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Abstract: Peroxidases play prominent roles in antioxidant responses and stress tolerance in plants;
however, their functions in soybean tolerance to salt stress remain unclear. Here, we investigated
the role of a peroxidase gene from the wild soybean (Glycine soja), GsPRX9, in soybean tolerance to
salt stress. GsPRX9 gene expression was induced by salt treatment in the roots of both salt-tolerant
and -sensitive soybean varieties, and its relative expression level in the roots of salt-tolerant soybean
varieties showed a significantly higher increase than in salt-sensitive varieties after NaCl treatment,
suggesting its possible role in soybean response to salt stress. GsPRX9-overexpressing yeast (strains of
INVSc1 and G19) grew better than the control under salt and H2O2 stress, and GsPRX9-overexpressing
soybean composite plants showed higher shoot fresh weight and leaf relative water content than
control plants after NaCl treatment. Moreover, the GsPRX9-overexpressing soybean hairy roots had
higher root fresh weight, primary root length, activities of peroxidase and superoxide dismutase,
and glutathione level, but lower H2O2 content than those in control roots under salt stress. These
findings suggest that the overexpression of the GsPRX9 gene enhanced the salt tolerance and
antioxidant response in soybean. This study would provide new insights into the role of peroxidase
in plant tolerance to salt stress.
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1. Introduction

Soil salinization is an important abiotic factor affecting agricultural production and the
environment [1]. Soil salinization can cause decreased soil osmotic potential, ion imbalance, disrupted
physiological processes, and inhibited growth and development of plants, leading to reduced crop
quality and yield, and even plant death in areas with severe salt–alkali stress [1,2]. Plants adapt to
salt stress by three main mechanisms: osmotic stress tolerance, ion exclusion, and tissue tolerance [1].
Soybean plants experience two stages of salt stress: in the early stage, the young leaves of soybean
seedlings wilt due to water loss in the initial few hours of salt stress; then soybean plants produce
molecular substances that participate in osmotic regulation to help the wilted leaves recover [2].
In the second stage, Na+ accumulation affects photosynthesis and damages the leaves [1–3]. Soybean
tolerance to salt stress is controlled by multiple genes. Overexpression of GmCHX1 improved salt
tolerance by regulating Na+/K+ balance in soybeans under salt stress [3]. A salt-responsive gene,
GmPIP1;6, may be a multifunctional aquaporin involved in root water transport [4]. Overexpression of
GmbZIP1 enhanced plant tolerance to salt stress [5]. More genes related to salt tolerance in soybeans
need to be discovered.
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Peroxidases with different structures play various roles in diverse organisms [6,7]. Phylogenetically,
the peroxidases fall into three classes (class I–III) of proteins [6,8]. Class I peroxidases, including
cytochrome-c peroxidases (CcPs), catalase peroxidases (CPs), ascorbate peroxidases (APxs), and
the hybrid APx–CcPs, are the most abundant peroxidases in plants, fungi, and prokaryotes [7,9].
These peroxidases are not glycosylated and do not have signal peptides, calcium ions, or disulfide
bridges [9]. Class II peroxidases are fungal secretory peroxidases, primarily comprising lignin
peroxidases (LiPs), manganese-dependent peroxidases (MnPs), versatile peroxidases (VPs), and other
secreted fungal heme peroxidases [10,11]. Class III peroxidases (Prxs), are a group of secretory
glycoproteins that have been found in all green plants [8,12].

Prxs are classical peroxidases and play key roles in many plant physiological functions, either by
forming stable plant structures or by adapting the organisms to a more oxygenated environments [13,14].
Prxs have been confirmed to catalyze hydrogen peroxide (H2O2) oxidoreduction by transferring
electrons from various donor molecules [12,15–17]. Due to their nonspecific reactions with different
hydrogen donors, Prxs participate in diverse plant processes [15,16,18] such as auxin metabolism [19],
lignin biosynthesis [12], suberin metabolism [20], cell wall elongation [21], seed coat mucilage
extrusion [22], stress tolerance [23], testa/endosperm rupture [24], and pathogen defense [25].
Overexpression of AtPRX3 enhanced plant salt tolerance [23]. AtPRX17 affected the lignin and
xylan accumulation in the cell wall via reactive oxygen species (ROS) signaling [12]. A recent study
suggests that some Prxs were involved in housekeeping functions to scavenge ROS and H2O2 in
rice [26].

In our previous transcriptomic study (unpublished) using a salt-tolerant wild soybean variety,
we identified a salt-responsive gene (corresponding to Glyma.14g070800 in the reference genome of
soybean variety Williams 82), which encodes a Class III peroxidase, and is designated as GsPRX9.
Here we investigate the role of GsPRX9 in salt tolerance by comparing the relative expression level
of GsPRX9 gene in salt-tolerant and -sensitive soybean varieties, and overexpression of GsPRX9 in
soybean hairy roots, composite plants and yeast (strains of INVSc1 and G19), respectively. The salt
tolerance mechanism of GsPRX9 was investigated by analyzing the activities of peroxidase (POD),
superoxide dismutase (SOD), H2O2 content, glutathione (GSH) level, and the expression levels of
potential oxidation-reduction related genes in GsPRX9-overexprssing soybean hairy roots under
salt stress, to demonstrate its positive roles in scavenging ROS under salt stress. This study aims
to provide new insights into the role of Prxs in soybean tolerance to salt stress and the possible
underlying mechanisms.

