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Abstract
The search for therapeutic targets for Parkinson’s disease (PD) is hindered by the incomplete understanding of the pathophys-
iology of the disease. Mitochondrial dysfunction is an area with high potential. The neurobiological signaling connections
between the gut microbiome and the central nervous system are incompletely understood. Multiple lines of evidence suggest
that the gut microbiota participates in the pathogenesis of PD. Gut microbial dysbiosis may contribute to the loss of dopaminergic
neurons through mitochondrial dysfunction. The intervention of gut microbial metabolites via the microbiota-gut-brain axis may
serve as a promising therapeutic strategy for PD. In this narrative review, we summarize the potential roles of gut microbial
dysbiosis in PD, with emphasis onmicrobial metabolites and mitochondrial function. We then review the possible ways in which
microbial metabolites affect the central nervous system, as well as the impact of microbial metabolites on mitochondrial
dysfunction. We finally discuss the possibility of gut microbiota as a therapeutic target for PD.
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Parkinson’s Disease and Mitochondrial
Dysfunction

Parkinson’s disease (PD) is a primary neurodegenerative dis-
ease and the most common cause of Parkinsonism, which is
characterized by the loss of dopaminergic neurons in the
substantia nigra pars compacta (SNpc) and the accumulation
of α-synuclein into Lewy body inclusions [1]. To date, the
etiology and pathophysiology of PD are incompletely under-
stood. Similar to other neurodegenerative disorders, the etiol-
ogy of PD involves both environmental and genetic factors.

Defects in the mitochondrial respiratory chain complex I
have been found in post-mortem brains from patients with
sporadic PD [2]. Environmental factors that affect PD etiology
such as 1-methyl-4-phenyl-1,2,3,6-tetrahydrodropyridine
(MPTP) and rotenone mainly inhibit the function of the mito-
chondrial respiratory chain by damaging the mitochondrial
complex I, leading to bioenergetics failure and subsequent cell
death. MPTP and rotenone are being used to induce PD ani-
mal and cell models [3]. Familial PD is commonly associated
with genetic mutations of proteins including α-synuclein,
parkin, phosphatases and tensin homolog deleted on chromo-
some ten (PTEN)-induced putative kinase 1 (PINK1), DJ-1 (al-
so called Parkinson disease protein 7), and leucine-rich repeat
kinase (LRRK)2 [4].Many of these risk genes for PD are related
to mitochondrial function (Table 1). As such, mitochondrial
dysfunction may play a central role in the pathogenesis of PD.
This aspect has been extensively reviewed elsewhere (see re-
view in [2]). Although familial PD accounts for only a small
percentage of PD cases, rare single-gene mutations are highly
effective in causing mitochondrial dysfunction, including muta-
tions in PINK1, parkin, and DJ-1. By contrast, more common
genetic risk factors such as LRRK2 and some alpha-synuclein
(SNCA) genes that encode α-synuclein cause less severe mito-
chondrial dysfunction for unknown reasons (Fig. 1) [34].
Current research suggests that mitochondrial dysfunction is
caused by multiple types of damage, including defects
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in mitochondrial energy metabolism, disorders of calcium ho-
meostasis, production of reactive oxygen species (ROS), and
abnormalities in mitochondrial dynamics. These forms of dam-
age lead to insufficient mitochondrial energy supply, increased

expression of mitochondrial-dependent pro-apoptotic pathways,
and mitochondrial fragmentation [36].

In this narrative review, we first summarize the associa-
tions among gut microbiota, mitochondrial dysfunction, and
PD pathogenesis. We then review possible ways in which
microbial metabolites affect the central nervous system
(CNS) and mitochondrial function. Finally, we discuss the
potentials of gut microbiota as a therapeutic target for PD.

Association of PD Pathogenesis
with Gastrointestinal Dysfunction and Gut
Dysbiosis

The understanding of gastrointestinal (GI) dysfunction in pa-
tients with PD is increasing. The enteric nervous system
(ENS) and vagus nerve may be affected as early as the pro-
dromal phase of the disease [37]. Clinically, constipation, a
common non-motor symptom of PD, can appear several years
earlier than motor symptoms do. Pathologically, the hallmark

Table 1 Familial PD genes and their potential role in mitochondrial dysfunction (modified from [5])

Genes Associated mitochondrial dysfunction References

α-synuclein
(Park1/4)

Reduced Complex I activity and oxygen consumption rate
Abnormal mitochondrial morphology, Ca2+ dyshomeostasis
Abnormal ER-mitochondria transport

[6–8]

Parkin (Park2) Reduced mitochondrial respiration, oxidative damage
Mitochondrial functional integrity
Reduced mitochondrial biogenesis
Abnormal mitochondria
High mitochondrial ROS

[9–12]

PINK1 (Park6) Reduced electron transfer cascade enzyme function
Reduced ATP production, Ca2+ dyshomeostasis
Reduced mitochondrial function, fission
Abnormal mitochondria and high mitochondrial ROS
Abnormal mitochondrial Ca2+ handling

[12–16]

DJ1 (Park7) Abnormal mitochondrial morphology
Uncoupled mitochondria
Glycolytic shift
Mutants induce mitochondrial fragmentation

[17–19]

LRRK2 (Park8) Reduced ATP production and membrane potential
Abnormal mitochondrial fission/fusion
Delayed Miro degradation and mitophagy

[20–22]

