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Background: Women with polycystic ovary syndrome (PCOS) often have vitamin D
deficiency, a known risk factor for severe COVID-19 disease. Alveolar macrophage-
derived cytokines contribute to the inflammation underlying pulmonary disease in COVID-
19. We sought to determine if basal macrophage activation, as a risk factor for COVID-19
infection, was present in PCOS and, if so, was further enhanced by vitamin D deficiency.

Methods: A cross-sectional study in 99 PCOS and 68 control women who presented
sequentially. Plasma levels of a macrophage-derived cytokine panel were determined by
Slow Off-rate Modified Aptamer (SOMA)-scan plasma protein measurement. Vitamin D
was measured by tandem mass spectroscopy.

Results: Vitamin D was lower in PCOS women (p<0.0001) and correlated negatively with
body mass index (BMI) in PCOS (r=0.28, p=0.0046). Basal macrophage activation
markers CXCL5, CD163 and MMP9 were elevated, whilst protective CD200 was
decreased (p<0.05); changes in these variables were related to, and fully accounted
for, by BMI. PCOS and control women were then stratified according to vitamin D
concentration. Vitamin D deficiency was associated with decreased CD80 and IFN-g in
PCOS and IL-12 in both groups (p<0.05). These factors, important in initiating and
maintaining the immune response, were again accounted for by BMI.

Conclusion: Basal macrophage activation was higher in PCOS with macrophage
changes related with increased infection risk associating with vitamin D; all changes
were BMI dependent, suggesting that obese PCOS with vitamin D deficiency may be at
greater risk of more severe COVID-19 infection, but that it is obesity-related rather than an
independent PCOS factor.
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BACKGROUND

Polycystic ovary syndrome (PCOS) is considered to be a
cardiometabolic condition with consequences that include
obesity and insulin resistance that drive the excess prevalence
of type 2 diabetes, hypertension, and cardiovascular diseases in
later life (1). It has been suggested that these features of PCOS
put subjects at a higher risk for severe COVID-19 infection (2, 3).
Those with PCOS are more commonly affected by vitamin D
deficiency than those without PCOS (4), deficiency occurring in
over 60% of subjects. Controversially, vitamin D deficiency has
been suggested to increase the risk and severity of COVID-19
disease, with an inverse correlation of COVID-19 incidence and
mortality to vitamin D levels (5, 6); however, others have reported
that there is no link between vitamin D and mortality (7).

In severe COVID-19 disease, acute respiratory distress
syndrome (ARDS) results, caused by an unconstrained systemic
inflammation to which differing populations of macrophages
(resident alveolar macrophages (AMs), and recruited
macrophages from the circulation) contribute (8). Macrophages
are key players in inflammation and, upon activation, two polarized
states result in an activated phenotype M1, macrophages that are
pro-inflammatory and cytotoxic, and an activated phenotype M2,
macrophages that are involved in tissue remodeling and matrix
deposition (9, 10). Inflammation has been suggested to underlie
insulin resistance and obesity in PCOS caused by macrophage
stimulation (11); therefore, we hypothesized that there would be an
increase in activated macrophages in those subjects with PCOS that
would be further increased by vitamin D deficiency, predisposing
these women to increased risk for severe COVID-19 disease.
METHODS