2. Results

2.1. Molecular Characteristics of GsPRX9

The coding sequence (CDS) of GsPRX9 from the wild soybean (G. soja) in this study was
found to be identical to the sequence of Glyma.14g070800 from the soybean reference genome
(https://phytozome.jgi.doe.gov/pz/portal.html), which is 1035 bp in length and encodes 344 amino
acids with a peroxidase domain consisting of 247 amino acids. Phylogenetic analysis of soybean
PRX9, together with the 159 seed sequences (with 201 to 350 amino acids in length) of the peroxidases
protein superfamily (Table S1), was performed. According to the functional annotation (Table S2) and
classification [8] of the peroxidases superfamily, these 160 proteins were grouped into three classes
(Figure 1). GsPRX9 was classified into the Class III peroxidases (Prxs).

https://phytozome.jgi.doe.gov/pz/portal.html
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Figure 1. Phylogenetic tree of the 159 seed sequences of peroxidases superfamily and GsPRX9. The 86 
159 seed sequences of peroxidases protein superfamily were downloaded from PFAM and the protein 87 
sequence of soybean PRX9 was downloaded from the Phytozome database. Unrooted phylogenetic 88 
tree was constructed using MEGA6.0 based on the Maximum Likelihood (ML) algorithm with 1000 89 
bootstraps. 90 
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After seven days of 180 mM NaCl stress, the phenotypic difference between the four soybean 92 

varieties was obvious (Figure 2A): the leaves of Tianlong1 and “LY01-06” became yellow and dead, 93 
and therefore are salt-sensitive soybean varieties; the leaves of “LY16-08” and “LY01-10” were still 94 
green and normal, and so belong to salt-tolerant soybean varieties. The relative expression levels of 95 
GsPRX9 in response to salt stress (180 mM NaCl) in these four soybean varieties were investigated 96 
using qRT-PCR. GsPRX9 gene expression was induced by 180 mM NaCl treatment in the roots of all 97 
soybean varieties (Figure 2B). The relative expression level of GsPRX9 gene in the roots of “LY16-08” 98 
(salt-tolerant) showed a significantly (p < 0.05 by Duncan’s multiple range test) greater increase at 9 99 
and 12 h after salt treatment than the two salt-sensitive soybean varieties, and there was significantly 100 
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Figure 1. Phylogenetic tree of the 159 seed sequences of peroxidases superfamily and GsPRX9.
The 159 seed sequences of peroxidases protein superfamily were downloaded from PFAM and
the protein sequence of soybean PRX9 was downloaded from the Phytozome database. Unrooted
phylogenetic tree was constructed using MEGA6.0 based on the Maximum Likelihood (ML) algorithm
with 1000 bootstraps.

2.2. Relative Expression of GsPRX9 in Response to NaCl in Salt-Tolerant and -Sensitive Soybean Varieties

After seven days of 180 mM NaCl stress, the phenotypic difference between the four soybean
varieties was obvious (Figure 2A): the leaves of Tianlong1 and “LY01-06” became yellow and dead,
and therefore are salt-sensitive soybean varieties; the leaves of “LY16-08” and “LY01-10” were still
green and normal, and so belong to salt-tolerant soybean varieties. The relative expression levels of
GsPRX9 in response to salt stress (180 mM NaCl) in these four soybean varieties were investigated
using qRT-PCR. GsPRX9 gene expression was induced by 180 mM NaCl treatment in the roots of all
soybean varieties (Figure 2B). The relative expression level of GsPRX9 gene in the roots of “LY16-08”
(salt-tolerant) showed a significantly (p < 0.05 by Duncan’s multiple range test) greater increase at
9 and 12 h after salt treatment than the two salt-sensitive soybean varieties, and there was significantly
(p < 0.05 by Duncan’s multiple range test) greater upregulation in the roots of “LY01-10” (salt-tolerant)
at 6 and 12 h in response to salt stress than the two salt-sensitive soybean varieties. These results
suggested that GsPRX9 might play important roles in the soybean response to salt stress.



Int. J. Mol. Sci. 2019, 20, 3745 4 of 17Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 4 of 17 

 

 104 
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mM NaCl for 6 h, 9 h, and 12 h and the root samples were collected. Roots receiving 0 mM NaCl 108 
treatment at each time point were used as controls. Data represent mean and standard deviation of 109 
three repeats (n = 3). Data with the same letters in lowercases (a, b, and c) above bars indicate no 110 
significant differences at the 0.05 level between soybean varieties at each time point according to 111 
Duncan’s multiple range test. 112 
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with different concentrations of NaCl (0, 0.5, 0.8, and 1 M) or H2O2 (0, 3, 3.2, and 3.4 mM) were 116 
compared. There was no obvious difference between the yeast containing pYES2-GsPRX9 and the 117 
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Figure 2. Phenotype and relative expression of GsPRX9 in the roots of four soybean varieties under salt
stress. (A) Phenotypes of four soybean varieties at seven days after 180 mM NaCl stress. (B) Relative
expression of GsPRX9 in response to salt stress. Soybean seedlings were treated with 0 or 180 mM NaCl
for 6 h, 9 h, and 12 h and the root samples were collected. Roots receiving 0 mM NaCl treatment at each
time point were used as controls. Data represent mean and standard deviation of three repeats (n = 3).
Data with the same letters in lowercases (a, b, and c) above bars indicate no significant differences at
the 0.05 level between soybean varieties at each time point according to Duncan’s multiple range test.