ATP13A2 (Park9) Mutant causes low mitochondrial oxygen consumption rate, reduced ATP synthesis [23]

HTRA2 (Park13) Mitochondrial morphological abnormalities
Low respiration, increased sensitivity to apoptosis

[24, 25]

FBXO7 (Park15) Impaired ubiquitin-proteasome system, reduced mitophagy leading to accumulation of dysfunctional mitochondria
Mitochondrial accumulation of aggregates

[26, 27]

VPS35 Park17 Mitochondrial fragmentation, reduced oxygen consumption [28]

CHCHD2 (Park22) Decreased complex I activity, respiration, increased ROS transcription factor for complex IV subunit cytochrome c
oxidase 4I2

Dysregulated apoptosis

[29–31]

PLA2G6 Decreased mitochondrial membrane potential and function [32]

GBA Reduced macro-autophagy leading to accumulation of dysfunctional mitochondria [33]

PD, Parkinson’s disease; ER, endoplasmic reticulum; ROS, reactive oxygen species; ATP, adenosine triphosphate

Fig. 1 Relationship between PD-related gene mutations and mitochon-
drial dysfunction. The frequency of PD-related gene mutations is inverse-
ly proportional to the severity of mitochondrial dysfunction (modified
from [34]). Most variants identified thus far confer relatively small incre-
ments in risk, and explain only a small proportion of familial clustering,
leading many to question how the remaining, “missing” heritability can
be explained [35]
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protein of PD, i.e., α-synuclein, accumulates first in the intes-
tinal submucosal plexus [38]. Patients with PD have increased
expression of proinflammatory cytokines and glial markers in
colonic biopsies, which may intensify the accumulation of α-
synuclein [39]. Hypothetically, abnormal α-synuclein begins
to accumulate in the GI tract is transported to the CNS via the
reverse axon transport system in the vagus nerve [40]. Except
for direct damage to dopaminergic neurons, α-synuclein de-
posited in the brain promotes a neuroinflammatory
response furthering aggravating neurodegeneration [41].

The gut microbiota is composed of a variety of microor-
ganisms including bacteria, viruses, and eukaryotes [42]. As
an extension of the concept of the gut-brain axis, the
microbiota-gut-brain axis represents a complex multidirec-
tional cross-talk system between the gut microbiota, the
ENS, and the CNS, which integrates immunological, neuro-
endocrine, and neurological processes [43]. Although the
composition of the gut microbiota is relatively stable in adult-
hood, it can still be disrupted by factors such as diet, infection,
lifestyle, and the environment [44], as illustrated by the term
dysbiosis. The association between gut dysbiosis and changes
in microbial metabol i tes in PD was extensively
reviewed elsewhere [45]. Importantly, the regulation of motor
deficits and neuroinflammation by the gut microbiota has
been confirmed in a murine model of PD [46].

Changes in the gut microbiota of PD patients may increase
the risk of weakened intestinal mucosal protection and bacte-
rial translocation. For example, Akkermansia muciniphila in
PD patients is more abundant at the genus level. The increase
in Akkermansia muciniphila, which degrades mucin, may be
one of the reasons for the increased intestinal permeability in
patients with PD [47]. Nevertheless, the increase in
Akkermansia is not necessarily unfavorable. Studies have
shown that niacinamide (NAM) produced by Akkermansia
has potential therapeutic significance in neurodegenerative
diseases [48]. These conflicting findings regarding the role
of Akkermansia require further investigation.

Short-chain fatty acids (SCFAs) provide energy to colon
cells and prevent the increase of intestinal mucosal permeabil-
ity to reduce bacterial translocation [49]. The abundance of
gut microbiota that produce SCFAs at the genus or species
level is lower in patients with PD, and a significant decrease in
SCFAs has been observed in the intestines of these patients.
Conversely, SCFAs promote α-synuclein accumulation and
aggravate PD motor symptoms at a certain dose in murine
models [46].

Microbial Metabolites and Mitochondrial
Dysfunction in PD: Is There a Link?

Multiple lines of evidence support the remote regulation of
CNS function by gut microbiota. For example, germ-free

(GF) mice showed less anxiety than specific pathogen-free
(SPF) mice, along with decreased expression of receptors re-
lated to anxiety and learning in the amygdala [50].
Additionally, antibiotic treatment for gut microbiota effective-
ly improved the symptoms of patients with hepatic encepha-
lopathy [51]. Using mice that overexpress α-synuclein, re-
searchers found that gut microbiota were required for α-
synuclein pathology and microglia activation and also played
a role in the development of motor deficits [46]. Antibiotic
treatment ameliorated, while microbial recolonization promot-
ed, the pathophysiology in adult animals [46]. Importantly,
oral administration of specific microbial metabolites to GF
mice promoted neuroinflammation and motor symptoms [46].

The communication between the gut microbiota and
CNS via microbial metabolites mainly occurs in two ways
(Fig. 2): (1) The gut microbial metabolites reach the sub-
mucosa of the intestine; enter the enterohepatic circulation,
pulmonary circulation, and systemic circulation in turn; and
finally reach the brain [52], and (2) intestinal signals stim-
ulate the intestinal submucosal nerve plexus and propagate
along the vagus nerve to the CNS. Animal studies further
confirmed the existence of an intestinal ascending pathway,
including the right nodose, the parabrachio-nigral pathway,
and its targets in the dorsal striatum, which connects intes-
tinal signals with dopamine (DA) release in the substantia
nigra [53].