Study Population
99 PCOS and 68 control women “who presented sequentially to
the Department of Endocrinology, Hull and East Yorkshire
Hospitals NHS Trust were recruited to the local PCOS biobank
(ISRCTN70196169) from January 2014 to December 2016. The
Abbreviations: PCOS, polycystic ovary syndrome; SOMA, Slow Off-rate Modified
Aptamer; RFU, Relative Fluorescent Units; CRP, C-reactive protein; SHBG, sex
hormone binding globulin; BMI, body mass index; LC-MS/MS, liquid
chromatography tandem mass spectrometry; ARDS, acute respiratory distress
syndrome; AM, alveolar macrophages; COVID-19, coronavirus disease of 2019;
MMPs, Matrix metalloproteinases; TNF-a, Tumor Necrosis Factor alpha; IL-6,
Interleukin-6; IL-1b, Interleukin-1 beta; IL-12, Interleukin-12; CD80, Cluster of
differentiation 80; CXCL1, chemokine (C-X-C motif) ligand 1; CXCL2/CXCL3,
chemokine (C-X-C motif) ligand 2/chemokine (C-X-C motif) ligand 3; CXCL5,
chemokine (C-X-C motif) ligand 5; CXCL8, chemokine (C-X-C motif) ligand 8;
CXCL9, chemokine (C-X-C motif) ligand 9; CXCL10, chemokine (C-X-C motif)
ligand 10; CCL5, Chemokine (C-C motif) ligand 5; TLR4, Toll-like receptor 4;
LBP, Lipopolysaccharide-binding protein; CD163, Cluster of Differentiation 163;
TFGb-1, transforming growth factor-b1; CD200, Cluster of Differentiation 200;
CD200R1, Cluster of Differentiation 200 receptor 1; MMP7, Matrix
metalloproteinase-7; MMP9, Matrix metalloproteinase-9; CD36, Cluster
of Differentiation 36; IFN-g, Interferon gamma; IL-4, Interleukin-4; IL-13,
Interleukin-13.
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Newcastle & North Tyneside Ethics committee approved this
study; all patients gave written informed consent (2).

PCOS diagnosis was based on the Rotterdam consensus
diagnostic criteria, namely clinical or biochemical evidence of
hyperandrogenism (Ferriman-Gallwey score >8; free androgen
index >4.5 respectively), self-reported oligomenorrhea (≤ 9
menses per year) or amenorrhea (no menses for 3 months or
more) and polycystic ovaries on transvaginal ultrasound (≥12
antral follicles in at least one ovary or ovarian volume of ≥10 cm3)
(12). Study participants had no concurrent illness, were not on
any medication for the preceding 9 months and were not planning
to conceive. All PCOSwomen fulfilled the NIH criteria for diagnosis
of PCOS (2).”

Collection and Analysis of Blood Samples
Blood samples were collected and were measured in the
Chemistry Laboratory, Hull Royal Infirmary, UK as previously
described (13). “Insulin, C-reactive protein (CRP) and sex
hormone binding globulin (SHBG) were measured by an
immunometric assay with fluorescence detection on the DPC
Immulite 2000 analyzer using the manufacturer’s recommended
protocol, as previously described (13). Testosterone was
measured by isotope dilution liquid chromatography-tandem
mass spectrometry (Waters Corporation, Manchester, UK) as
previously described (14).

The free androgen index (FAI) was calculated as the total
testosterone x 100/SHBG. Serum insulin was assayed using a
competitive chemiluminescent immunoassay performed on the
manufacturer’s DPC Immulite 2000 analyzer (Euro/DPC,
Llanberis, UK). The analytical sensitivity of the insulin assay
was 2 mU/ml, the coefficient of variation was 6%, and there was
no stated cross-reactivity with proinsulin. Plasma glucose was
measured using a Synchron LX 20 analyzer (Beckman-Coulter),
using the manufacturer’s recommended protocol. The coefficient
of variation for the assay was 1.2% at a mean glucose value of 5.3
mmol/L during the study period. The insulin resistance was
calculated using the HOMA method [HOMA-IR= (insulin x
glucose)/22.5].” All analyses were undertaken according to
current guidelines, regulations and quality control. Serum
vitamin D levels and testosterone were quantified using
isotope-dilution liquid chromatography tandem mass
spectrometry (LC-MS/MS) (15): vitamin D sufficiency was
defined as >70 ng/ml, insufficiency as 50–69 ng/ml and
deficiency as <50 ng/ml (16).