2.3. Overexpression of GsPRX9 Improved Yeast Tolerance to NaCl and H2O2 Stress

The growth characteristics of yeast (strains of INVSc1 and G19), containing pYES2-GsPRX9
plasmid or pYES2 empty vector, respectively, on a yeast extract-peptone–dextrose (YPD) medium
with different concentrations of NaCl (0, 0.5, 0.8, and 1 M) or H2O2 (0, 3, 3.2, and 3.4 mM) were
compared. There was no obvious difference between the yeast containing pYES2-GsPRX9 and the
yeast with pYES2 empty vector on normal (0 M NaCl and 0 mM H2O2) YPD medium (Figure 3).
The pYES2-GsPRX9-transformed INVSc1 yeast grew better than the pYES2 empty-vector-transformed
INVSc1 yeast on a YPD medium containing 0.5 or 0.8 M NaCl (Figure 3A). In addition, when the
salt-sensitive yeast mutant G19 was used, pYES2-GsPRX9-transformed yeast showed better growth than
the pYES2 empty-vector-transformed G19 yeast on YPD containing 0.5, 0.8, or 1 M NaCl (Figure 3A).
Under H2O2 stress, pYES2-GsPRX9-transformed yeast (strains of INVSc1 and G19) exhibited better
growth than the pYES2 empty-vector-transformed yeast (Figure 3B). These results revealed that
overexpression of GsPRX9 improved the tolerance of INVSc1 and G19 yeasts to NaCl and H2O2 stress.
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rates of YPD medium containing the yeast transformants were 10−1, 10−2, 10−3, 10−4, and 10−5. 130 
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Figure 3. Effect of GsPRX9 overexpression on the tolerance of yeast strains of INVSc1 and G19 to salt
(A) and H2O2 (B) stress. pYES2 represents the yeast with empty vector and pYES2–GsPRX9 represents
the yeast overexpressing GsPRX9. Photos were taken after 72 h of incubation at 30 ◦C. The dilution
rates of YPD medium containing the yeast transformants were 10−1, 10−2, 10−3, 10−4, and 10−5.

2.4. GsPRX9-Overexpressing Soybean Composite Plants Showed Better Tolerance to NaCl Stress

The transgenic soybean composite plants were obtained by Agrobacterium rhizogenes K599-mediated
transformation of pBinGFP4–GsPRX9 or pBinGFP4 (empty vector, containing the green fluorescence
protein, GFP) into soybean hypocotyls, to investigate the effect of GsPRX9 overexpression on the salt
tolerance of soybean plants. The positive transgenic soybean composite plants (indicated by green
fluorescence, Figure 4A) overexpressing GsPRX9 or the empty vector pBinGFP4 with similar root length
and root volume were treated with 0 or 100 mM NaCl for seven days. The composite plants showed
better growth under 0 mM NaCl than those under 100 mM NaCl treatment (Figure 4B). Under 100 mM
NaCl treatment, the soybean composite plants with GsPRX9 overexpression showed better growth
than composite plants with the empty vector pBinGFP4 (Figure 4B and Figure S1A–C). The average
shoot fresh weight and leaf relative water content of GsPRX9-overexpressing soybean composite plants
were significantly (p < 0.01 by t-test) higher than those of composite plants with the empty vector under
100 mM NaCl treatment (Figure 4C,D and Figure S1D–I). No significant differences (p > 0.05 by t-test)
were found in shoot fresh weight and leaf relative water content between GsPRX9-overexpressing
plants and plants with empty vector under normal condition (0 mM NaCl). These results demonstrated
that overexpression of GsPRX9 could improve the tolerance of soybean plants to salt stress.
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roots with pBinGFP4-GsPRX9 or pBinGFP4, respectively, and transferred on the medium containing 169 
0 mM or 150 mM NaCl to grow for 14 days (Figures 5D and S3A‒D). The average primary root length 170 
of soybean hairy roots overexpressing GsPRX9 was significantly (p < 0.01 by t-test) longer than that 171 
of the hairy roots containing the pBinGFP4 empty vector grown on a medium containing 150 mM 172 

Figure 4. Salt tolerance analyses of transgenic soybean composite plants. (A) Identification of positive
transgenic soybeans by green fluorescence using a stereoscopic fluorescence microscope. Bar = 1 cm.
(B–D) Phenotype, shoot fresh weight, and leaf relative water content of transgenic soybean composite
plants under 0 mM or 100 mM NaCl for seven days, respectively. Bar = 5 cm. EV represents plants
with the empty vector pBinGFP4 and 35S:GsPRX9 represents plants with the recombinant vector
pBinGFP4–GsPRX9 (GsPRX9 was expressed in fusion with GFP, driven by a CaMV 35S promoter).
Data represent the mean ± standard deviation of three biological replications and each repeat contained
10 independent transgenic plants (n = 3 × 10 = 30). ** represents significant difference between EV and
35S:GsPRX9 under the same conditions at the 0.01 level by Student’s t-test.