The gut microbiota converts substrates into different me-
tabolites including SCFAs, NAM, bile acids (BAs), and neu-
rotransmitters [54–57]. As a consequence of the disruption of
the gut microbiota, normal signal transmission from the gut
microbiota to the brain is disrupted, which may contribute to
the pathological mechanism of neuropsychiatric diseases [45].
Some researchers suggest that the imbalance of gut microbio-
ta, which leads to an increase in damaging factors, results in
neurodegenerative processes, with mitochondria as the target
[58]. In this section, we review several microbial metabolites
related to PD and focus on their impact on mitochondrial
dysfunction (Table 2).

SCFAs

SCFAs are exclusively produced by the gut microbiota
through saccharolytic fermentation. Acetate is produced by
most gut anaerobes, propionate is mainly produced by
Bacteroidetes, and butyrate is mainly produced by
Firmicutes [42, 65]. In the gut, SCFAs are required for peri-
stalsis and tomaintain the intestinal barrier [83]. Stool samples
from PD patients showed reduced levels of SCFA-producing
bacteria though the significance of the pathogenic mechanism
remains unknown [84]. In a rotenone-induced drosophila
model of PD, SCFAs had a dose-dependent neuroprotective
effect on improving motor symptoms by upregulating histone
acetylation to increase DA levels [85]. SCFAs can also
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upregulate the expression of tyrosine hydroxylase (TH)
mRNA by inhibiting histone deacetylase (HDAC) [86].
HDAC is considered to optimize mitochondrial function
by reducing oxidative stress and enhancing mitochondrial
oxidative phosphorylation [87]. In addition, the colon cells
from GF mice show energy deficiency; however, the addi-
tion of butyrate can prevent mitochondrial energy metabo-
lism defects by providing acetyl coenzyme A (acetyl-CoA),
which participates in the mitochondrial tricarboxylic acid
cycle [67]. Oral butyrate alleviated the damage of mito-
chondria in the brains of d-amphetamine-treated rats [88],
suggesting that SCFAs in the intestine can be systematical-
ly circulated to the brain to improve mitochondrial function
in the CNS.

Mitochondria are dynamic organelles that constantly under-
go fission and fusion. The transition to fusion optimizes the
function of the mitochondria and helps maintain their long-
term bioenergy capabilities. Conversely, the transition to fis-
sion results in the production of large amounts of mitochondrial
fragments and autophagy of the damaged mitochondria [68].
Butyrate treatment significantly increased the expression of
fusion protein mRNA, and the transcription of fission protein
continued to decrease in liver specimens from mice [68]. The
guiding effect of SCFAs on mitochondrial dynamics improves
the bioenergetic efficiency (Fig. 3).

Neurotransmitters

Neurotransmitters play a significant role in GI physiology.
DA, γ-aminobutyric acid (GABA), and serotonin (5-hydroxy-
tryptamine, 5-HT) influence gut motility, nutrient absorption,
the innate immune system in the GI tract, and the microbiome
[89]. Neurotransmitter levels may be altered by GI distur-
bances in patients with PD. According to the literature, enteric
neurotransmitters that affect CNS signal transmission are
more likely to be induced through vagal signaling. Of note
is that the blood-brain barrier (BBB) is damaged in PD pa-
tients [90]; therefore, gut-derived neurotransmitters may enter
the circulation and cross the damaged BBB to the brain [91,
92].

Histamine-producing bacteria isolated from stool samples
include Escherichia coli, Morganella morganii, and
Lactobacillus vaginalis [93]. Lactobacillus, Lactococcus,
Streptococcus, Pediococcus, and Enterococcus spp. all have
histidine decarboxylase activity and can produce histamine
[76]. In the stool of PD patients, histamine-producing
Lactobacillus, Streptococcus, and Enterococcus are more
abundant compared to that in the control group [47, 94].
Histamine concentrations were significantly increased in the
putamen, SNpc, and globus pallidus in PD patients [95]. As
these regions play a crucial role in motor function, the

Fig. 2 Two main bidirectional information communication pathways
between the gut and the brain. Under pathophysiological conditions, gut
dysbiosis may alter intestinal permeability, increase bacterial
translocation, and initiate TLR-mediated intestinal inflammation.
Proinflammatory factors involved in local intestinal inflammatory reac-
tions and disordered gut inflammation may reach the brain to induce
mitochondrial dysfunction. The gut-brain communication via microbial
metabolites mainly implicate two anatomical pathways: (1) The gut

