analysis made by Buozi Moffa et al. [22] where there was
also no discoloration registered. Using other types of disinfection for polymers such as
photodynamic treatment [23] or microwaves [24] would negatively affect the mechanical
properties of obtained parts by extending glass temperature or even plasticizing temper-
ature which causes material degradation [25–27]. Such phenomena affect the material
structure and also decrease its fatigue properties [28–30].

Regarding conducted research, the authors could form the following conclusions:

1. AM technologies could be used to produce human life and health protection parts
for sudden, unexpected cases. However, the layered structure of the obtained parts
during the AM and some tiny pores between the infill and outline lines connection
increases the possibility of penetration of that kind of imperfections by some fluids or
bacteria strains. Form two types of tested materials, ABS medical seems to be a better
candidate to produce such parts using AM.

2. Pure PETG material is exposed to an even 20% decrease in tensile strength after HLD.
3. Addition of color pigment in PETG material does not affect parts discoloration or de-

crease in tensile properties. It even slightly increases the material’s chemical resistance.
4. Registered phenomenon with tensile strength decreasing observed in PETG samples

could be related to the different alcohol diffusivity and solubility in these two materials.
Additionally, the presence of the alcohol between extruded material lines could affect
the joint volume between those lines. Another important issue is the fact that used
in the research ABS material was dedicated for medical solutions—so its chemical
resistance was increased to allow proper disinfection. PETG was a typical material
available in the market which was not adopted for such a solution, but during the
pandemic, it was the most popular material used in AM of tools dedicated for a fight
against COVID19.

The next step in our research would be to investigate how long the liquid will stay
inside the sample. If it would be a few hours, it would not impact drastically the usage
daily. This is also an important question of whether the disinfectant reacts with the material.
Further examination is required.

To reduce the presence of revealed voids in the structure of the parts a kind of heat
treatment with an additional vacuum (like hot isostatic pressing in AM metals) could
be used, which make it possible to fit that kind of technology for medical solutions and
broader usage in that kind of application which could be another topic for further research.
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