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A B S T R A C T   

COVID-19 infection evokes various systemic alterations that push patients not only towards severe acute res-
piratory syndrome but causes an important metabolic dysregulation with following multi-organ alteration and 
potentially poor outcome. To discover novel potential biomarkers able to predict disease’s severity and patient’s 
outcome, in this study we applied untargeted lipidomics, by a reversed phase ultra-high performance liquid 
chromatography-trapped ion mobility mass spectrometry platform (RP-UHPLC-TIMS-MS), on blood samples 
collected at hospital admission in an Italian cohort of COVID-19 patients (45 mild, 54 severe, 21 controls). In a 
subset of patients, we also collected a second blood sample in correspondence of clinical phenotype modification 
(longitudinal population). Plasma lipid profiles revealed several lipids significantly modified in COVID-19 pa-
tients with respect to controls and able to discern between mild and severe clinical phenotype. Severe patients 
were characterized by a progressive decrease in the levels of LPCs, LPC-Os, PC-Os, and, on the contrary, an 
increase in overall TGs, PEs, and Ceramides. A machine learning model was built by using both the entire dataset 
and with a restricted lipid panel dataset, delivering comparable results in predicting severity (AUC= 0.777, CI: 
0.639–0.904) and outcome (AUC= 0.789, CI: 0.658–0.910). Finally, re-building the model with 25 longitudinal 
(t1) samples, this resulted in 21 patients correctly classified. In conclusion, this study highlights specific lipid 
profiles that could be used monitor the possible trajectory of COVID-19 patients at hospital admission, which 
could be used in targeted approaches.   

Abbreviations: RT, retention time; CCS, Collision Cross Section; CEs, cholesteryl esters; DGs, diacylglycerols; TGs, triacylglycerols; LPCs, lysophosphatidylcholines; 
LPC-Os, ether-linked lysophosphatidylcholines; PCs, phosphatidylcholines; PC-Os, ether-linked phosphatidylcholine; PEs, phosphatidylethanolamines; Cer, Ceram-
ides; TIMS-MS, Trapped ion mobilty mass spectrometry. 
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1. Introduction 

The current pandemic caused by severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) is still delivering an enormous impact on 
health management globally. Indeed, the scarce vaccination practice in 
countries with weaker health and economic systems makes COVID-19 
still a relevant health and social problem worldwide [1]. While 
roughly 80% of COVID-19 patients show only mild symptoms, condi-
tions can rapidly evolve to severe phenotype. The pathophysiology of 
COVID-19 is indeed highly complex; beyond immune changes, meta-
bolism emerged as a critical regulator that is tightly bound to the host 
response and involved in the disease’s progression [2]. Some patients 
with COVID-19 undergo an altered metabolic state, known as “pheno-
conversion” [3], predictive of multi-organ alteration and poor outcome. 
Specifically, clinical deterioration in patients with COVID-19 involves 
multiple pathways, including chemotaxis and interleukin production, 
but also endothelial dysfunction, the complement system, and immu-
nothrombosis. Indeed, unfavorable outcome in hospitalized COVID-19 
patients has been previously associated with changes in concentra-
tions of IL-6, IL-8, IL-10, soluble Receptor for Advanced Glycation End 
Products (sRAGE), vascular cell adhesion molecule 1 (VCAM-1) and 
Pentraxin-3 [4]. Moreover, also lipids play various critical biological 
functions in cellular barriers, signal transduction, material transport, 
energy storage, cell differentiation, and apoptosis. SARS-CoV-2 can 
induce characteristic molecular changes detected in patients’ sera using 
proteomic and metabolomic technologies [5,6] which also correlates 
with modification of the inflammatory profile of the COVID-19 patients 
[7]. Therefore, omic sciences, such as metabolomics and lipidomics, can 
be instrumental in identifying predictive biomarkers of severity and 
progression, monitoring the metabolic status of individuals during the 
time and thus applied to evaluate the metabolic host response to 
SARS-CoV-2 infection. In this regard, lipids cover a crucial role in 
numerous metabolic processes, such as energy management and storage, 
act as structure and membrane components, and are essential players in 
cell signaling. They have also been found deeply dysregulated in other 
viral infections, like Ebola virus disease (EVD) [5,8–10]. Lipids are 
essential also in the life cycle of SARS-CoV-2, which is an envelope virus 
surrounded by a lipid bilayer, furthermore, following infection, host 
immune cells like macrophages show a change in lipid metabolism upon 
activation, which is tightly connected to the immune response to path-
ogens [11]. Initial studies have in fact evidenced that eicosanoids dys-
regulation, as well as lower serum HDL levels are connected with disease 
severity and mortality rate [12, 13]. Therefore lipidomics, with its po-
tential to identify and quantify several lipid subclasses in a single 
analysis [14], can be a useful tool for a better comprehension of 
COVID-19 physiopathology and identification of novel therapeutic 
strategies. In this regard, targeted [7, 15] and untargeted mass 
spectrometry-based lipidomics studies [6, 16] have been carried out on 
different COVID-19 cohorts. All these studies, even if heterogeneous and 
carried out with different technologies, evidenced a profound dysregu-
lation in plasma lipidome of COVID-19 patients, such as increased 
sphingomyelins (SM) and reduced diacylglycerol (DG) levels [10], 
increased ceramides (Cer) and triglycerides (TG) [9], and generally 
decreasing glycerophospholipids [6] even with conflicting results [9, 
10]. Overall, lipid biomarkers mirror the severity statuses, but their 
effective predictive potential has not been clearly identified. Thus, we 
hypothesize that metabolic changes in COVID-19 patients are earlier 
than clinical changes and, therefore, potentially exploitable for early 
prognostic assessment. In this study, to uncover the lipid changes in the 
plasma of COVID-19 patients, we applied an untargeted lipidomics 
approach, by ultra-high-performance liquid chromatography coupled 
trapped ion mobility mass spectrometry (UHPLC-TIMS-MS), in an Italian 
cohort of hospitalized COVID-19 patients. We highlight a profound 
alteration of different lipid subclasses, particularly a significant and 
progressive decrease of glycerophospholipids, already at the time of 
admission, and explored the potential capability of a specific lipid subset 

to predict COVID-19 patients’ outcome. 

2. Material and methods 

2.1. Study design and participants 

A cohort of 99 patients with a positive nasopharyngeal/oropharyn-
geal swab PCR test for COVID-19 (SARS-CoV-2 infection) was enrolled 
between October 2020 and March 2021 at the University Hospital 
“Giovanni Da Procida”, Salerno, Italy. None of these patients were 
vaccinated against COVID-19. The cohort’s median age was 68 years 
old, and the female proportion was 61%. At admission, patients were 
classified according to the clinical phenotype following World Health 
Organization (WHO) severity score as Mild patients (hospitalized pa-
tients requiring or not supplemental oxygen; n = 45), or Severe patients 
(hospitalized patients requiring non-invasive ventilation or high-flow 
oxygen therapy; intubation and mechanical ventilation, or ventilation 
with additional organ support; n = 54) [World Health Organization. 
WHO R&D Blueprint. Novel Coronavirus: COVID-19 Therapeutic Trial 
Synopsis. Draft February 18, 2020.www.who.int/blueprint/priority- 
diseases/key-action/COVID-19_Treatment_Trial_Design_Master_Protoco 
l_synopsis_Final_18022020.pdf]. Patients were further followed up until 
hospital discharge or death and subdivided into survivors (Mild, n = 37; 
Severe, n = 20) and non-survivors (Mild, n = 8; Severe, n = 34). Blood 
samples from all patients were collected at the time of admission (Time 
0). In a subgroup of patients (n = 25) we collected a second blood sample 
(Time 1) in correspondence of clinical and symptoms changes (pheno-
typical switch). 

