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Abstract
The global challenge to the treatment of malaria is mainly the occurrence of resistance of malaria parasites to conventionally used
antimalarials. Artesunate, a semisynthetic artemisinin compound, and other artemisinin derivatives are currently used in combi-
nation with selected active antimalarial drugs in order to prevent or delay the emergence of resistance to artemisinin derivatives.
Several methods, such as preparation of hybrid compounds, combination therapy, chemical modification and the use of synthetic
materials to enhance solubility and delivery of artesunate, have been employed over the years to improve the antimalarial activity
of artesunate. Each of these methods has advantages it bestows on the efficacy of artesunate. This review discussed the various
methods employed in enhancing the antimalarial activity of artesunate and delaying the emergence of resistance of parasite to it.
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Abbreviations
ACT Artemisinin combination therapy
DHA Dihydroartemisinin
DHFR Dihydrofolate reductase
DIBAL Diisobutylaluminium hydride
HPβCD Hydroxypropylβcyclodextrin
MCM Mobil Composition of Matter
MEFAS Mefloquine–artesunate hybrid
MRSA Methicillin-resistant Staphylococcus aureus
oAMT Oral artemisinin monotherapy
PABA p-Aminobenzoic acid
PLGA Polylactide-co-glycolide
PRIMAS Primaquine–artesunate hybrid
RTS,S/AS01 Mosquirix malaria vaccine
ZBS Zinc basic salt
β-CD β-Cyclodextrin

Introduction

Malaria is an infectious disease caused by the Plasmodium
species, of which P. falciparum is the most virulent and is
responsible for majority of the malaria morbidity and mortal-
ity recorded worldwide (Peter and Anatoli 1998). Other spe-
cies of the genus Plasmodium that infect humans are P. vivax,
P. knowlesi, P. ovale, and P. malariae. About 228 million
cases of malaria were recorded globally in 2018 (World
Health Organization 2019). This resulted in about 405,000
deaths, 94% of which occurred in the African region where
the burden is highest (World Health Organization 2019). In
addition to being a threat to human health, malaria is also a
threat to the economy and development of sub-Saharan Africa
(Sachs and Malaney 2002). The funding for malaria in 2018
was estimated at US$2.7 billion (World Health Organization
2019), representing less than 41% of the total malaria funding
of US$6.5 billion required annually to meet the 2030 global
malaria target (World Health Organization 2017). To elimi-
nate malaria and its associated burden, some key approaches
are employed: (i) the use of vector control and (ii) the use of
antimalarial drugs for chemoprophylaxis or chemotherapy
(Rappuoli and Aderem 2011). Hence, the target research areas
include vector control, chemotherapy and vaccine develop-
ment for the disease. However, resistance to insecticides and
antimalarial drugs has hindered research breakthrough in vec-
tor control and chemotherapy respectively, while the most
advanced malaria vaccine developed (RTS,S/AS01), for
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which the 3rd phase of clinical trial was completed in 2014
(Agnandji et al. 2015), is yet to guarantee up to 50% protec-
tion and is best advised as a complementary malaria control
tool rather than as a replacement package (World Health
Organization 2020). The resistance developed to conventional
antimalarial drugs, including the potent artemisinin deriva-
tives, has led to the discouragement of monotherapy of such
drugs. Thus, various efforts are being put in place globally to
enhance the efficacy of artemisinin derivatives and delay the
emergence of resistance to these drugs.

Artemisinin

Artemisinin (1) is a sesquiterpene lactone peroxide isolated
from the leaves of the shrub Artemesia annua, better known
indigenously as Qinghao in China (Mohammadi et al. 2020).
Artemisinin is a 15-carbon compound with an endoperoxide
bridge, which is crucial to its activity against Plasmodium
species (Butler andWu 1992). Artemisinin is effective against
blood and early gametocyte stages of P. falciparum
(Piyaphanee et al. 2006; White 2008). However, this effec-
tiveness is endangered by the emergence of resistance of
P. falciparum to artemisinin as reported in six countries/re-
gions: Cambodia, Lao People’s Democratic Republic,
Myanmar, Thailand, Viet Nam, and the Myanmar–China–
India border area (Noedl et al. 2008; Thu et al. 2017; Ouji
et al. 2018). Likewise, parasite isolates from Nigeria and
Madagascar have been reported to exhibit reduced sensitivity
to artemisinin (Oduola et al. 1992; Randrianarivelojosia et al.
2001). Regions, such as western Cambodia, with the common
use of artemisinin as monotherapy have shown resistance to
artemisinin in clinical studies (White 2008). Decreased re-
sponses to treatments, specifically to artesunate and
artemether, have also been reported in western Thailand
(Luxemburger et al. 1998), India (Gogtay et al. 2000), and
Sierra Leone (Sahr et al. 2001). Preserving the efficacies of
artemisinin derivatives for the treatment of malaria is now the
challenge.