2.5. Overexpression of GsPRX9 Enhanced the Salt Tolerance of Soybean Hairy Roots

To further confirm the effect of GsPRX9 overexpression on salt tolerance of soybean, we transformed
soybean cotyledons with A. rhizogenes K599 containing pBinGFP4-GsPRX9 plasmid or the empty
vector pBinGFP4. After 14 days of 150 mM NaCl treatment, the soybean hairy roots overexpressing
GsPRX9 showed better growth than the control (hairy roots transformed by the empty vector pBinGFP4;
Figure 5A,B and Figure S2A–D). In comparison with the hairy roots transformed by the empty vector,
the fresh weight of GsPRX9-overexpressing soybean hairy roots was significantly (p < 0.01 by t-test)
higher under 150 mM NaCl treatment (Figure 5C and Figure S2E–H), while no significant difference
(p > 0.05 by t-test) was observed under 0 mM NaCl conditions.

Furthermore, we investigated the effect of GsPRX9 overexpression on the re-generated soybean
hairy roots in response to salt stress. Root tips of 3 cm in length were cut off from the positive hairy
roots with pBinGFP4-GsPRX9 or pBinGFP4, respectively, and transferred on the medium containing
0 mM or 150 mM NaCl to grow for 14 days (Figure 5D and Figure S3A–D). The average primary root
length of soybean hairy roots overexpressing GsPRX9 was significantly (p < 0.01 by t-test) longer than
that of the hairy roots containing the pBinGFP4 empty vector grown on a medium containing 150 mM
NaCl (Figure 5E and Figure S3E–H), but no obvious difference was observed for soybean hairy roots
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grown on a medium containing 0 mM NaCl. By qRT-PCR, we confirmed that the relative expression
level of GsPRX9 in soybean hairy roots transformed by pBinGFP4-GsPRX9 was much higher than the
level in soybean hairy roots transformed by a pBinGFP4 empty vector, under either 0 or 150 mM NaCl
treatment (Figure 5F and Figure S3I–L). These results suggest that overexpression of GsPRX9 enhanced
the salt tolerance of soybean hairy roots.
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Figure 5. Salt tolerance analyses of transgenic soybean hairy roots. (A) Identification of positive
transgenic soybean hairy roots by green fluorescence using a stereoscopic fluorescence microscope.
Bar = 1 cm. (B,C) Phenotype and root fresh weight of transgenic soybean cotyledon hairy roots
receiving 0 or 150 mM NaCl treatment for 14 days, respectively. Bar = 1 cm. (D,E) Phenotype and
primary root length of re-generated transgenic soybean hairy roots under 0 or 150 mM NaCl treatment
for 14 days, respectively. Bar = 1 cm. (F) The relative expression level of GsPRX9 in transgenic soybean
hairy roots at 24 h after 0 or 150 mM NaCl treatment. EV represents roots with the empty vector
pBinGFP4, and 35S:GsPRX9 represents roots with the recombinant vector pBinGFP4-GsPRX9 (GsPRX9
was expressed in fusion with GFP, driven by a CaMV 35S promoter). The relative expression level of
GsPRX9 in transgenic soybean hairy roots was in comparison to that in soybean hairy roots containing
the empty vector under 0 mM NaCl (control). Data represent the mean ± standard deviation of four
biological replications and each repeat contained at least three independent transgenic hairy roots
(n ≥ 12). ** represents significant difference between EV and 35S:GsPRX9 under the same condition at
the 0.01 level by Student’s t-test.