microbial metabolites reach the submucosa of the intestine; enter the
enterohepatic circulation, pulmonary circulation, and systemic circulation
in turn; and finally reach the brain, and (2) intestinal signals signalled
by the intestinal submucosal nerve plexus propagate along the vagus
nerve to the CNS. 5-HT, 5-hydroxytryptamine; BAs, bile acids; CNS,
central nervous system; GABA, γ-aminobutyric acid; GLP-1, glucagon-
like peptide 1; NAM, niacinamide; PYY, peptide YY; SCFAs, short-
chain fatty acid; TLR, toll-like receptor; Trp, tryptophan
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selective increase of histamine is suggestive of the patholog-
ical changes in PD [95]. Histamine binds to four types of
receptors and mediates a wide range of physiological effects
throughout the body. The receptors widely expressed in the
CNS determine the universal function of histamine. Histamine
1 receptor (H1R) is the main histamine receptor in the brain
and has an excitatory effect [96]. H2R activation results in the
excitation of neural cells [96]. H3R is located on the axons of
neurons and dendrites, providing negative feedback to inhibit
histamine synthesis and the release of histamine and other
neurotransmitters [97]. H4R is present in microglia, but its
function is unclear [97]. Due to the extensive distribution of
histamine receptors and the diversity of their functions, the
mechanism of histamine receptors in PD remains elusive.
H2R activat ion promotes cel l apoptosis through
mitochondria-dependent apoptotic pathways [79]. H2R activa-
tion increases the expression of the pro-apoptotic protein Bax in
cardiomyocytes. The translocation of Bax protein to the outer
mitochondrial membrane increases the permeability of the mi-
tochondrial membrane, consequently promoting the release of
pro-apoptotic factors such as cytochrome c. In addition, the
expression of extracellular-regulated protein kinases 1/2
(ERK1/2) is also increased by activated H2R to promote the

release of cytochrome c [79, 98]. Cytochrome c is released into
the cytoplasm, leading to the expression of caspase-3, which
induces the apoptosis of cells [79]. Elevated histamine aggra-
vates cell apoptosis by binding to H2R. In the PD mouse mod-
el, the H2R antagonist ranitidine reduced the expression of
ERK1/2 in the striatum [99]. These results suggest that
blocking H2R may be a beneficial treatment option for PD by
reducing the expression of mitochondrial-dependent apoptotic
pathways (Fig. 3).

Bacteroides, Parabacteroides, and Escherichia species active-
ly express the GABA production pathway in healthy human
stool and produce GABA in the intestine [100]. The abundance
of Parabacteroides and Bacteroides was found to be elevated in
PD patients compared to that in the control group [101, 102].
Magnetic resonance spectroscopy revealed that the increase of
GABA in the pons, basal ganglia, and thalamus is associated
with the degree of bradykinesia and rigidity in PD patients
[103]. Treatment with Lactobacillus rhamnosus resulted in the
increase of GABA levels in the brain of mice, yet the neuro-
chemical effects were not observed in vagotomized mice [104,
105], which demonstrates the vagus nerve acts as a significant
pathway in the remote regulation of the brain by intestinal mi-
crobes. Indeed, individuals that underwent full truncal vagotomy

Table 2 Microbial metabolites related to the pathogenesis of PD

Microbial metabolites Bacterial genera Gut-brain
communication

Mechanisms in the pathogenesis of PD

NAM 63% human gut bacteria
genomes [56]

Circulation [59] NAM acts as a precursor of NAD to provide coenzymes required by
the mitochondrial respiratory chain and protect mitochondria from
damage [60].

BAs Clostridium, Eubacteria
[61]

Circulation [62] TUDCA and UDCA promote mitophagy to protect mitochondrial
function [63, 64].

SCFAs Most gut anaerobes: acetate
Firmicutes: butyrate
Bacteroidetes: propionate

[42, 65]

Circulation and
vagus nerve
[66]

SCFAs act as energy substrates for mitochondria and promote
mitochondrial fusion [67, 68]

Tryptophan Escherichia coli
Tryptophan is primarily

dependent on exogenous
uptake [69]

Circulation [70] 1. KP: The neuroprotective metabolites of KP such as KYNA,
picolinic acid, and NAD+, and neurotoxic products such as QA,
3-HK [71].

2. Serotonin pathway: 5-HT in the brain is related to memory, mood,
cognitive function, and severity of resting tremor in PD [72, 73].
Melatonin provides a substrate for the mitochondrial respiratory
chain and reduces oxidative stress and apoptosis [74, 75].

Neurotransmitters Histamine Escherichia coli
Morganella morganii
Lactobacillus Lactococcus
Streptococcus
Pediococcus
Enterococcus spp [76, 77]

Vagus nerve
[78]

Histamine activates H2R to increase mitochondria-dependent apo-
ptosis [79].

GABA Lactobacillus
Bifidobacterium [80]

Vagus nerve
[81]

GABA can accurately control the quantity of Ca2+ that enters the cell
to protect mitochondria from damage caused by Ca2+ overload [82].

PD, Parkinson’s disease; NAM, niacinamide; NAD, nicotinamide adenine dinucleotide; BAs, bile acids; TUDCA, tauro ursodesoxy cholic acid; UDCA,
ursodesoxy cholic acid; SCFA, short-chain fatty acid; KP, kynurenine pathway; QA, quinolinic acid; 3-HK, 3-hydroxykynurenine; KYNA, kynurenic
acid; 5-HT, 5-hydroxytryptamine; H2R, histamine 2 receptor; GABA, γ-aminobutyric acid
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had a lower risk for subsequent PD, strongly implicating the
vagus nerve in the pathogenesis of PD and again corroborating
the involvement of an enteric pathogen or toxin.

A low calcium buffering capacity results in the loss of
dopaminergic neurons in the SNpc in patients with PD.
GABA can control the quantity of Ca2+ that enters a cell,
which may stabilize neuronal activity at the cellular and sys-
temic levels [82]. A mitochondrial matrix can be used as a
temporary buffer pool for intracellular Ca2+. The removal of
Ca2+ from mitochondria and cytoplasm requires a large
amount of cellular energy [106]. In experiments with
cardiomyocytes, a high intracellular Ca2+ load induced the
opening of mitochondrial permeability transition pores,
resulting in the release of pro-apoptotic factors into the cyto-
plasm, increased oxidative stress, and abnormal mitochondrial
membrane potential, ultimately leading to cell apoptosis
[107]. Therefore, GABA may protect mitochondrial function,
reduce oxidative stress, and consequently prevent the death of
dopaminergic neurons by preventing Ca2+ from entering do-
paminergic neurons.