Healthy and SARS-CoV-2 negative subjects (n = 21) of age 50.21 ±
10.29% and 50% of females were recruited from healthcare workers at 
the University Hospital “San Giovanni di Dio e Ruggi d’Aragona”. The 
study protocol was approved by the local Ethics Committee (prot./SCCE 
no. 71262, May 2020). All methods and experimental procedures were 
performed under the Declaration of Helsinki. 

2.2. Blood sample processing 

Blood samples were collected in fasting states. From each patient, 
5–8 mL of whole blood was drawn into EDTA vacutainers and centri-
fuged at 1000 × g for 20 min at 25 ◦C to separate blood cells and plasma. 
After collection, plasma samples were aliquoted and stored at – 80 ◦C 
until analysis. 

2.3. Plasma lipidome extraction 

Before extraction, samples were randomized and split in regular sub- 
groups. Lipids were extracted following the Matyash et al. protocol [17], 
with slight modifications: briefly, 20 µL of plasma were thawed on ice 
and added to 225 µL of ice cold MeOH containing a mix of deuterated 
standards (Splash Lipidomix®, Avanti Polar Lipids, Alabaster, AL, U.S. 
A) and vortexed for 10 s. Subsequently, 750 µL of cold methyl tert-butyl 
ether (MTBE) were transferred to the tube and the solution was shaken 
in a thermomixer (Eppendorf) for 10 min, 300 rpm at 4 ◦C. Then, 188 µL 
of H2O were added and samples were vortexed for 20 s and centrifuged 
at 14,680 rpm, for 10 min at 4 ◦C to induce phase separation. The upper 
layer was collected and evaporated using a SpeedVac (Savant, Thermo 
Scientific, Milan, Italy). The dried samples were dissolved in 100 µL of 
BuOH/IPA/H2O 8/23/69 (v/v) before the UHPLC-TIMS analysis. A 
quality control (QC) sample was prepared by pooling the same aliquot 
(3 µL) from each sample. Unless otherwise described, all solvents and 
additives were LC-MS grade and purchased by Merck (Darmstadt, 
Germany). 

2.4. RP-UHPLC-TIMS-MS method parameters 

UHPLC-TIMS analyses were performed on a Thermo Ultimate RS 
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3000 UHPLC coupled online to a TimsTOF Pro quadrupole Time of flight 
(Q-TOF) (Bruker Daltonics, Bremen, Germany) equipped with an Apollo 
II electrospray ionization (ESI) probe. The separation was performed 
with an Acquity UPLC CSH C18 column (100 × 2.1 mm; 1.7 µm) pro-
tected with a VanGuard CSH precolumn (5.0 × 2.1 mm; 1.7 µm, 130 Å) 
(Waters, Milford, MA, U.S.A). The column temperature was set at 55 ◦C, 
a flow rate of 0.4 mL/min was used, mobile phase consisted of (A): ACN/ 
H2O with 10 mM HCOONH4 and 0.1% HCOOH 60:40 (v/v) and (B): IPA/ 
ACN with 10 mM HCOONH4 and 0.1% HCOOH 90:10 (v/v). The 
following gradient has been used: 0 min, 40% B; 2 min, 43% B; 2.10 min, 
50% B; 12 min, 54% B; 12.10 min, 70% B; 17 min, 99% B; 17.10 min, 
99% B; 17.2, 40% B and then 2.8 min for column re-equilibration. The 
analyses were performed in data-dependent parallel accumulation serial 
fragmentation (DDA-PASEF) with both positive and negative ionization, 
in separate runs. The injection volume was set at 3 µL for the positive 
mode and 5 µL for the negative mode. Source parameters: Nebulizer gas 
(N2) pressure: 4.0 Bar, Dry gas (N2): 10 l/min, Dry temperature: 250 ◦C. 
Mass spectra were recorded in the range m/z 100–1500, with an accu-
mulation and ramp time to 100 ms each. The ion mobility was scanned 
from 0.55 to 1.70 Vs/cm2. Precursors for data-dependent acquisition 
were isolated within ± 2 m/z and fragmented with an ion mobility- 
dependent collision energy, 30 eV in positive mode, and 40 eV in 
negative mode. The total acquisition cycle was of 0.32 s and comprised 
one full TIMS-MS scan and two PASEF MS/MS scans. Exclusion time was 
set to 0.1 min, Ion charge control (ICC) was set to 7.5 Mio. The instru-
ment was calibrated for both mass and mobility using the ESI-L Low 
Concentration Tuning Mix with the following composition: [m/z, 1/K0: 
(322.0481, 0.7318 Vs cm− 2), (622.0290, 0.9848 Vs cm− 2), (922.0098, 
1.1895 Vs cm− 2), (1221,9906, 1.3820 Vs cm− 2)] in positive mode and 
[m/z, 1/K0: (301.99814, 0.6678 Vs cm− 2), (601.97897, 0.8781 Vs 
cm− 2), (1033.98811, 1.2525 Vs cm− 2), (1333.96894, 1.4015 Vs cm− 2)] 
in negative mode. 

2.5. RP-UHPLC-TIMS-MS data analysis and processing 

4D data alignment, filtering and annotation was performed with 
MetaboScape 2021 (Bruker) employing a feature finding algorithm (T- 
Rex 4D) that automatically extracts buckets from raw files. At the 
beginning of each LC-MS run, a mixture (1:1 v/v) of 10 mM sodium 
formate calibrant solution and ESI-L Low Concentration Tuning Mix was 
injected to recalibrate, respectively, both the mass and mobility data. 
Feature detection was set to 500 and 250 counts for positive and 
negative modes. The minimum number of data points in the 4D TIMS 
space was set to 100, and recursive feature extraction was used (75 
points). Lipid annotation was performed first with a Rule-based anno-
tation and, subsequently, using the LipidBlast spectral library of MS 
DIAL (http://prime.psc.riken.jp/compms/msdial/main.html) with the 
following parameters: tolerance: narrow: 2 ppm, wide: 10 ppm; mSigma: 
narrow 30, wide 250, MS/MS score: narrow 800, wide 150. Collision 
Cross Section (CCS)%: narrow 2, wide 5. The spectra were processed 
using [M+H]+, [M+Na]+, [M+K]+, [M+H-H2O]+ and [M+NH4]+ ions 
in positive mode, while [M–H]− , [M+Cl]− , [M+ HCOO]− and [M-H2O]−

in negative mode. CCS values were further compared with the those 
predicted by LipidCSS tool (http://www.metabolomics-shanghai.org/ 
LipidCCS/), the assignment of the molecular formula was performed 
for the detected features using Smart Formula™ (SF). For the assessment 
of repeatability and instrument stability over time, a QC strategy was 
applied [18] using pooled plasma samples inserted during the batch 
regularly together with a mixture of authentic lipid standards [Light-
SPLASH®, Avanti Polar Lipids] to monitor specific retention time and 
response modification of lipid subclasses. Samples were injected in 
randomized order and blank samples (blank matrix extracted, e.g 
following all the steps of extractions, and neat solvent used for sample 
solubilization) were injected regularly and used to assess and exclude 
background signals. 