2.6. Overexpression of GsPRX9 Enhanced the Antioxidant Response in Soybean Hairy Roots

The annotation of GsPRX9 suggests it is involved in the oxidation–reduction process and the
response to oxidative stress, and overexpression of GsPRX9 gene enhanced the salt tolerance of soybean
hairy roots; therefore, we proposed that overexpression of GsPRX9 might enhance the antioxidant
responses of soybean hairy roots under salt stress. To investigate this, we measured the content of
H2O2 (Figure 6A and Figure S4A–D), the activity of POD (Figure 6B and Figure S4E–H), the activity of
SOD (Figure 6C and Figure S4I–L), and the GSH level (Figure 6D and Figure S4M–P) in transgenic
soybean hairy roots at 0 h, 6 h, 12 h, 1 d (day), 2 d, 3 d, 5 d, and 7 d after 150 mM NaCl treatment.
The H2O2 content increased rapidly with the duration of salt stress at early time points, and reached a
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peak at 12 h, then decreased during 12 h to 2 d of salt stress, and remained relative low levels after
2 d (Figure 6A). Correspondingly, the POD activity also increased rapidly at early time points (6 h)
and reached a peak at 12 h or 1 d, following with relatively stable levels after 1 d until the end of the
experiment (Figure 6B). The SOD activity showed a relatively steady increase after salt stress and
reached a peak at 3 d, then decreased after 3 d (Figure 6C). The GSH level peaked at 12 h after salt
treatment (Figure 6D). As expected, we found that GsPRX9-overexpressing soybean hairy roots had
lower H2O2 content (Figure 6A and Figure S4A–D), but higher POD and SOD activity, as well as higher
GSH level than those in the soybean hairy roots with the empty vector pBinGFP4 (Figure 6B–D and
Figure S4E–P). The above results suggest that GsPRX9 participates in the ROS scavenging process,
and overexpression of GsPRX9 can improve the activities of POD and SOD, and the GSH level, thus
enhancing the antioxidant response and salt tolerance of soybean hairy roots by manipulating the ROS
balance during salt stress.
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Figure 6. Effect of GsPRX9 overexpression on H2O2 content (A), POD activity (B), SOD activity (C),
and GSH level (D) in transgenic soybean hairy roots under salt stress. EV represents soybean hairy
roots with the empty vector pBinGFP4, and 35S:GsPRX9 represents roots with the recombinant vector
pBinGFP4–GsPRX9 (GsPRX9 was expressed in fusion with GFP, driven by a CaMV 35S promoter).
The content of hydrogen peroxide (H2O2), activity of peroxidase (POD), superoxide dismutase (SOD),
and glutathione level (GSH) in soybean hairy roots were measured at 0 h, 6 h, 12 h, 1 d, 2 d, 3 d, 5 d,
and 7 d after 150 mM NaCl treatment. Data represent the mean ± standard deviation of four biological
replications and each repeat contained three independent transgenic hairy roots (n = 4 × 3 = 12). * and
** represents a significant difference between EV and 35S:GsPRX9 for each time point at the 0.05 or 0.01
level by Student’s t-test, respectively.
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3. Discussion

3.1. GsPRX9 Overexpression Can Improve the Tolerance of Yeasts and Soybeans to NaCl Stress

Plant growth and development may be influenced by biotic and abiotic stresses, such as insects,
drought, cold, and high salinity [27]. In this study, a peroxidase gene from the wild soybean, GsPRX9,
was found to be involved in the salt tolerance of soybean. GsPRX9 expression can be induced by NaCl
treatment (Figure 2), suggesting its possible role in soybean tolerance to salt stress. In order to quickly
test if GsPRX9 plays a role in salt tolerance, we overexpressed GsPRX9 in yeasts. Yeasts have been
used to study the functions of plant genes in salt tolerance [28,29]. Overexpression of GmCLC1 can
enhance the survival rate of yeast gef1 mutant with different chloride salts (MnCl2, KCl, NaCl) [28].
Yeast overexpressing OsLOL5 exhibited better growth than yeast transformed with the empty vector
pYES2 [29]. In this work, GsPRX9-overexpressing yeasts grew better than yeasts transformed by the
empty vectors under NaCl and H2O2 (Figure 3). Therefore, GsPRX9 overexpression can enhance yeast
(strains of INVSc1 and G19) tolerance to salt and H2O2 stress.

Next, we confirmed the effect of GsPRX9 on salt tolerance in soybean hairy roots. Plant roots have
evolved various defense mechanisms against salt stress at morphological, physiological and molecular
levels, such as root architecture adaptation, osmotic adjustment, enhancement of antioxidant defense,
maintenance of cell membrane stability, and expression of salt responsive genes and proteins [30–35].
Therefore, soybean hairy roots can be used to further verify the gene functions in salt tolerance.
In a previous study, PgTIP1 overexpressing soybean hairy roots displayed superior salt tolerance
compared to the empty-vector-transformed ones [36]. In this study, we employed soybean hairy
roots to investigate the role of GsPRX9 in salt tolerance (Figure 5 and Figure S2). We found that
overexpression of GsPRX9 in soybean hairy roots increased the root fresh weight (Figure 5C and Figure
S2E–H) and primary root length (Figure 5D,E and Figure S3A–H). GsPRX9 overexpression can also
protect the shoots from salt damage as demonstrated by the transgenic soybean composite plants
(Figure 4 and Figure S1). Taken together, these results revealed that overexpression of GsPRX9 gene
enhanced the salt tolerance of soybean hairy roots and composite plants.

3.2. GsPRX9 Mediates the ROS Regulation Network

ROS plays a critical role in different plant species [37,38]. Prxs have the interesting capacity to
both scavenge and produce ROS [39]. Increased ROS/H2O2 detoxification and osmotic adjustment
in plants improved their tolerance to abiotic stresses [34,40–43]. It has been reported that class III
peroxidases function as ROS regulators, co-localized with ROS production at the germination stage of
Arabidopsis thaliana, and notably AtPRX07, are involved in controlling the H2O2 concentration [39].
OsPrx24 functions as a ROS scavenger and is highly expressed in guard cells [26].