Tryptophan and 5-HT

Tryptophan is primarily dependent on exogenous uptake, and
a small portion is produced by gut microbiota such as
Escherichia coli. Tryptophan can be metabolized by the gut
microbiota to aromatic hydrocarbon receptor ligands as well
as through the kynurenine pathway (KP) or the 5-HT pathway
[69]. Tryptophan metabolized via the KP can produce neuro-
protective metabolites, including kynurenic acid (KYNA),
picolinic acid, and NAD, and neurotoxic metabolites, includ-
ing quinolinic acid (QA) and 3-hydroxykynurenine (3-HK)
[71]. Tryptophan is more likely to be metabolized into neuro-
toxic compounds in PD patients. The level of KYNA is de-
creased in the putamen, SNpc, and the frontal cortex [108],
while QA in plasma and 3-HK in the SNpc and putamen are
increased in PD patients [109]. Tryptophan metabolized to 3-
HK and QA may be secondary to the inhibitory effects of
mitochondrial complex I, and the accumulation of 3-HK and
QA can aggravate neurotoxicity and oxidative stress. This
vicious circle further aggravates mitochondrial damage, sub-
sequently leading to the loss of SNpc dopaminergic neurons
[109].

In addition, 5-HT synthesis in the CNS can be regulated by
tryptophan [110], which affects behavior, emotion, and mem-
ory [111]. In PD, the severity of resting tremor and decreased
cognitive function is associated with the degeneration of 5-HT
neurons [72, 112]. Interestingly, as a metabolite of the 5-HT
pathway, melatonin has been shown to relieve the non-motor
symptoms of PD [113]. Mechanistically, melatonin reduces
the death of dopaminergic neurons by decreasing oxidative
stress and the expression of mitochondrial-dependent apopto-
tic pathways [74]. Melatonin also provides acetyl-CoA to

Fig. 3 Microbial metabolites affect neuronal mitochondrial function
through different pathways in PD. Mitochondria are responsible for the
production of adenosine triphosphate (ATP) via the combined efforts of
the tricarboxylic acid cycle and the respiratory chain/oxidative phosphor-
ylation system (OxPhos). The respiratory chain is a set of biochemically
linked complexes, namely complexes I, II, III, and IV with two electron
carriers, namely ubiquinone/CoQ and Cyt c. The energy stored in food
was used by the respiratory chain to generate a proton gradient across the
mitochondrial inner membrane, while at the same time transferring elec-
trons to oxygen and producing water. The energy of the proton gradient
drives ATP synthesis via ATP synthase (complex V). Gut microbial
metabolites have multiple regulatory effects on the mitochondrial func-
tion, including regulating complex I (TUDCA, NAM, NAD), the Cyt-c-
induced caspase-dependent apoptosis pathway (histamine), beta-
oxidation and acetylation (SCFA), PINK1/Parkin-induced mitophagy
(TUDCA), and mitochondrial dynamics (SCFA). MPTP and rotenone
mainly inhibit the function of the mitochondrial respiratory chain by
damaging mitochondrial complex I, leading to bioenergetics failure and
subsequent cell death, and they are often used as inducers of PD animal
and cell models. TUDCA, a taurine-bound form of UDCA, is an anti-
apoptotic agent by up-regulating mitophagy. TUDCA can upregulate the
expression of PINK1 and parkin to accelerate the clearance of damaged
mitochondria, promoting the survival of damaged neurons. Butyrate can
prevent mitochondrial energy metabolism defects by providing acetyl-
CoA, which participates in the mitochondrial tricarboxylic acid cycle.
Mitochondria are dynamic organelles that constantly undergo fission
and fusion. The transition to fusion optimizes the function of mitochon-
dria and helps maintain long-term bioenergy capabilities. Conversely, the
transition to fission will result in the production of large amounts of
mitochondrial fragments and autophagy of the damaged mitochondria.
Butyrate increases the expression of fusion protein mRNA and the tran-
scription of fission protein continues to decrease. The guiding effect of
SCFAs on mitochondrial dynamics improves the bioenergetic efficiency.
acyl-CoA, acyl-coenzyme A; acetyl-CoA, acetyl coenzyme A; ATP,
adenosine triphosphate; CoQ, coenzyme Q; Cyt c, cytochrome c;
DRP1, dynamin-related protein 1; ERK1/2, extracellular signal-
regulated kinase 1/2; Fis1, fission 1; H2R, histamine 2 receptor;
*MPP+, 1-methyl-4-phenyl pyridinium ion; MPTP, 1-methyl-4-phenyl-
1,2,3,6-tetrahydrodropyridine; NAD, nicotinamide adenine dinucleotide;
NADH, reduced form of nicotinamide-adenine dinucleotid; OPA1, optic
atrophy 1; PD, Parkinson’s disease; PINK1, phosphatases and tensin
homolog deleted on chromosome ten-induced putative kinase 1; ROS,
reactive oxygen species; SCFA, short-chain fatty acid; SIRT, sirtuin;
TCA, tricarboxylic acid cycle; TUDCA, tauro ursodesoxy cholic acid;
UDCA, ursodesoxy cholic acid. *MPP+ is an active metabolite ofMPTP,
a neurotoxin capable of causing selective destruction of dopaminergic
neurons
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mitochondria, which enhances the function of mitochondrial
bioenergetics [75]. Therefore, melatonin plays a protective
role in PD by optimizing mitochondrial function. Regulation
of the exogenous intake and metabolic pathway of tryptophan
may be a potential treatment target in PD.