2.6. Statistical analysis 

Univariate and multivariate statistics was performed with Metab-
oAnalyst 5.0 (https://www.metaboanalyst.ca). Data preprocessing 
consisted of the following steps: all lipids missing in more than 50% in 
QCs and 75% in real samples were excluded, furthermore all lipids with 
a coefficient of variation (CV%) higher than 35% among QCs samples 
were discarded. In order to flatten the differences between samples and 
to avoid bias in the statistical analysis, we first normalized lipid in-
tensities with the corresponding deuterated internal standard [19] and 
then the dataset was log transformed and auto scaled. A preliminary 
investigation was carried out using Principal Component Analysis (PCA) 
on pre-processed data. Then, Partial Least Square Discriminant Analysis 
(PLS-DA) model was built in order to discriminate between healthy 
patients and mild and severe covid patients. K-fold cross-validation was 
performed, splitting the data into 10 subgroups to select the optimal 
number of Latent Variables (nLVs). The nLVs were selected maximizing 
the accuracy in cross validation. PLS-DA solves classification problems 
with more than 2 classes and in the scenario where there is a high 
number of variables and low samples. Statistical analysis between pa-
tients’ characteristics were analyzed using student t test using SPSS v25. 
Variable importance in projection (VIP) scores, based on PLS-DA results, 
and Significance analysis of Metabolomics (SAM), giving a delta value of 
1.5, were used to identify lipids responsible for the maximum separation 
of the groups. For univariate data analysis, one-way ANOVA corrected 
by Fisher’s LSD post hoc analysis for intergroup comparison (Covid (-), 
Mild, Severe) was performed, setting a threshold of significance of false 
discovery rate (FDR) adjusted p-value of 0.01. Volcano plot analysis was 
used to visualize significant lipids between Mild and Severe patients 
(Folch-change: 1.5, pvalue: 0.05 FDR). Receiver operating characteristic 
(ROC) analysis was carried out with the Biomarker analysis tool in 
Metaboanalyst 5.0. A random forest (RF) machine learning (ML) algo-
rithm was performed, after splitting the cohort in a training set and a test 
set, was tested as a predictive model. Lipid features were ranked ac-
cording to the specific metrics of each modeling method (p-values, ab-
solute loading values from PCA, the variable importance in projection 
from PLS-DA, delta value on SAM analysis, and the feature importance 
from the RF model). A multivariate ROC curve model was compared 
with the whole lipid profile. 

3. Results and discussion 

3.1. Untargeted lipidomics analysis of COVID-19 plasma samples 

Untargeted lipidomics analyses were conducted with an RP-UHPLC- 
TIMS-MS strategy summarized in Fig. 1. System repeatability was 
assessed by a pooled QC strategy, which closely clustered as can be 
observed from PCA score plot (Fig. S1), while lipid annotations were 
performed following the lipidomic standard initiative guidelines 
(Fig. S2). (https://lipidomics-standards-initiative.org/). In detail our 
initial workflow started from 994 annotations which were subjected to 
several filters: mass accuracy (Δppm: max 5.0 ppm), collision section 
error values (ΔCCS: max 5%), peak shape, most probable adduct form, 
MS/MS spectral similarity score, RT and CCS values linearity, carryover, 
and CV < 35% in QCs. As a result, retention time reproducibility 
resulted in a median CV value of 0.42%, prior to the RT alignment, while 
average MS/MS score, Δppm and ΔCCS were respectively: 914.60 MS/ 
MS score, 0.60 Δppm, 1.30% ΔCCS (Fig. S2). After further manual 
curation, 348 unique lipids belonging to 16 subclasses (Fig. S3) were 
annotated with high confidence (table S1), in this regard, for more than 
75% of lipids CV values were < 20%, and for the remaining 25%, CV was 
< 30%. Notably, 91.67% of the annotations were in common between 
rule based and spectral library approaches, moreover the implementa-
tion of trapped ion mobility ensured further confidence in lipid anno-
tation, by comparison of experimental CCS values with those reported in 
libraries. Following raw data alignment, filtering and annotation as 
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described in Section 2.5, for each lipid feature the precursor ion 
response was normalized against the class-specific internal standard, as 
widely reported for untargeted lipidomics approaches [18]. Results 
were expressed as nmol/mL and reported in Supplementary table S4. 

3.2. Clinical features of COVID-19 patients 

In our cohort, no significant differences in baseline characteristics 
were identified at admission between mild and severe patients. We 
found a slight prevalence of female patients with no difference of age 
between mild and severe phenotype. For all the comorbidities analyzed 
we did not detect a significant difference between the two groups. 
Furthermore, we subdivided mild and severe groups into “survivors” 
and “non-survivors” considering death as final endpoint. The de-
mographic and comorbidities information are summarized in Table 1. In 
the mild group no demographic and prevalence comorbidities differ-
ences were found between “survivors’’ and ”non-survivors” except for 
valvular disease and peripheral arterial disease (PAD), (1 patient in 
“non-survivor” group). The same observation was for the severe group 
except for the presence of PAD (1 patient in the “survivor” group). Data 

are reported in Tables 2 and 3. 

3.3. Differential lipidomic signature discerns between COVID-19 
phenotypes 

For lipidomic analysis, exploratory analysis was performed by un-
supervised principal component analysis (PCA) which showed that the 
first 24 components explained the 95% of total variance (Fig. S1). To 
visualize classes separation supervised partial least square discriminant 
analysis (PLS-DA) was used. As shown in Fig. 2A and B PLS-DA score 
plots clearly differentiated the healthy controls COVID-19(− ) from 
COVID-19 (+) patients, while in the context of COVID-19 group, the 
PLS-DA score could still discriminate between mild and severe pheno-
types. The lipid features that contributed to the class separation and 
discrimination between the three groups were reported according to 
their variable of importance in projection (VIP) scores, extracted by PLS- 
DA. The 15 highest scoring VIP lipids (VIP score ≥ 1.8) are shown in 
Fig. 2C. Interestingly 9/15 lipids were lysophosphatidylcholines, in 
particular: six LPCs (LPC 20:1, LPC 18:0, LPC 20:2, LPC 17:0, LPC 16:0, 
LPC 18:1) three ether-linked LPCs (LPC O-16:0, LPC O-18:1, LPC O- 
16:1), two ether-linked phosphatidylcholines (PC O-34:3, isomers), 

Fig. 1. Workflow of the untargeted lipidomics approach: 120 plasma samples were extracted and analyzed by RP-UHPLC-TIMS/MS, repeatability was assessed by a 
pooled QC strategy, lipid annotation was performed by spectral library comparison, rule-based annotation, retention time and Collision Cross Section linearity. 

Table 1 
Clinical characteristics of COVID-19 patients subdivided by phenotype at 
admission; CAD: coronary artery diseases; HF: heart failure; PAD: peripheral 
artery disease; CKD: chronic kidney disease; COPD: Chronic obstructive pul-
monary disease.   