SOMA-Scan Assay
Plasma levels of macrophage-related proteins were determined
by Slow Off-rate Modified Aptamer (SOMA)-scan plasma
protein measurement as has been previously described (17, 18).
The macrophage panel included measurement of M1
macrophage activation biomarkers (cytokines TNF-a, IL-6, IL-
1b, IL-12, CD80 and chemokines CXCL1, CXCL2/CXCL3,
CXCL5, CXCL8, CXCL9, CXCL10, CCL5, TLR4); activated M2
macrophage biomarkers (LBP, CD163, TFGb-1, CD200,
CD200R1, MMP7, MMP9, and CD36); conventional mediators
of both M1 and M2 macrophage activation markers (IFN-g, IL-4,
IL-13). “The SOMAscan assay used to quantify proteins was
February 2021 | Volume 12 | Article 638621
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performed on an in-house Tecan Freedom EVO liquid handling
system (Tecan Group, Maennedorf, Switzerland) utilizing buffers
and SOMAmers from the SOMAscan HTS Assay 1.3K plasma
kit (SomaLogic, Boulder, CO) according to manufacturer’s
instructions and as described previously (19, 20). The assay
was performed in 96-well plates containing up to 85 plasma
samples, three quality control and five calibrator plasma samples.
Briefly, EDTA plasma samples were diluted into bins of 40%, 1%,
and 0.05% and incubated with streptavidin-coated beads
immobilized with dilution-specific SOMAmers via a
photocleavable linker and biotin. After washing bound proteins
were first biotinylated and then released from beads by
photocleaving the SOMAmer-bead linker. The released
SOMAmer-protein complex was treated with a polyanionic
competitor to disrupt unspecific interactions and recaptured on
the second set of streptavidin-coated beads. Thorough washing
was performed before 5’ Cy3 fluorophore labelled SOMAmers
were released under denaturing conditions, hybridized on
microarray chips with SOMAmer-complementary sequences,
and scanned using the SureScan G2565 Microarray Scanner
(Agilent, Santa Clara, CA) (17).

Data Processing and Statistics
As previously described (17) “initial Relative Fluorescent Units
(RFUs) were obtained from microarray intensity images using
the Agilent Feature Extraction Software (Agilent, Santa Clara,
CA). Raw RFUs were normalized and calibrated using the
software pipeline provided by SomaLogic.” Comparisons were
performed using Student’s t-test where a p-value <0.05 was taken
as significant (GraphPad Prism 8.0, San Diego, CA, USA). No
power analysis could be performed for this study because no data
available relating the effect of vitamin D upon macrophage
proteins in PCOS is available.
RESULTS

The PCOSwomenwere older (p=0.03) with elevated BMI (p<0.001),
weight (p<0.0001), waist and hip circumference (p<0.0001), systolic
(p<0.001), and diastolic (p=0.03) blood pressure (Table 1).
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Biochemically, the PCOS women had elevated anti-Mullerian
hormone (AMH) (p<0.0001), CRP (p<0.0001), testosterone
(p=0.001) and free androgen index (p<0.0001). Vitamin D was
significantly lower in the PCOS group (p<0.0001) and correlated
negatively with BMI in PCOS (r=0.28, p=0.0046) (Table 1).

Macrophage Proteins in PCOS
Baseline macrophage proteins are shown in Figure 1. Basal
macrophage activation markers CXCL5, CD163 and MMP9
were elevated, whilst the protective CD200 was decreased
(p<0.05); their correlation with BMI is shown in Figure 2 and
the changes in these variables were related to and fully accounted
by BMI. The additional macrophage proteins that did not differ
between controls and PCOS are shown in Supplementary
Figure 1 (10.6084/m9.figshare.13090652).

Vitamin D Stratified Groups
The PCOS and control women were then stratified according to
vitamin D status. Vitamin D status was stratified into sufficient,
insufficient and deficient. Of the 99 PCOS women, 16 (16%) were
sufficient, 11 (11%) were insufficient and 72 (73%) were deficient.
Of the 68 control women, 26 (38%) were sufficient, 22 (32%)
insufficient, and 20 (29%) deficient (Supplementary Table 1).
Vitamin D deficiency was associated with decreased CD80 and
IFN-g in PCOS (both p<0.05) and IL-12 (p<0.05) in both PCOS
and controls, as shown in Figure 3. Those proteins that did not
differ within groups stratified for vitamin D are shown in
Supplementary Figure 2 (10.6084/m9.figshare.13090652). As
noted above, vitamin D correlated negatively with BMI in
PCOS (r=0.28, p=0.0046) and the changes in CD80, IL-12 and,
IFN-g did not differ when BMI was adjusted for.