BAs

BAs, including chenodeoxycholic acid (CDCA) and cholic
acid, are synthesized in the liver, stored in the gallbladder,
and released into the duodenum under the stimulation of food
]57 ]. Most BAs are reabsorbed in the intestine, but a small

proportion enter the colon and are biotransformed into second-
ary BAs [57]. Ursodeoxycholic acid (UDCA), the 7 beta-
hydroxy epimer of CDCA, is present in trace amounts [57].
An estimated millesimal bacterium in the colon, which be-
longs to the genus Clostridium, is able to transform primary
BAs to secondary BAs [61]. In the plasma of PD patients, the
glycine-bound form of UDCA was found to be lower [114],
whereas liver-derived primary bile acid, bacterially generated
secondary bile acid, and conjugated bile acids were elevated.
Notably, both L-dopa and combinational treatments could al-
leviate the elevations of BAs in PD patients [115].

Most types of primary and secondary BAs are found in the
human brain [62]. UDCA or tauro ursodesoxy cholic acid
(TUDCA) treatment improvedmotor performance, ameliorated
mitochondrial dysfunction and neuroinflammation, and
prevented the decline of striatal dopamine content in various
PD models. TUDCA, a taurine-bound form of UDCA, is an
anti-apoptotic agent that upregulates mitophagy [63]. TUDCA
can upregulate the expression of PINK1 and parkin in SH-
SY5Y cells to accelerate the clearance of damaged mitochon-
dria, promoting the survival of damaged neurons [63].
Moreover, in the PD model of rats, UDCA treatment rescued
the DA content in the striatum and relieved the motor symp-
toms by downregulating the expression of Bax andmaintaining
the integrity of the mitochondrial membrane. This effect was
accompanied by a decrease in the expression of the pro-
apoptotic pathway including caspase-9, caspase-3, and
caspase-8 [64]. We postulate that TUDCA and UDCA main-
tain mitochondrial function to reduce the damage of dopami-
nergic neurons by accelerating the clearance of damaged mito-
chondria and reducing the expression of pro-apoptotic path-
ways. UDCA and TUDCA appear to have the potential to
manage diseases associated with elevated apoptosis, including
neurodegeneration [116] (Fig. 3).

NAM

NAM, the amide form of vitamin B3 (niacin), is a precursor of
nicotinamide adenine dinucleotide (NAD) [117]. Systematic
evaluation of the genomes of 256 common human gut bacteria
revealed that niacin biosynthesis capability is present in 63%

of human gut microbiota genomes, including those of
Bacteroidetes, Clostridium, Proteobacteria, Actinobacteria,
and Firmicutes [56]. The level of NAD in the plasma of PD
patients is reduced, but the relationship with PD is still unclear
[118]. In the drosophila model of PD, NAM supplementation
significantly increased the level of NAD to enhance motor
function, to relieve oxidative stress, and tomaintainmitochon-
drial function [60]. NAD is an essential coenzyme in the mi-
tochondrial respiratory chain and serves as a substrate for
various enzymes. NAD-consuming enzymes, such as the
deacetylase sirtuin (SIRT) family and poly (ADP-ribose)
polymerases (PARPs), depend on NAD to exert their biolog-
ical effects [119].

In the dopaminergic neuron model of PD, NAD levels and
SIRT activity were significantly reduced. SIRT has been prov-
en to exert anti-aging and antioxidant effects. In macrophages,
SIRT regulates mitochondrial function through the
deacetylation of complex I and plays a key role in enhancing
antioxidant activity and resisting the increase in mitochondrial
ROS [120]. Since it depends on NAD to function, the protec-
tive effect of SIRT is significantly weaker in dopaminergic
neurons [121].

PARPs are enzymes involved in the nuclear DNA repair of
healthy cells. Excessive activation of PARPs is related to the
destruction of mitochondrial structure and the toxicity of do-
paminergic neurons [122]. In the PINK1 mutant drosophila
model, PARPs were found to be overexpressed. The mito-
chondrial damage caused by PARPs was rescued by adding
NAM to the diet [122]. The above evidence demonstrates the
therapeutic potential of NAM in PD models related to mito-
chondrial dysfunction (Fig. 2).

LPS

The intestinal barrier is maintained by a series of tight junction
proteins, including zonula occluden (ZO)-1 [123]. ZO-1 ex-
pression in patients with PD is significantly lower than that in
healthy controls. Lipopolysaccharide (LPS) is an endotoxin
produced by Gram-negative bacteria. Under physiological
conditions, the integrity of the intestinal barrier prevents bac-
teria and LPS from contact with the epithelial cells. An im-
paired intestinal barrier allows bacteria and LPS to penetrate
the epithelium into the circulation under the intestinal mucosa
[123]. The level of LPS markers in the colon and plasma of
PD patients is significantly increased, which results in the
activation of a series of inflammatory reactions, manifesting
as an increase in the T cell transport to the colonic mucosa and
the number of toll-like receptor 4 (TLR4)-positive cells (such
as dendritic cells and macrophages), which have been shown
to mediate inflammation [123].