In our present study, lower H2O2 content (Figure 6A and Figure S4A–D), higher activities of
POD (Figure 6B and Figure S4E–H) and SOD (Figure 6C and Figure S4I–L), and a higher GSH level
were observed in GsPRX9 overexpressing soybean hairy roots compared with soybean hairy roots
transformed by the empty vector. POD and SOD are protective enzymes in organisms and play
important roles in scavenging free radicals. SOD can convert O2− to H2O2 [44,45], and POD removes
H2O2 to generate H2O [46–49]. As a non-enzymatic antioxidant, GSH can also eliminate free radicals
to protect plants from ROS damage [50]. The synergistic action of these molecules can maintain free
radicals at a low level to avoid membrane damage and protect cells [46]. Thus, our results indicated
that overexpression of GsPRX9 could increase the activities of SOD and POD, and the GSH level,
to enhance ROS scavenging capability when exposed to salt stress, which ultimately improves salt
tolerance. In addition, other known antioxidant enzymes such as ascorbate peroxidase (APX), catalase
(CAT), glutathione peroxidase (GPX), mono-dehydroascorbate reductase (MDHAR), dehydroascorbate
reductase (DHAR), glutathione reductase (GR), and glutathione S-transferase (GST), could work
together to detoxify ROS [51].
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Although the regulation network of oxidative balance is complicated, H2O2 is known as the key
signaling molecule [52]. GsPRX9 overexpressing soybean hairy roots can ultimately reduce the H2O2

content to protect soybean roots from ROS damage, probably through a complex antioxidant machinery
in addition to the increased activities of SOD and POD, and the GSH level. It is interesting that,
based on protein-protein interaction network analyses, GsPRX9 might interact with 10 other proteins
(Figure S5), with five of them annotated as involved in the oxidation-reduction process (GO: 0055114)
and two annotated as involved in the response to oxidative stress (GO: 0006979) (Table S3). The genes
encoding these interacting proteins might be co-expressed with GsPRX9 at the transcriptional level.
Therefore, we performed qRT-PCR to determine the relative expression of these seven genes that
might be related to oxidation–reduction or response to oxidative stress, including four CAD (encoding
cinnamyl-alcohol dehydrogenase) genes, two PAL (encoding phenylalanine ammonia-lyase) genes,
and one FAH (encoding Ferulate-5-hydroxylase) gene. The relative expression level of GsCAD9-14g,
GsCAD9-17g, and GsCAD at 12 h and GsCAD9-17g, GsPAL-19g, GsCAD4, and GsPAL-20g at 24 h after
salt treatment in the roots of GsPRX9-overexpressing hairy roots showed a significantly greater increase
than in hairy roots containing the empty vector (Figure 7). These results suggest that the overexpression
of GsPRX9 increased the expression of other genes of soybean hairy roots in response to salt stress.
Taken together, overexpression of GsPRX9 enhanced soybean salt tolerance through mediation of the
ROS regulatory network.
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Figure 7. Relative expression of genes encoding potential GsPRX9-interacting proteins in soybean
hairy roots. Root samples receiving 0 mM NaCl treatment at each time point were used as controls.
Data represent mean ± standard deviation of four biological replications with three repeats within each
replication (n = 4 × 3 = 12). EV represents soybean hairy roots with the empty vector pBinGFP4, and
35S:GsPRX9 represents roots with the recombinant vector pBinGFP4–GsPRX9 (GsPRX9 was expressed
in fusion with GFP, driven by a CaMV 35S promoter). * and ** represents significant difference between
EV and 35S:GsPRX9 for each time point at the 0.05 or 0.01 level by Student’s t-test, respectively.
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4. Materials and Methods

4.1. Plant Materials and Growth Conditions

Soybean seeds, including salt-tolerant (“LY01-10”, “LY16-08”) and -sensitive varieties (“LY01-06”,
“Tianlong1”), were obtained from the National Center for Soybean Improvement, Nanjing Agricultural
University, Nanjing, China. Soybean seeds were germinated in sterile nutrient soil (turf + vermiculite +

perlite, 2:2:1) and grown in a greenhouse for 12 days, at 28 ◦C (day)/24 ◦C (night) with 14 h (light)/10 h
(dark) photoperiod, and the soybean seedlings were then subjected to 0 or 180 mM NaCl treatment.

4.2. RNA Isolation and Gene Cloning

Total RNA was isolated from soybean roots using an RNAprep Pure Plant Kit (Tiangen Biotech,
Beijing, China), and the first-strand cDNA was synthesized using a PrimeScript™ 1st Strand cDNA
Synthesis Kit (TaKaRa, Dalian, China). Primers were designed by Primer Premier 5 software (Premier
Biosoft International, Palo Alto, CA, USA), and the specificities of primers were analyzed by
Primer-BLAST (Figure S6) (https://www.ncbi.nlm.nih.gov/tools/primer-blast/). The primers were
synthesized at GenScript (Nanjing, China) and their sequences are listed in Table S4. The sequence of
Glyma.14g070800 was downloaded from Phytozome (https://phytozome.jgi.doe.gov/pz/portal.html)
and used as a reference to design primers for cloning GsPRX9. The full-length CDS of GsPRX9 was
amplified from the cDNA of a wild soybean variety (“LY01-10”) following the PCR protocol: 94 ◦C
for 5 min; 35 cycles of 94 ◦C for 30 s, 58 ◦C for 30 s, and 72 ◦C for 2 min; and 72 ◦C for 5 min, in a
50 µL reaction mixture (600 µg of DNA, 0.25 mM of each primer (Table S4), 25 µL of 2 × Gflex PCR
buffer and 1 unit of Tks Gflex DNA polymerase (TaKaRa, Dalian, China)), and sequenced by GenScript
(Nanjing, China).