Covid (+)   

Mild (45) Severe (54) p- 
value 

Sex F: 23 (51.1%); M: 22 
(48.9%) 

F: 38 (70.4%); M: 16 
(29.6%)  

0.05 

Age 67.91 ± 17.22 67.85 ± 11.62  0.984 
CAD 7 (15.6%) 12 (22.2%)  0.475 
HF 4 (8.9%) 2 (3.7%)  0.068 
Obesity 4 (8.9%) 12 (22.2%)  0.905 
Atrial Fibrillation 6 (13.3%) 5 (9.3%)  0.124 
Valvular disease 1 (2.2%) 2 (3.7%)  0.863 
PAD 1 (2.2%) 1 (1.9%)  0.490 
Dyslipidemia 6 (13.3%) 8 (14.8%)  0.280 
Diabetes mellitus 14 (31.1%) 17 (31.5%)  0.119 
Arterial 

hypertension 
26 (57.8%) 32 (59.3%)  0.093 

CKD 7 (15.6%) 7 (13.0%)  0.513 
Smoking 3 (6.7%) 7 (13.0%)  0.597 
COPD 10 (22.2%) 9 (13.7%)  0.062 
Autoimmune 

Disease 
1 (2.2%) 4 (7.4%)  0.738  

Table 2 
Subdivision of COVID-19 Mild patients by outcome in “survivors” and “non- 
survivors”; CAD: coronary artery diseases; HF: heart failure; PAD: peripheral 
artery disease; CKD: chronic kidney disease; COPD: Chronic obstructive pul-
monary disease.   

Mild “survivors” (37) Mild “non-survivors” 
(8) 

p- 
value 

Sex F: 19 (51%); M: 18 
(49%) 

F: 3 (37.5%); M: 5 
(62.5%)  

0.489 

Age 65.24 ± 17.33 80.25 ± 10.37  0.024 
CAD 5 (13.5%) 2 (25.0%)  0.307 
HF 3 (8.1%) 1 (12.5%)  0.637 
Obesity 4 (10.8%) –  0.317 
Atrial Fibrillation 4 (10.8%) 2 (25.0%)  0.355 
Valvular disease – 1 (12.5%)  0.040 
PAD – 1 (12.5%)  0.008 
Dyslipidemia 4 (10.8%) 2 (25.0%)  0.201 
Diabetes mellitus 12 (32.4%) 2 (25.0%)  0.835 
Arterial 

hypertension 
22 (59.5%) 4 (50.0%)  0.364 

CKD 4 (10.8%) 3 (37.5%)  0.195 
Smoking 1 (2.7%) 2 (25.0%)  0.006 
COPD 6 (16.2%) 4 (50.0%)  0.014 
Autoimmune 

disease 
1 (2.7%) 2 (25.0%)  0.700  
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whose levels were all lower in COVID-19 patients. The remaining four 
lipids were TGs (TG 18:1_18:2_22:6, TG 18:1_18:1_22:6, TG 
16:0_18:1_22:5, TG 16:0_20:4_22:6) which, inversely, display upregu-
lation in COVID-19 patients. We next performed univariate comparison 
on the internal standard normalized, log transformed and auto scaled 
dataset. A total of 191 out of 348 lipids were found significantly 
modulated (p < 0.01, FDR: 0.01%, complete results are reported in 
Table S2) across the different classes. Noteworthy, ANOVA and signifi-
cance analysis of metabolomics (SAM, Table S3) shared six metabolites 

which were top listed as significant in all compared conditions namely: 
LPC 20:1; LPC O-16:0, LPC O-18:1, LPC 18:0, PC O-34:3 and LPC O-16:1. 
These features were also listed among the significant lipids whose con-
centration was decreased in severe condition, as highlighted in the top 
left corner of the volcano plot in Fig. 2D. The heatmap, based on the top 
30 lipid features (Fig. 2E, p-value < 0.01), evidences the lipidome 
signature that characterizes two different severity status. In particular, 
severe group is mostly associated to decrease of LPCs, LPC-Os, and PC-O. 
Contrariwise, severe status is characterized by an increase in TGs (TG 
18:0_18:2_18:5; TG 18:1_18:2_18:2) and PEs (PE 34:1; PE 16:0_18:1; PE 
18:1_18:0; PE 18:0_18:1) levels. 

3.4. Lipidome signature predicts COVID-19 severity and outcome 

The different lipid patterns between the control and COVID-19 
group, and in particular, their progression along the phenotypes (from 
mild to severe), suggests that the lipidome signature measured at hos-
pital admission could reflect the progression of disease and outcome. 
Therefore, to unveil the predictive potential of the discovered lipidome 
signature, we built a Random Forest (RF) machine learning (ML) model. 
The entire dataset was randomly divided into a training set, which was 
used to optimize and train the model, and a test set, to evaluate the 
model performance, which was assessed by area under curve (AUC) 
values of Receiver Operating Characteristic (ROC) curve. The model was 
trained on the complete annotated lipidome dataset (348 lipid features), 
by using repeated random subsampling cross validation (repeats = 100), 
the significance of the model’s fit was computed using a permutation 
test with n = 1000 obtaining a p-value of 0.005. The model reached AUC 
values of 0.751 (95% CI: 0.599–0.887) for severity and 0.815 (95% CI: 
0.662–0.944) for outcome respectively; the ROC curves are reported in  
Fig. 3A and B. The measurement of a large number of metabolites is 
challenging for potential fast clinical applications, which on the other 
hand would be easier with a reduced panel of the highest predictive 

Table 3 
Subdivision of COVID-19 Severe patients by outcome in “survivors” and “non- 
survivors”; CAD: coronary artery diseases; HF: heart failure; PAD: peripheral 
artery disease; CKD: chronic kidney disease; COPD: Chronic obstructive pul-
monary disease.   

Severe “survivors” 
(20) 

Severe “non-survivors” 
(34) 

p- 
value 

Sex F: 6 (30%); M: 14 
(70%) 

F: 10 (29%); M: 24 
(71%)  

0.964 

Age 65.00 ± 14.40 69.53 ± 9.47  0.169 
CAD 5 (25.0%) 7 (20.6%)  0.673 
HF 1 (5.0%) 1 (2.9%)  0.684 
Obesity 6 (30.0%) 6 (17.6%)  0.196 
Atrial Fibrillation 1 (5.0%) 4 (11.8%)  0.416 
Valvular disease 1 (5.0%) 1 (2.9%)  0.662 
PAD 1 (5.0%) –  0.187 
Dyslipidemia 5 (25.0%) 3 (8.8%)  0.108 
Diabetes mellitus 4 (20.0%) 13 (38.2%)  0.277 
Arterial 

hypertension 
12 (60.0%) 20 (58.8%)  1.000 

CKD 3 (15.0%) 4 (11.8%)  0.480 
Smoking 6 (30.0%) 1 (2.9%)  0.090 
COPD 3 (15.0%) 6 (17.6%)  0.776 
Autoimmune 