LPS can be used to induce the animal model of PD.
Furthermore, rotenone treatment in TLR4-knockout (KO)
mice resulted in less intestinal inflammation, intestinal and
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motor dysfunction, neuroinflammation, and neurodegenera-
tion [123], which highlight the involvement of inflammation
in the pathogenesis of PD and communication between the
intestine and brain. The BBB prevents neurotoxic plasma
components, blood cells, and pathogens from entering the
brain. α-synuclein crosses the BBB bidirectionally, which
could signify an important contributory event in PD pathogen-
esis [124]. α-synuclein influx is increased following LPS-
induced BBB breakdown [124], suggesting that the high
levels of α-synuclein produced peripherally can enter the
brain in the presence of BBB breakdown, which may also
contribute to the development of PD pathology [125].

As a classic proinflammatory substance, LPS also seriously
affects mitochondrial function. LPS significantly induced mi-
tochondrial ROS production in the microglia model, and ROS
further activated the inflammation of the microglia [126]. LPS
seems to induce mitochondrial dynamics to be more prone to
fission and mitochondrial fragmentation [127]. In macro-
phages, LPS treatment downregulates PINK1-induced mito-
chondrial autophagy, leading to the accumulation of dysfunc-
tional mitochondria [128]. Taken together, LPS may contrib-
ute to pathological changes in PD, at least partially, by induc-
ing mitochondrial damage and aggravating apoptosis in dopa-
minergic neurons.

Can Gut Microbiota Serve as a Therapeutic
Target for PD?

Gut microbiota are affected by various endogenous and exog-
enous factors. The recovery and maintenance of gut microbi-
ota may represent a therapeutic option for diseases related to
dysbiosis. Targeting the gut microbiota using probiotics, anti-
biotics, and fecal microbial flora transplantation may restore
the composition of the gut microbiota, replenish beneficial
metabolites, and reduce harmful metabolites to address the
pathophysiology and mitigate the symptoms of PD.

Probiotics

Probiotics are living microbial preparations that are beneficial
to human health [129]. In mice, administration of
Lactobacillus rhamnosus increased the expression of GABA
in the brain and reduced anxiety and depression-related be-
haviors [104, 105]. A mixed probiotics preparation
(Bifidobacterium lactis, Lactobacillus acidophilus,
Lactobacillus paracasei, and Lactobacillus plantarum) raised
the level of SCFAs in in vitro experiments on the human colon
[130]. In patients with mental illness, some psychobiotics de-
fined as live bacteria are considered to relieve mental symp-
toms by promoting the synthesis of endogenous neurotrans-
mitters, such as GABA, catecholamines, and 5-HT [131].
Several studies have revealed the benefits of probiotics in

patients with PD, including the alleviation of constipation
and motor symptoms [132]. In an in vivo nonhuman primate
intestinal loop model of acquired immune deficiency syn-
drome, the provision of probiotics helped repair the intestinal
barrier to reduce bacterial translocation through the restoration
of mitochondrial function and an increase in the level of
SCFAs [133]. Taken together, controlling gut microbiota via
probiotics may provide SCFAs to the host to exert a protective
effect in PD.

Prebiotics

Prebiotics are soluble dietary fibers that stimulate the growth of
gut commensal microbiota to combat disease and maintain
health. In mice, long-term use of fructo-oligosaccharides
(FOS) and galactooligosaccharides (GOS) significantly im-
proved anxiety and depression-related behaviors by increasing
SCFA-producing bacteria [134]. Combined use of prebiotics
and probiotics alleviated mitochondrial dysfunction in the brain
of mice fed on a high-fat diet [135], indicating that increasing
beneficial bacteria in the intestine has the potential to attenuate
CNS disease. Consumption of fermented milk containing pre-
biotic fiber improved constipation in PD patients [136].
Prebiotics may improve the pathology of PD by stimulating
the colonization of beneficial microorganisms in the intestine
and promoting the secretion of SCFAs.

Antibiotics

Antibiotics can kill or inhibit microorganisms at low concen-
trations. Antibiotics can also inhibit the accumulation of ab-
normal proteins and improve mitochondrial function, which
might be beneficial for the treatment of neurodegenerative
disease [137]. Many antibiotics such as rifampicin and ceftri-
axone may be beneficial in the treatment of PD [138, 139].
Eradication ofHelicobacter pylori improves levodopa absorp-
tion and PD motor symptoms [140]. However, the resistance
of microorganisms to antibiotics is an important issue in clin-
ical applications. Furthermore, exposure to certain oral antibi-
otics may increase the risk of PD possibly due to the long-term
effects of antibiotics on the composition of the human gut
microbiota [141]. Therefore, the development of antibiotic
derivatives that have neuroprotective effects without antibac-
terial activity is critical for their application in the treatment of
neurodegenerative disease.