4.3. Phylogenetic Analysis of Soybean PRX9 and Other Peroxidase Proteins

The 159 seed sequences of the peroxidases protein superfamily (Table S1) were identified using the
structural domain of “peroxidase” (PF00141) and downloaded from PFAM (http://pfam.xfam.org/family/

PF00141.22#tabview=tab3). The full protein sequences of the above peroxidases and soybean PRX9 were
used for multiple sequence alignments by ClustalW2 (https://www.ebi.ac.uk/Tools/msa/clustalw2/) [53].
The unrooted phylogenetic tree was then constructed using MEGA 6.0 [54], based on the Maximum
Likelihood (ML) algorithm with 1000 bootstraps.

4.4. Quantitative Real-Time PCR (qRT-PCR) Analysis

Total RNA, cDNA, and primers were obtained as described above. The amplicon specificity was
verified by melting curve analysis (Figure S7) and agarose gel electrophoresis. The qRT-PCR was
performed on a Roche 480 Realtime detection system (Roche Diagnostics, Rotkreuz, Switzerland)
following the manufacturer’s instructions, using SYBR Premix ExTaq II Mix (TaKaRa, Dalian, China) in
a final volume of 15 µL containing 2 µL cDNA, 7.5 µL SYBR Premix ExTaq II (TaKaRa, Dalian, China),
and 200 nM of forward and reverse primers. The amplification program was set as follows: initial
denaturation at 95 ◦C for 5 min; 40 cycles of denaturation at 95 ◦C for 10 s, annealing at 58 ◦C for
20 s, and extension at 72 ◦C for 20 s. The experiments were performed in triplicate. The amplification
efficiencies (E) of primer pairs were estimated by qRT-PCR using 1×, 5×, 10×, 20×, and 30× dilutions
of cDNA, according to the equation: E = 10−1/slope

−1 [55]. Primers and amplification efficiencies of
qRT-PCR were shown in Table S4. GmUKN1 was used as the reference gene [56], and the relatively
constant Ct values of GmUKN1 across all samples demonstrated its invariant expression under our
experimental conditions (Table S5), suggesting that it is suitable for the internal control of qRT-PCR.
The relative expression levels of test genes were analyzed by the 2−44Ct methods [57].

https://www.ncbi.nlm.nih.gov/tools/primer-blast/
https://phytozome.jgi.doe.gov/pz/portal.html
http://pfam.xfam.org/family/PF00141.22#tabview=tab3
http://pfam.xfam.org/family/PF00141.22#tabview=tab3
https://www.ebi.ac.uk/Tools/msa/clustalw2/
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4.5. Plasmid Construction and Genetic Transformation

The PCR products of GsPRX9 with A-Tailing were cloned into a pMD19-T vector (TaKaRa,
Dalian, China) using a One-Step Cloning Kit (Vazyme, Nanjing, China), and confirmed by sequencing.
The CDS of GsPRX9 was then cloned into pBinGFP4 [58] and pYES2 vectors (Vazyme, Nanjing,
China), respectively, using the Kpn I and Bam HI (TaKaRa, Dalian, China) sites, to obtain the
recombinant plasmids of pBinGFP4–GsPRX9 (GsPRX9 was expressed in fusion with GFP, driven by
a CaMV 35S promoter) and pYES2–GsPRX9. After confirmation by sequencing, the recombinant
pBinGFP4–GsPRX9 plasmid and empty vector (pBinGFP4) were transformed into soybeans using
Agrobacterium (A. rhizogenes K599)-mediated genetic transformation [59]. The pYES2–GsPRX9 plasmid
and empty vector (pYES2) were transformed into the Saccharomyces cerevisiae strain INVSc1 and
salt-sensitive mutant strain G19 using the PEG/LiAc procedure (TaKaRa, Dalian, China) according to
the manufacturer’s instructions.

4.6. Evaluation of the Tolerance of Yeast Strains of INVSc1 and G19 to Salt and H2O2 Stress

Yeasts were grown in a synthetic medium minus the appropriate amino acids (SD-Ura) to select
the transformants, as previously described [29]. The positive transformants were screened by PCR [60],
and then grown on s YPD medium (TaKaRa, Dalian, China) supplemented with different concentrations
of NaCl (0, 0.5, 0.8, and 1 M) or H2O2 (0, 3, 3.2, and 3.4 mM) at 30 ◦C until an obvious phenotypic
difference was observed between GsPRX9 overexpressing yeast and the corresponding control yeast
with empty vector [29].

4.7. Salt Tolerance Analysis Using Soybean Composite Plants

The seeds of salt-sensitive soybean “LY01-06” were germinated in sterile vermiculite with 1/2
Hoagland solution (pH = 6.5) for five days, then soybean hypocotyls were incised and infected by
A. rhizogenes K599 containing pBinGFP4–GsPRX9 or pBinGFP4, and kept in the dark for 24 h with
the wound wrapped in aluminum foil to maintain high humidity. The soybean seedlings were then
transferred to 1/2 Hoagland solution and grown under high humidity at 28 ◦C (day) / 24 ◦C (night)
under a 14 h (light) / 10 h (dark) photoperiod for 14 days. Next, the positive transgenic soybean
composite plants with pBinGFP4–GsPRX9 or pBinGFP4 were identified by green fluorescence signals
using a stereoscopic fluorescence microscope (Olympus DP72, Tokyo, Japan), and the negative roots
were removed. Five days later, these plants were treated with 1/2 Hoagland solution containing 0 or
100 mM NaCl (pH = 6.5) for seven days. The shoot fresh weight and leaf relative water content [61]
were measured at day seven post-treatment. Three biological replications were performed and
10 independent transgenic plants were measured for each repeat.