disease 
1 (5.0%) 3 (8.8%)  0.642  

Fig. 2. A-E: 2D (A) and 3D (B) PLS-DA model score plot showing the discrimination of different classes: Covid (− ): pink, mild: blue, severe: red; (C) The 15 highest 
scoring variables importance in projection (VIP) lipids are shown. The number of VIPs was established by setting the VIP-score ≥ 1.8 as a cutoff value. The colored 
boxes on the right indicate the relative amount of the corresponding lipid compound in each group; (D) Volcano plot graph illustrating unsignificant (gray) and 
significant compounds (blue: down-regulated, red: up-regulated) between Mild and Severe patients. The X-axis represent the log2FC (fold-change) and the Y-axis the 
-log10p (pvalue); (E) Heatmap reporting the top 30 lipid compounds based on the univariate statistical analysis (ANOVA, p-value < 0.001, FDR < 0.01%), the colors 
reflect the normalized lipid concentration in Mild (blue) and Severe (red) patients. 
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compounds. Therefore, we aimed to evaluate which lipids could accu-
rately discriminate mild from severe conditions, among the 90 unique 
lipids that contributed to the model. Hence after a rank aggregation 
based on the previous models, a final panel of six lipids was built, and 
their ROC curves are reported in Fig. 4. The panel was composed by: LPC 
O-18:1 (AUC: 0.858, SE: 80%, SP: 81%), LPC O-16:1 (AUC: 0.855, SE: 

86%, SP: 75%), LPC O-16:0 (AUC: 0.865, SE: 75%, SP: 90%), PC O-34:3 
(AUC: 0.846, SE 80%, SP: 80%), LPC 20:1 (AUC: 0.815, SE: 7815, 
SP:75%), LPC 18:0 (AUC: 0.800, SE: 65%, SP: 75%), p-value < 0.001. By 
using this restricted panel of lipids, the RF results highlighted a com-
parable predictive potential, with similar AUC values to the model built 
on the complete lipid profile, for severity (AUC= 0.777, 95% CI: 

Fig. 3. A, B: ROC curves for severity (A) and outcome (B) obtained with the predictive model (RF) on the complete lipidome signature.  

Fig. 4. ROC curves with the optimal cutoff calculated for each ROC analysis of the restricted lipid panel composed by LPC O-18:1, LPC O-16:1, LPC O-16:0, PC O- 
34:3, LPC 20:1, LPC 18:0. 
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0.639–0.904, Fig. 5) and outcome (AUC= 0.789, 95% CI: 0.658–0.910,  
Fig. 6) respectively. These results are in line to other studies in which 
metabolomics have been used to identify metabolites associated to the 
severity status [20, 21]. The model performance in cross validation for 
both analyses are comparable. In terms of accuracy and Monte Carlo 
Cross validation (MCC), severity and outcome RF models achieved both 
75% and ~0.50. Sensitivity and specificity are 73% and 78% for the 
mild class while for the survivor class are 69% and 81% respectively. 
Applying the model to the external test set the severity is predicted with 
accuracy of 70% and 0.41 MCC. The sensitivity of mild class prediction 
is 88% and specificity is 50%. While for the outcome model, the test set 
is predicted with accuracy of 67% and MCC of 0.32; sensitivity and 
specificity were 71% and 62% respectively for the survivor class. 
Accordingly, LPCs, LPC-Os and PC-O levels were significantly lower in 
the severe group with respect to mild (Fig. 5). The evaluation of the same 
lipids’ panel in the subdivision of patients into survivors and 
non-survivors revealed the predictive potential of these molecules, 
which appeared substantially reduced in the non-survivor group (Fig. 6) 
as compared both to healthy subjects and survivors. Moreover, the LPCs, 
LPC-Os and PC-O levels in survivor and non-survivor have been evalu-
ated for each phenotype (mild and severe). Again, in the severe group, 
their levels were consistently lower in non-survivor as compared to 
survivors (Fig. S5). The identified lipid panel could be used not only at t0 
but over the course of the disease. In fact, re-building the model with the 
25 longitudinal (t1) patients, 21 were correctly classified for their 
outcome, survivors and non survivors, showing the ability of the lipid 
panel in highlighting the dynamic changes of disease (Fig. 7). Several 
conditions and demographic factors, such as age and comorbidities, 
predispose to a severe COVID-19 phenotype or even fatal outcome [22]. 
As indicated in Tables 1–3, sex and age represent the only demographic 
factors within our patient cohort that resulted statistically significant 
between mild and severe groups. Thus, we performed a new co-variate 
using linear models. As reported in the Fig. S6, this analysis revealed 
that, independently by age, the LPC, LPC-O and PC-O panel reduction 
remain significantly associated with the outcome in males in the severe 
non-survivor group. This result is in agreement with previous observa-
tions [23]. Moreover, the top features for the ML model remain un-
changed regardless of patient demographic and reflected the severity 
and outcome trend (Fig. S7). 

3.5. Comparison with results from other Covid-19 patient cohorts 

COVID-19 evolves rapidly and dramatically, so the identification of 
early markers capable of predicting the patient’s trajectory is essential. 
The target of our study was to identify a potential lipidomic signature 
that could mirror the severity and predict the short-term mortality of 

COVID-19 disease at the time of hospitalization, by using untargeted 
lipidomics, through the employment of a RP-UHPLC-TIMS-MS approach 
which adds further confidence to lipid annotation [24]. We found that, 
among the different lipid classes, glycerophospholipids were the most 
discriminant between mild and severe conditions as well as with respect 
to non-COVID-19 patients; in particular several LPCs, LPC-Os and PC-O 
were the lipids with highest statistical significance, with a progressive 
decrease in relation to the severity status. Then, we sought if the lip-
idome signature could be used as a prognostic tool to identify potential 
progression from mild to severe condition and intra-hospital mortality. 
Using the entire dataset, we built a machine learning model that showed 
reasonable accuracy to predict the disease state. Interestingly, using a 
restricted panel of six lipids selected across the entire lipid profile, the 
model showed the comparable results for severity and outcome. 
COVID-19 pathogenesis is still not completely understood, and lipids 
play a key role for SARS-CoV2 replication [25] as observed for other 
human coronavirus infections [26], suggesting that SARS-CoV2 hijacks 
the host’s lipid metabolism [27, 28]. Indeed, lipidic profile can mirror a 
patient’s biological status where internal and/or external perturbations 
activate molecular pathways involved in the immune response and 
metabolism. Our results show changes in LPCs and PCs in COVID-19 
patients, and in particular, lower-level predicts intra-hospital mortal-
ity. A similar pattern was observed in patients with Ebola Virus Disease 
(EVD), where liver dysfunction and decay of choline metabolism affect 
LPCs and PCs synthesis and are associated with the severity of the dis-
ease. Furthermore, the following increase in LPCs and PCs in survivors 
confirm their potential use as a marker of severity [5]. Similarly, 
changes in LPCs and PCs in our cohort of COVID-19 patients can reflect 
the biological status and predict severity and mortality. Recently, 
several studies carried out in Italian cohorts investigated the possible 
relationship of lipidic profiles and infection-pathology severity 
revealing the alterations in serum concentrations of different lipids [16, 
7]. With respect to these studies, our findings highlight the significant 
decrease of LPCs, LPC-Os and PC-Os concentration, which could be an 
essential aspect to monitor during COVID-19 disease progression. Our 
data fits with the observations found in Canadian and Brazilian cohorts 
[29, 30], both reporting a depressed plasma LPCs profile between 
COVID-19 and healthy patients. In addition, Sindelar et al. observed of a 
V-shape trend of LPCs profile after patient recovery from severe status 
[21], which fully support the important role of changed lipids profile in 
our study, across survivors and non-survivors patients. Furthermore, our 
data underline that within the entire lipidome signature, not only LPCs, 
but specifically ether linked lipids such as LPC-Os and PC-Os owns the 
highest accuracy in discriminating both severity and outcome. Previous 
Targeted-MS based lipidomics studies were conducted to distinguish 
between asymptomatic COVID-19 and healthy subjects, or in 