FMT

Fecal microbial flora transplantation (FMT) represents a ther-
apeutic strategy by which the feces of healthy donors are de-
livered to patients to achieve a therapeutic effect by restoring a
stable gut microbial environment [142]. FMT is a more effi-
cient approach than probiotic interventions to rebuild a
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healthy gut microbiota structure. In MPTP-induced mice
model of PD, FMT alleviated intestinal microbial disorders
and increased striatal DA and 5-HT content [143]. FMT is
used to treat GI diseases such as inflammatory bowel disease
and irritable bowel syndrome [144]. Patients with non-GI dis-
eases such as multiple sclerosis, myoclonus-dystonia, autism,
and depression may also benefit from FMT [145]. Numerous
clinical trials on FMT treatment for PD are being conducted.

Single Microbial Metabolite Supplement Therapy

To date, there is no reliable clinical data to prove the possible
influence of probiotic treatment on motor symptoms or PD
progression. Although FMT is an attractive technique, many
questions regarding its safety and effectiveness remain to be
answered before it can be applied in PD treatment. As men-
tioned above, there are some microbial metabolites that can
exert neuroprotective effects in PD by improving mitochon-
drial function, suggesting that targeting and regulating micro-
bial metabolites may be a potential therapeutic direction.

ClinicalTrials.gov is a database of privately and publicly
funded clinical studies conducted around the world. In an
ongoing experiment (No. NCT02967250) registered at
ClinicalTrials.gov, researchers will evaluate the cortical
bioenergy spectrum and ATPase activity of PD patients after
continuous oral administration of UDCA using magnetic
resonance spectroscopy. The researchers hypothesized that
repeated oral administration of UDCA would increase brain
ATP levels in PD patients. The theoretical basis for this
experiment is the protective effect of UDCA on mitochondria,
as identified in cell and animal experiments. Another ongoing
clinical trial aims to assess the effects of oral NAM (No.
NCT03568968) on the symptoms and neurometabolic profile
of PD patients. The trial builds upon experimental data from PD
cells and animal models indicating that NAM supplementation
maintains mitochondrial function by increasing NAD levels to
enhance the metabolism of dopaminergic neurons, thereby
improving the PD pathology. The results of these experiments
are anticipated, and more experiments are needed to verify the
therapeutic effects of UDCA and NAM in PD patients in the
future.

Conclusions and Future Perspectives

Both genetic and environmental factors may cause mitochon-
drial dysfunction in the pathogenesis of PD. A large number
of studies have demonstrated that the intervention ofmicrobial
metabolites changes physiological activities in the brain, in-
cluding neuroinflammation and mitochondrial function,
which involves microbial metabolites, abnormal protein ag-
gregation, and microglial activation. Microbial metabolites
influence mitochondrial function, which appears to be a key

mechanism responsible for the progressive loss of dopaminer-
gic neurons. Although a causal relationship remains to be
uncovered, clinical and pathological evidence indicates that
the intestinal microenvironment plays a role in the early stage
of PD.

Cost-effective and rapid sequencing as well as other research
techniques have facilitated the characterization of the gut mi-
crobiota in PD. However, a number of challenges remain. First,
a clear definition of a healthy microbiome is required to differ-
entiate microbiomes that lead to pathology and provide thera-
peutic targets for PD. As the mammalian microbiome is com-
plex and composed of 300 to 1000 bacterial species with a total
number that exceeds that of host cells, isolating any bacterial
components for causative or mechanistic analyses would be
extremely difficult. Second, identification of relevant metabo-
lites using techniques such as metabolomics may indicate how
alterations in the gut microbiota, environment, diet, and drugs
influence metabolite levels. Despite the substantial progress
which has been made in growing diverse microorganisms of
the microbiota, 23–65% of species residing in the human gut
remain uncultured, which is an obstacle to understanding their
biological roles [100]. A likely reason for this failure is the
absence of key growth factors in artificial media that can be
provided by neighboring bacteria in situ. Third, research on the
gut microbiota and PD may be confounded by factors such as
tremendous individual compositional variations, diet, and
drugs. The composition and functionality of the gut microbiota
are altered in patients with PD. There is an unmet need for large
longitudinal studies combining in-depth phylogenetic analysis
with a comprehensive phenotypic characterization of patients
with PD using ’omics (meta-genomics, metabolomics, tran-
scriptomics, and meta-transcriptomics). Fourth, translation of
basic research into clinically relevant effects in humans must
be a priority. However, applying the results of basic research to
humans has limitations. For example, the fixation of mamma-
lian tissues for microscopic observations undoubtedly interferes
with the regulation of mitochondrial dynamics and may yield
limited or misleading results. These limitations may also be
related to the host-specific interactions with microbiota.
Finally, the current research does not yet include the pathophys-
iological effects of microbiota other than the gut, oral cavity,
and nasal cavity on neurodegenerative diseases. Further re-
search should explore the nervous system role of microbiota
in other parts of the human body such as the skin.

Future therapeutic interventions will likely be individual-
ized to accommodate the variety in gut microbiota configura-
tion and composition among human populations. Probiotics
seem to have limited effects in regulating the gut microbiota,
and the FMT research field is relatively lacking. FMT therapy
may be able to better improve the symptoms of PD and delay
the progression of the disease. However, FMT treatment still
faces the problems of individualized differences, uncertain
duration of effect, and a possible need for repeated
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transplantation. Besides the aforementioned methods to re-
store gut microbiota composition, the regulation of metabo-
lites (either supplementation of good metabolites or reduction
of bad metabolites) seems more controllable and targeted.
Ongoing clinical trials are being conducted to explore whether
regulating metabolites such as UDCA and NAM can alleviate
the pathology of PD (ClinicalTrials.gov).
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