4.8. Salt Tolerance Analysis Using Soybean Hairy Roots

The salt tolerance evaluation of soybean hairy roots was performed according to previously
published methods [3,62]. Seeds of salt-sensitive soybean variety “Tianlong1” were surface-sterilized
and placed onto MS medium (pH = 6.5) for germination. The fully developed cotyledons were cut
in half and incised with sterile scalpels, and then co-cultivated with A. rhizogenes K599 (containing
pBinGFP4–GsPRX9 plasmid or pBinGFP4) on White solid medium (MDBio, pH = 5.8) for 15 days
without light. Positive transgenic soybean hairy roots were identified by green fluorescence signals with
a stereoscopic fluorescence microscope (Olympus DP72, Tokyo, Japan). The soybean cotyledons with
all hairy roots shown as positives were then transferred to the White solid medium (MDBio, pH = 5.8)
with 0 mM (control) and 150 mM NaCl containing 500 mg/L carbenicillin and 50 mg/L cefotaxime
(Sangon Biotech, Shanghai, China) at 22 ◦C for 14 days. Root fresh weight was recorded at day 14
post-treatment. To regenerate positive transgenic roots, the soybean hairy roots with green fluorescence
signals were selected and their root tips (3 cm in length) were cut, and then transferred onto White
solid medium (pH = 5.8, including carbenicillin 500 mg/L and cefotaxime 50 mg/L) containing 0 or
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150 mM NaCl. Roots were sampled at 24 h post-treatment for detection of the GsPRX9 gene expression.
The positive hairy roots continued to grow until day 14, and the lengths of primary hairy roots were
measured. Four biological replications were performed and at least three hairy roots were measured
for each repeat.

4.9. Measurement of POD and SOD Activities, H2O2 Content, and GSH Level

The activities of POD and SOD, H2O2 content, and GSH level in soybean hairy roots were
measured as described previously [63,64]. In brief, total proteins were extracted using the vegetable
protein extraction kit (KeyGene BioTECH, Nanjing, China) and quantified using a BCA protein
assay kit (KeyGene BioTECH). The activities of POD and SOD, H2O2 content, and GSH level were
measured using a peroxidase kit (Jiancheng BioTECH, Nanjing, China), superoxide dismutase kit
(Keming BioTECH, Suzhou, China), H2O2 test kit (Jiancheng BioTECH, Nanjing, China), and GSH
test kit (Jiancheng BioTECH, Nanjing, China) according to the instructions from the manufacturers
and previously published methods [63,64]. All measurements were performed with four biological
replications and three independent soybean hairy roots were used in each replication.

4.10. Protein–Protein Interaction Network Analysis

In order to identify the potential GsPRX9 interacting proteins that might be helpful to understand
the function of GsPRX9, the Search Tool for the Retrieval of Interacting Genes (STRING, https:
//string-db.org/) was employed to predicate the protein–protein interaction (PPI) network, using
the combined_score ≥ 0.9. Cytoscape software (http://www.cytoscape.org/) [65] was used for the
visualization of protein–protein interaction network. Annotations of the potential GsPRX9 interacting
proteins were obtained from the gene ontology (GO) database (http://www.geneontology.org/).

4.11. Statistical Analysis

All experiments were performed at least in triplicate, and the results were reported as
mean ± standard deviation (SD). Statistical analyses were performed using SAS 9.2 (SAS Institute
Inc., Cary, NC, USA). Differences between the two groups were analyzed using Student’s t-tests,
while differences among more than two groups were analyzed using Duncan’s multiple range tests.

5. Conclusions

To conclude, GsPRX9 encodes a peroxidase protein that was induced by salt stress, and its
upregulation was higher in salt-tolerant than in salt-sensitive soybean varieties. Overexpression of
GsPRX9 enhanced the salt tolerance of yeast (strains of INVSc1 and G19), soybean hairy roots, and
soybean composite plants. The root fresh weight, primary root length, activities of POD and SOD,
as well as GSH level in soybean hairy roots overexpressing GsPRX9 were greater than those in controls
(empty vector). Taken together, these findings suggest that GsPRX9 plays an important role in soybean
tolerance to salt stress.
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Abbreviations

APxs Ascorbate peroxidases
CcPs Cytochrome-c peroxidases
CDS Coding sequence
CPs Catalase peroxidases
GSH Glutathione
GsPRX9 Peroxidase 9 from the wild soybean (Glycine soja)
H2O2 Hydrogen peroxide
LiPs Lignin peroxidases
MnPs Manganese-dependent peroxidases
PCR Polymerase chain reaction
POD Peroxidase
Prxs Class III peroxidases
qRT-PCR Quantitative real-time PCR
ROS Reactive oxygen species
SOD Superoxide dismutase
SD Standard deviation
VPs Versatile peroxidases
YPD Yeast extract–peptone–dextrose
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