Fig. 5. ROC curves for severity obtained with the predictive model (RF) on the reduced lipid panel composed by LPC O-18:1, PC O-34:3, LPC 20:1, LPC O-16:1, LPC 
18:0, LPC O-16:0 and comparison of normalized intensity of the selected lipid panel in survivors compared to non-survivor patients in Mild (blue) and Severe (red) 
patients (***p < 0.001; ****: p < 0.0001). 
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diagnostics, to discriminate symptomatic COVID-19 and healthy pa-
tients, as a new tool to augment RT-PCR strategy [31]. In other studies, 
with comparable numbers of patients, different proteomic and metab-
olomic profiles were demonstrated to be associated with clinical phe-
notypes of COVID-19, from mild to severe [32]. While previous 
lipidomics studies reported the observation of relative fold-changes of 
detected lipids between different study groups, the comparison of lipid 
concentration, is essential to support inter study comparison [19–33]. 
Nevertheless, only few studies have reported concentration data (as 
nmol/mL), and hence comparison is not possible. In this regard our data 
partially agree with results of Barberis et al. [16], but differences have 
been observed with available data to the use of different I.S, hence our 
data could be useful for comparison with future observations or 
follow-up. Our study, while of relatively small size but comparable to 
other studies, is the first to propose, to our knowledge, that a restricted 
subset of six lipids (LPC O-18:1, PC O-34:3, LPC 20:1, LPC O-16:1, LPC 
18:0, LPC O-16:0) not highlighted previously, could potentially predict 
intra-hospital mortality already at the time of the admission, in both 
mild and severe COVID-19 patients, and identify those patients 
requiring tight monitoring and/or intensive treatment. Clearly, our 

results are based on a single Italian cohort of COVID-19 patients, thus 
future studies with larger cohorts including different racial, ethnic, and 
geographical cohorts will be necessary for extending our current un-
derstanding of lipid metabolic dysregulation. In addition, the number of 
healthy subjects is relatively small, but comparable in age difference 
with previous studies which employed as reference group healthy 
COVID(-) patients [16–21]. Before the translation to clinical settings, the 
prognostic value of the identified lipid panel on COVID-19 outcome 
should be applied to large and separate patients’ cohorts, 

4. Conclusions 

In this work an untargeted lipidomics analysis by RP-UHPLC-TIMS- 
MS was performed on a cohort of COVID-19 patients with different 
severity. Our results unveiled a panel of LPCs, LPC-Os and PC-O pre-
dicting the severity and mortality in hospitalized COVID-19 patients. 
This simplified lipid panel could find potential employment as a pre-
dictive tool in faster, targeted approaches, such as using multiple reac-
tion monitoring (MRM) strategies, to obtain absolute quantitative data 
that could be easier employed in a clinical setting. While our approach 

Fig. 6. ROC curves for outcome obtained with the predictive model (RF) on the reduced lipid panel composed by LPC O-18:1, PC O-34–3, LPC 20:1, LPC O-16–1, LPC 
18:0, LPC O-16:0 and comparison of normalized intensity of the selected lipid panel in survivors compared to non-survivor patients in Survivors (blue) and Non- 
Survivors (red) patients (****: p < 0.0001). 

Fig. 7. Confusion matrix representing the performance of the model applied to 25 longitudinal (t1) COVID-19 patients. Samples classified into the wrong group were 
labeled (S: survivor, NS: non-survivor). 
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can be defined untargeted, allowing identification and quantification of 
different lipid classes, particular lipid sub-classes could be not detected 
such as oxylipins, that require targeted or pseudo targeted approaches, 
and other were excluded due to absence of adequate internal standards. 
In addition, other important polar metabolites could be included in the 
analysis, such as amino acids and acylcarnitines, to enrich the model. 

Funding 

This work was funded by The Italian Ministry of Education, Uni-
versities and Research (MIUR) project: PIR01_00032 - BIO OPEN LAB - 
BOL “CUP” J37E19000050007 to P. Campiglia. 

CRediT authorship contribution statement 

Conceptualization: P.C, C.V, M.C, A.C and E.SO. Formal analysis: M. 
C, C.I, C.V, G.S, D.B, B.P, S.P, P.P, S.M, V.S, G.S and O.P. Investigation: P. 
D.P, R.M, A.T, E.V and P.I. Data curation: V.C, A.R, F.M, P.D.P, A.T. 
Supervision: M.C, A.C. Writing - review & editing: A.C, M.C, E.SA, E.SO, 
PDP. Funding acquisition: P.C, C.V. 

Acknowledgments 

None. 

Conflict of Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Appendix A. Supporting information 

Supplementary data associated with this article can be found in the 
online version at doi:10.1016/j.jpba.2022.114827. 

References 

[1] E. Livingston, K. Bucher, Coronavirus disease 2019 (COVID-19) in Italy, JAMA 323 
(2020) 1335, https://doi.org/10.1001/jama.2020.4344. 

[2] J.S. Ayres, A metabolic handbook for the COVID-19 pandemic, Nat. Metab. 2 
(2020) 572–585, https://doi.org/10.1038/s42255-020-0237-2. 

[3] S. Lodge, P. Nitschke, T. Kimhofer, J.D. Coudert, S. Begum, S. Bong, T. Richards, 
D. Edgar, E. Raby, M. Spraul, H. Schaefer, J.C. Lindon, R.L. Loo, E. Holmes, J. 
K. Nicholson, NMR spectroscopic windows on the systemic effects of SARS-CoV-2 
infection on plasma lipoproteins and metabolites in relation to circulating 
cytokines, J. Proteome Res. 20 (2021) 1382–1396, https://doi.org/10.1021/acs. 
jproteome.0c00876. 

[4] S. De Bruin, L.D. Bos, M.A. Van Roon, A.M. Tuip-De Boer, A.R. Schuurman, M.J. 
A. Koel-Simmelinck, H.J. Bogaard, P.R. Tuinman, M.A. Van Agtmael, J. Hamann, 
C.E. Teunissen, W.J. Wiersinga, A.H. Koos Zwinderman, M.C. Brouwer, D. Van De 
Beek, A.P.J. Vlaar, Clinical features and prognostic factors in COVID-19: a 
prospective cohort study, EBioMedicine 67 (2021), 103378, https://doi.org/ 
10.1016/j.ebiom.2021.103378. 

[5] J.E. Kyle, K.E. Burnum-Johnson, J.P. Wendler, A.J. Eisfeld, P.J. Halfmann, 
T. Watanabe, F. Sahr, R.D. Smith, Y. Kawaoka, K.M. Waters, T.O. Metz, Plasma 
lipidome reveals critical illness and recovery from human Ebola virus disease, Proc. 
Natl. Acad. Sci. USA 116 (2019) 3919–3928, https://doi.org/10.1073/ 
pnas.1815356116. 