BMI Stratified Groups
The macrophage-related proteins that were significantly different
between PCOS and control groups were then divided into lean (BMI
less than or equal to 25 kg/m2) and obese (BMI 26 kg/m2 or above).

In PCOS women, CD163 (p<0.005) and MMP9 (p<0.005)
were elevated while CD200 (p<0.05) was reduced in the obese
relative to the lean group. No difference was seen for CXCL5
TABLE 1 | Demographic and biochemical characteristics of the PCOS and control women. Data are presented as mean (SD).

CONTROL (n = 68) PCOS (n = 99) P value

Age (years) 27.5 (0.6) 29.8 (0.9) 0.03
BMI (kg/m2) 26.6 (0.8) 34.6 (0.8) <0.0001
Weight (kg) 73.7 (2.1) 97.8 (2.3) <0.0001
Waist circumference (cm) 81 (2) 102 (2) <0.0001
Hip circumference (cm) 101 (1) 119 (2) <0.0001
Systolic blood pressure (mmHg) 115 (1) 122 (2) 0.0008
Diastolic blood pressure (mmHg) 74 (1) 77 (1) 0.03
AMH (pmol/l) 22.3 (2.1) 46.2 (3.2) <0.0001
Sex Hormone Binding Globulin (SHBG) (nmol/l) 72.6 (9.5) 42.9 (4.5) 0.002
CRP (mmol/l) 2.1 (0.5) 4.8 (0.6) <0.0001
Testosterone (nmol/l) 1.1 (0.1) 1.5 (0.1) 0.001
FAI 2.1 (0.2) 5.7 (0.6) <0.0001
HOMA-IR 1.64 (1.60) 3.92 (6.22) 0.0052
Total vitamin D (ng/ml) 62 (3) 43 (3) <0.0001
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between lean and obese PCOS women. There were no differences
in these protein levels seen between lean and obese control women.
DISCUSSION

Macrophage-derived cytokines promote the inflammation in
ARDS, and post-mortem lung histopathology in COVID-19
disease reveals inflammatory infiltrates of macrophages in the
alveolar lumina (21). Systemic cytokine profiles of macrophage
activation syndrome resemble that seen in patients with severe
COVID-19 disease (22).

Low grade inflammation in PCOS is the key mediator of the
insulin resistance and metabolic effects seen and are promoted by
cytokines derived from macrophages (11). This study shows that
basal macrophage-derived biomarkers associated with inflammation,
CXCL5, CD163, and MMP9, were elevated in subjects with PCOS
while CD200 was decreased. CXCL5 is a proinflammatory chemokine
that promotes insulin resistance and is secreted from white adipose
tissue in excess in obesity. CXCL5 correlated with BMI and, when
the data were corrected for BMI, it was no longer significant, in
accord with the serum levels reported to being no different in
normal weight PCOS versus controls (23).

Soluble CD163 is a biomarker of macrophage activation that
is associated with the development of diabetes (24). Elevated
serum levels of CD163 have been reported in PCOS (25) though
the mRNA levels in adipose tissue of PCOS and overweight
Frontiers in Endocrinology | www.frontiersin.org 4
individuals did not differ (26). This is in accord with the data
reported here, where CD163 levels correlated with BMI and were
no longer significant when the data were adjusted for BMI.

Matrix metalloproteinases (MMPs) are macrophage M2
markers that have been suggested to be important in the
pathogenesis of PCOS, with reports differing with regard to serum
MMP9 elevation or not (27). In this study, MMP9 was elevated
basally in PCOS, in accord with previous reports (27); however,
MMP9 correlated with BMI, and when the data were adjusted for
BMI, significance was lost. Thus, this would explain the differing
reports on MMP9 serum levels if BMI was not taken into account.