[6] D. Wu, T. Shu, X. Yang, J.X. Song, M. Zhang, C. Yao, W. Liu, M. Huang, Y. Yu, 
Q. Yang, T. Zhu, J. Xu, J. Mu, Y. Wang, H. Wang, T. Tang, Y. Ren, Y. Wu, S.H. Lin, 
Y. Qiu, D.Y. Zhang, Y. Shang, X. Zhou, Plasma metabolomic and lipidomic 
alterations associated with COVID-19, Natl. Sci. Rev. 7 (2020) 1157–1168, https:// 
doi.org/10.1093/nsr/nwaa086. 

[7] M. Caterino, M. Gelzo, S. Sol, R. Fedele, A. Annunziata, C. Calabrese, G. Fiorentino, 
M. D’abbraccio, C. Dell’isola, F.M. Fusco, R. Parrella, G. Fabbrocini, I. Gentile, 
I. Andolfo, M. Capasso, M. Costanzo, A. Daniele, E. Marchese, R. Polito, R. Russo, 
C. Missero, M. Ruoppolo, G. Castaldo, Dysregulation of lipid metabolism and 
pathological inflammation in patients with COVID-19, Sci. Rep. 11 (2021) 2941, 
https://doi.org/10.1038/s41598-021-82426-7. 

[8] A.J. Eisfeld, P.J. Halfmann, J.P. Wendler, J.E. Kyle, K.E. Burnum-Johnson, 
Z. Peralta, T. Maemura, K.B. Walters, T. Watanabe, S. Fukuyama, M. Yamashita, J. 
M. Jacobs, Y.M. Kim, C.P. Casey, K.G. Stratton, B.M. Webb-Robertson, M. 
A. Gritsenko, M.E. Monroe, K.K. Weitz, A.K. Shukla, M. Tian, G. Neumann, J. 

L. Reed, H. Van Bakel, T.O. Metz, R.D. Smith, K.M. Waters, A. N’jai, F. Sahr, 
Y. Kawaoka, Multi-platform ’omics analysis of human ebola virus disease 
pathogenesis, Cell. Host. Microbe 22 (2017), https://doi.org/10.1016/j. 
chom.2017.10.011 (817-829 e818). 

[9] A. Queiroz, I.F.D. Pinto, M. Lima, M. Giovanetti, J.G. De Jesus, J. Xavier, F. 
K. Barreto, G.B. Canuto, H.R. Do Amaral, A.M.B. De Filippis, D.L. Mascarenhas, M. 
B. Falcao, N.P. Santos, V.A.C. Azevedo, M.Y. Yoshinaga, S. Miyamoto, L.C. 
J. Alcantara, Lipidomic analysis reveals serum alteration of plasmalogens in 
patients infected with ZIKA virus, Front. Microbiol. 10 (2019) 753, https://doi. 
org/10.3389/fmicb.2019.00753. 

[10] A. Rezaei, S. Neshat, K. Heshmat-Ghahdarijani, Alterations of lipid profile in 
COVID-19: a narrative review, Curr. Probl. Cardiol. 47 (2021) 1–13, https://doi. 
org/10.1016/j.cpcardiol.2021.100907, 100907. 

[11] K.H. Ebrahimi, J.S.O. Mccullagh, A lipidomic view of SARS-CoV-2, Biosci. Rep. 41 
(2021), https://doi.org/10.1042/bsr20210953. 

[12] Y. Li, Y. Zhang, R. Lu, M. Dai, M. Shen, J. Zhang, Y. Cui, B. Liu, F. Lin, L. Chen, 
D. Han, Y. Fan, Y. Zeng, W. Li, S. Li, X. Chen, H. Li, P. Pan, Lipid metabolism 
changes in patients with severe COVID-19, Clin. Chim. Acta 517 (2021) 66–73, 
https://doi.org/10.1016/j.cca.2021.02.011. 

[13] B. Schwarz, L. Sharma, L. Roberts, X. Peng, S. Bermejo, I. Leighton, A. Casanovas- 
Massana, M. Minasyan, S. Farhadian, A.I. Ko, I.T. Yale, C.S. Dela Cruz, C.M. Bosio, 
Cutting edge: severe SARS-CoV-2 infection in humans is defined by a shift in the 
serum lipidome, resulting in dysregulation of eicosanoid immune mediators, 
J. Immunol. 206 (2021) 329–334, https://doi.org/10.4049/jimmunol.2001025. 

[14] M. Holcapek, G. Liebisch, K. Ekroos, Lipidomic analysis, Anal. Chem. 90 (2018) 
4249–4257, https://doi.org/10.1021/acs.analchem.7b05395. 

[15] J.W. Song, S.M. Lam, X. Fan, W.J. Cao, S.Y. Wang, H. Tian, G.H. Chua, C. Zhang, F. 
P. Meng, Z. Xu, J.L. Fu, L. Huang, P. Xia, T. Yang, S. Zhang, B. Li, T.J. Jiang, 
R. Wang, Z. Wang, M. Shi, J.Y. Zhang, F.S. Wang, G. Shui, Omics-driven systems 
interrogation of metabolic dysregulation in COVID-19 pathogenesis, Cell. Metab. 
32 (2020), https://doi.org/10.1016/j.cmet.2020.06.016 (188-202 e185). 

[16] E. Barberis, S. Timo, E. Amede, V.V. Vanella, C. Puricelli, G. Cappellano, 
D. Raineri, M.G. Cittone, E. Rizzi, A.R. Pedrinelli, V. Vassia, F.G. Casciaro, 
S. Priora, I. Nerici, A. Galbiati, E. Hayden, M. Falasca, R. Vaschetto, P.P. Sainaghi, 
U. Dianzani, R. Rolla, A. Chiocchetti, G. Baldanzi, E. Marengo, M. Manfredi, Large- 
scale plasma analysis revealed new mechanisms and molecules associated with the 
host response to SARS-CoV-2, Int. J. Mol. Sci. 21 (2020), https://doi.org/10.3390/ 
ijms21228623. 

[17] V. Matyash, G. Liebisch, T.V. Kurzchalia, A. Shevchenko, D. Schwudke, Lipid 
extraction by methyl-tert-butyl ether for high-throughput lipidomics, J. Lipid Res. 
49 (2008) 1137–1146, https://doi.org/10.1194/jlr.d700041-jlr200. 

[18] P.A. Vorkas, G. Isaac, M.A. Anwar, A.H. Davies, E.J. Want, J.K. Nicholson, 
E. Holmes, Untargeted UPLC-MS profiling pipeline to expand tissue metabolome 
coverage: application to cardiovascular disease, Anal. Chem. 87 (2015) 
4184–4193, https://dx.doi.org/10.1021%2Fac503775m. 

[19] M. Cebo, C. Calderón Castro, J. Schlotterbeck, M. Gawaz, M. Chatterjee, 
M. Lämmerhofer, Untargeted UHPLC-ESI-QTOF-MS/MS analysis with targeted 
feature extraction at precursor and fragment level for profiling of the platelet 
lipidome with ex vivo thrombin-activation, J. Pharm. Biomed. Anal. 205 (2021), 
114301, https://doi.org/10.1016/j.jpba.2021.114301. 