CD200 expression has been associated with a shift away from
proinflammatory macrophages and therefore its reduction would
promote the inflammatory process (28); this is in accord with our
findings where basal levels of CD200 were reduced in PCOS
women in this study. CD200 correlated with BMI and, when the
data was adjusted for BMI, then CD200 was no longer
significantly reduced in PCOS.

Overall, it can be seen that the proinflammatory expression of
macrophage-derived proteins seen in PCOS were all driven by
obesity and were therefore not independent markers of
inflammation in PCOS.

Vitamin D deficiency has been shown to be related to the
expression of proinflammatory macrophage cytokines and
fibrosis (29), factors that may contribute to its association with
a poor outcome in COVID-19 disease (5, 6). The data here show
that vitamin D deficiency was associated with decreased CD80
A B

DC

FIGURE 1 | Macrophage-related proteins in women with and without PCOS. Baseline macrophage proteins are shown for the proteins that differed between PCOS
and controls: CXCL5 (A), CD163 (B), MMP9 (C), and CD200 (D). *p < 0.01, ***p < 0.0001, ^p < 0.05. RFU, relative fluorescent units.
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and IFN-g in PCOS (both p<0.05), and IL-12 (p<0.05) in both
PCOS and controls. CD80 is a costimulatory molecule produced
by macrophages that is important in maintaining T cell activation
(30), while IL-12 activates natural killer and cytotoxic T
lymphocytes that are important as mediators of inflammation-
induced apoptosis (31). However, in all cases, after adjustment for
BMI, none of these proteins remained significantly altered. This
suggests that if vitamin D deficiency is a risk factor for increased
severity of COVID-19 disease in PCOS, then the mechanism is not
through macrophage cytokine mediation independent of obesity.

After ingestion or production in the skin, the fat-soluble
prohormone vitamin D affects many physiological functions,
including the regulation of both innate and adaptive immunity
Frontiers in Endocrinology | www.frontiersin.org 5
(32–34). Activation of vitamin D can occur through canonical
and non-canonical pathways. In the classic pathway, vitamin D is
first metabolized to 25-hydroxyvitamin D3 by CYP2R1 and
CYP27A1 in the liver, then in the kidney and other organs,
such as the skin and the immune system, to the active 1,25-
dihydroxyvitamin D3 by CYP27B1 (35–37). In the alternative
pathway, vitamin D is activated by CYP11A1, resulting in the
production of over 10 different metabolites (36, 38–43); this includes
activation of lumisterol, a photoproduct of pro-vitamin D (44).

Both 1,25-dihydroxyvitamin D3 and the CYP11A1-derived
metabolites can affect immune functions (39), and much evidence
supports their potent anti-inflammatory and antioxidative activities
(45). While the possible association between vitamin D deficiency/
A B

DC

FIGURE 2 | Correlations of macrophage-related proteins with BMI in PCOS and control women. A positive correlation with BMI was seen in PCOS women only for
CXCL5 (A) and MMP9 (C), and for CD163 (B) in both PCOS and control women; a negative correlation with BMI was seen in PCOS women only for CD200 (D).
A B C

FIGURE 3 | Stratification according to vitamin D status of macrophage-related proteins in women with and without PCOS. Stratification according to vitamin D
status revealed that vitamin D deficiency was associated with decreased CD80 (A), IFN-g (B) in PCOS, and decreased IL-12 (C) in both PCOS and control women.
^p < 0.05, ^^p < 0.005. RFU, relative fluorescent units.
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insufficiency and more severe COVID-19 disease remains
speculative, there is increasing evidence in support of the
potential role of classical and alternative forms of vitamin D in
damping down the production of pro-inflammatory cytokines
(cytokine storm) and oxidative stress induced by COVID-19
infection and thus mitigating their harmful effects (45).