[20] I. Roberts, M. Wright Muelas, J.M. Taylor, A.S. Davison, Y. Xu, J.M. Grixti, 
N. Gotts, A. Sorokin, R. Goodacre, D.B. Kell, Untargeted metabolomics of COVID- 
19 patient serum reveals potential prognostic markers of both severity and 
outcome, Metabolomics 18 (2021) 6, https://doi.org/10.1007/s11306-021-01859- 
3. 

[21] M. Sindelar, E. Stancliffe, M. Schwaiger-Haber, D.S. Anbukumar, K. Adkins-Travis, 
C.W. Goss, J.A. O’halloran, P.A. Mudd, W.C. Liu, R.A. Albrecht, A. Garcia-Sastre, L. 
P. Shriver, G.J. Patti, Longitudinal metabolomics of human plasma reveals 
prognostic markers of COVID-19 disease severity, Cell. Rep. Med. 2 (2021), 
100369, https://doi.org/10.1101/2021.02.05.21251173. 

[22] G. Iaccarino, G. Grassi, C. Borghi, C. Ferri, M. Salvetti, M. Volpe, Age and 
multimorbidity predict death among COVID-19 patients: results of the SARS-RAS 
study of the Italian society of hypertension, Hypertension 76 (2020) 366–372, 
https://doi.org/10.1161/hypertensionaha.120.15324 (SARS-RAS Investigators. ). 

[23] C. Gebhard, V. Regitz-Zagrosek, H.K. Neuhauser, R. Morgan, S.L. Klein, Impact of 
sex and gender on COVID-19 outcomes in Europe, Biol. Sex. Differ. 11 (2020) 29, 
https://doi.org/10.1186/s13293-020-00304-9. 

[24] C.G. Vasilopoulou, K. Sulek, A.D. Brunner, N.S. Meitei, U. Schweiger-Hufnagel, S. 
W. Meyer, A. Barsch, M. Mann, F. Meier, Trapped ion mobility spectrometry and 
PASEF enable in-depth lipidomics from minimal sample amounts, Nat. Commun. 
11 (2020) 331, https://doi.org/10.1038/s41467-019-14044-x. 

[25] M. Abu-Farha, T.A. Thanaraj, M.G. Qaddoumi, A. Hashem, J. Abubaker, F. Al- 
Mulla, The role of lipid metabolism in COVID-19 virus infection and as a drug 
target, Int. J. Mol. Sci. 21 (2020) https://dx.doi.org/10.3390%2Fijms21103544. 

[26] B. Yan, H. Chu, D. Yang, K.H. Sze, P.M. Lai, S. Yuan, H. Shuai, Y. Wang, R.Y. Kao, J. 
F. Chan, K.Y. Yuen, Characterization of the lipidomic profile of human 
coronavirus-infected cells: implications for lipid metabolism remodeling upon 
coronavirus replication, Viruses 11 (2019), https://doi.org/10.3390/v11010073. 

[27] X. Wei, W. Zeng, J. Su, H. Wan, X. Yu, X. Cao, W. Tan, H. Wang, Hypolipidemia is 
associated with the severity of COVID-19, J. Clin. Lipidol. 14 (2020) 297–304, 
https://doi.org/10.1016/j.jacl.2020.04.008. 

[28] R. Nardacci, F. Colavita, C. Castilletti, D. Lapa, G. Matusali, S. Meschi, F. Del 
Nonno, D. Colombo, M.R. Capobianchi, A. Zumla, G. Ippolito, M. Piacentini, 
L. Falasca, Evidences for lipid involvement in SARS-CoV-2 cytopathogenesis, Cell. 
Death Dis. 12 (2021) 263, https://doi.org/10.1038/s41419-021-03527-9. 

M. Ciccarelli et al.                                                                                                                                                                                                                              

https://doi.org/10.1016/j.jpba.2022.114827
https://doi.org/10.1001/jama.2020.4344
https://doi.org/10.1038/s42255-020-0237-2
https://doi.org/10.1021/acs.jproteome.0c00876
https://doi.org/10.1021/acs.jproteome.0c00876
https://doi.org/10.1016/j.ebiom.2021.103378
https://doi.org/10.1016/j.ebiom.2021.103378
https://doi.org/10.1073/pnas.1815356116
https://doi.org/10.1073/pnas.1815356116
https://doi.org/10.1093/nsr/nwaa086
https://doi.org/10.1093/nsr/nwaa086
https://doi.org/10.1038/s41598-021-82426-7
https://doi.org/10.1016/j.chom.2017.10.011
https://doi.org/10.1016/j.chom.2017.10.011
https://doi.org/10.3389/fmicb.2019.00753
https://doi.org/10.3389/fmicb.2019.00753
https://doi.org/10.1016/j.cpcardiol.2021.100907
https://doi.org/10.1016/j.cpcardiol.2021.100907
https://doi.org/10.1042/bsr20210953
https://doi.org/10.1016/j.cca.2021.02.011
https://doi.org/10.4049/jimmunol.2001025
https://doi.org/10.1021/acs.analchem.7b05395
https://doi.org/10.1016/j.cmet.2020.06.016
https://doi.org/10.3390/ijms21228623
https://doi.org/10.3390/ijms21228623
https://doi.org/10.1194/jlr.d700041-jlr200
http://refhub.elsevier.com/S0731-7085(22)00248-5/sbref18
http://refhub.elsevier.com/S0731-7085(22)00248-5/sbref18
http://refhub.elsevier.com/S0731-7085(22)00248-5/sbref18
http://refhub.elsevier.com/S0731-7085(22)00248-5/sbref18
https://doi.org/10.1016/j.jpba.2021.114301
https://doi.org/10.1007/s11306-021-01859-3
https://doi.org/10.1007/s11306-021-01859-3
https://doi.org/10.1101/2021.02.05.21251173
https://doi.org/10.1161/hypertensionaha.120.15324
https://doi.org/10.1186/s13293-020-00304-9
https://doi.org/10.1038/s41467-019-14044-x
http://refhub.elsevier.com/S0731-7085(22)00248-5/sbref25
http://refhub.elsevier.com/S0731-7085(22)00248-5/sbref25
http://refhub.elsevier.com/S0731-7085(22)00248-5/sbref25
https://doi.org/10.3390/v11010073
https://doi.org/10.1016/j.jacl.2020.04.008
https://doi.org/10.1038/s41419-021-03527-9


Journal of Pharmaceutical and Biomedical Analysis 217 (2022) 114827

10

[29] D.D. Fraser, M. Slessarev, C.M. Martin, M. Daley, M.A. Patel, M.R. Miller, E. 
K. Patterson, D.B. O’gorman, S.E. Gill, D.S. Wishart, R. Mandal, G. Cepinskas, 
Metabolomics profiling of critically Ill coronavirus disease 2019 patients: 
identification of diagnostic and prognostic biomarkers, Crit. Care Explor. 2 (2020), 
e0272 https://dx.doi.org/10.1097%2FCCE.0000000000000272. 

[30] J. Delafiori, L.C. Navarro, R.F. Siciliano, G.C. de Melo, E.N.B. Busanello, J. 
C. Nicolau, G.M. Sales, A.N. de Oliveira, F.F.A. Val, D.N. de Oliveira, A. Eguti, L. 
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