Limitations of this study include that it was only a moderately
sized cross-sectional study and that only total vitamin D was
measured and not the active 1,25 dihydroxyvitamin D or its
metabolites that may also be active. In addition, no functional
assays were undertaken, and only circulatory levels of
macrophage-related proteins were measured that may not
reflect concentrations at the tissue level.
CONCLUSIONS

In conclusion, obese subjects with PCOS show a basal
proinflammatory macrophage-derived protein profile together
with vitamin D deficiency that was also associated with reduced
T cell regulatory proteins compared to controls. However, all of
these features could be accounted for by BMI suggesting that
obese, but not lean, PCOS subjects may be at risk for more severe
COVID-19 disease and that vitamin D effects on macrophage-
related proteins is not independent of obesity.
DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.
Frontiers in Endocrinology | www.frontiersin.org 6
ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by The Newcastle & North Tyneside Ethics committee.
The patients/participants provided their written informed
consent to participate in this study.
AUTHOR CONTRIBUTIONS

AM and AB analyzed the data and wrote the manuscript. TS
supervised clinical studies and edited the manuscript. SA
contributed to study design, data interpretation and the writing
of the manuscript. All authors contributed to the article and
approved the submitted version. AB is the guarantor of
this work.
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fendo.2021.
638621/full#supplementary-material

Supplementary Figure 1 | Macrophage-related proteins where no difference
was seen between PCOS and control women.

Supplementary Figure 2 | Macrophage-related proteins stratified according to
vitamin D status where no difference was seen between stratified groups for either
PCOS or control women.
REFERENCES
1. Salley KE, Wickham EP, Cheang KI, Essah PA, Karjane NW, Nestler JE.

Glucose intolerance in polycystic ovary syndrome–a position statement of the
Androgen Excess Society. J Clin Endocrinol Metab (2007) 92(12):4546–56.
doi: 10.1210/jc.2007-1549

2. Moin ASM, Sathyapalan T, Atkin SL, Butler AE. Renin-Angiotensin System
Overactivation in Polycystic Ovary Syndrome, a Risk for SARS-CoV-2
Infection? Metab Open (2020) 7:100052. doi: 10.1016/j.metop.2020.100052

3. Kyrou I, Karteris E, Robbins T, Chatha K, Drenos F, Randeva HS. Polycystic
ovary syndrome (PCOS) and COVID-19: an overlooked female patient
population at potentially higher risk during the COVID-19 pandemic. BMC
Med (2020) 18(1):220. doi: 10.1186/s12916-020-01697-5

4. Cunningham TK, Allgar V, Dargham SR, Kilpatrick E, Sathyapalan T,
Maguiness S, et al. Association of Vitamin D Metabolites With Embryo
Development and Fertilization in Women With and Without PCOS
Undergoing Subfertility Treatment. Front Endocrinol (Lausanne) (2019)
10:13. doi: 10.3389/fendo.2019.00013

5. Ilie PC, Stefanescu S, Smith L. The role of vitamin D in the prevention of
coronavirus disease 2019 infection and mortality. Aging Clin Exp Res (2020)
32(7):1195–8. doi: 10.1007/s40520-020-01570-8

6. Laird E, Rhodes J, Kenny RA. Vitamin D and Inflammation: Potential
Implications for Severity of Covid-19. Ir Med J (2020) 113(5):81.

7. Hastie CE, Mackay DF, Ho F, Celis-Morales CA, Katikireddi SV, Niedzwiedz
CL, et al. Vitamin D concentrations and COVID-19 infection in UK Biobank.
Diabetes Metab Syndr (2020) 14(4):561–5. doi: 10.1016/j.dsx.2020.04.050

8. Misharin AV, Scott Budinger GR, Perlman H. The lung macrophage: a Jack of
all trades. Am J Respir Crit Care Med (2011) 184:497–8. doi: 10.1164/
rccm.201107-1343ED
9. Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas.
J Clin Invest (2012) 122(3):787–95. doi: 10.1172/JCI59643

10. Martinez FO, Sica A, Mantovani A, Locati M. Macrophage activation and
polarization. Front Biosci (2008) 13:453–61. doi: 10.2741/2692
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