Improving the therapeutic efficacy
of artemisinin

Due to some challenges with the solubility and bioavailability
of artemisinin, derivatives with different solubilities in oil and
water have been synthesized. Some of these artemisinin de-
rivatives are dihydroartemisinin (2), artemether (3), arteether
(4), and artesunate (5) (Fig. 1). Artemether is oil-soluble and it
i s usua l ly admin i s t e red in t ramuscu la r ly , whi le
dihydroartemisinin and artesunate are water-soluble and are
usually administered orally, except for severe malaria, which
requires artesunate being administered via intravenous route.
After administration, the artemisinins are rapidly absorbed,

distributed and metabolized. Due to the emergence of resis-
tance to oral artemisinin monotherapy (oAMT), it was re-
placed with artemisinin-based combination therapies (ACTs)
(World Health Organization 2006, 2007), in which a fast-
acting artemisinin derivative is administered together with a
slow-acting antimalarial drug of another class of
antimalarials (Nigam et al. 2019; Mohammadi et al. 2020).
ACTs are highly effective and efficacious globally and cur-
rently remain the recommended first-line treatment for un-
complicated malaria (World Health Organization 2010,
2015, 2019). The World Health Organization recommended
the use of five different ACTs globally: artemether/
lumefantrine, artesunate/amodiaquine, artesunate/
sulfadoxine–pyrimethamine, artesunate/mefloquine, and
dihydroartemisinin/piperaquine (World Health Organization
2017, 2019), while the sixth recommended ACT, artesunate/
pyronaridine (World Health Organization 2019), is used based
on expression of resistance in regions. Close monitoring of
resistance and necessary change of drug combinations due to
change in response of infection to chemotherapy over time
were also recommended (World Health Organization 2015).
Also, in order to improve artemisinin activity, artemisinin dimers,
trimers, and tetramers have been synthesizedwith eachmonomer
retaining the peroxide bridge (Fröhlich et al. 2018). Artesunate, a
water-soluble derivative, is administered as an oral drug, a rectal
suppository and intravenous and intramuscular injections. Thus,
it is more widely used compared to other derivatives. Improving
its activity can enhance its effectiveness and delay the emergence
of resistance to it. Therefore, this review deals with the different
means and methods by which the therapeutic efficacy of
artesunate has been improved through the years.

Mechanisms of action of artemisinins

Artemisinins are converted to act ive metabol i te
dihydroartemisinin, with the half-life of approximately 45 min.
By this, they are by far the most rapidly eliminated antimalarial
drugs, with broad-stage specificity in action. Several mechanisms
have been proposed for the antimalarial activities of artemisinins,
including the generation of a carbon-centered radical (though now
untenable), inhibition of polymerization of heme, production of
free radicals and alteration of membrane transport properties of
themalaria parasite,which inhibits the nutrient flow in the parasite
(Eckstein-Ludwig et al. 2003; Krishna et al. 2004; Posner and
O’Neill 2004; Drew et al. 2006, 2007; German and Aweeka
2008; Haynes et al. 2013).

Inhibition of heme polymerization

Artemisinins bind to heme through alkylation to form heme–
artemisinin adduct (Krishna et al. 2004). This adduct binds to
HRP II, a protein involved in the polymerization of heme (Lee
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et al. 2019), thereby preventing hemozoin formation (Kannan
et al. 2002). This leads to the accumulation of heme which is
toxic to the parasite.

Alkylation of protein

Artemisinin has been reported to be involved in covalent inter-
action with 25 kDa translationally controlled tumor protein
(TCTP) homolog (Bhisutthibhan and Meshnick 2001). This
protein has also been reported to perform a role in hemozoin
formation. Artemisinin has also been reported to alkylate
cysteine proteases, such as falcipain in P. falciparum (Pandey
et al. 1999), thereby impairing its role in hemoglobin digestion.
The alkylation of proteins by artemisinin is heme dependent.

Inhibition of PfATP6

Artemisinin has been reported to inhibit PfATP6, also known
as sarco/endoplasmic reticulum Ca ATPase (SERCA)
(Eckstein-Ludwig et al. 2003), thereby disturbing intracellular
calcium homeostasis. It is found in the endoplasmic reticulum
membrane where it functions in transporting Ca2+ ion from
the cytoplasm into the endoplasmic reticulum, where it is
stored.

Generation of reactive oxygen species

The mechanism of action of artemisinin has been linked with
the generation of reactive oxygen species (ROS) such as

hydroxyl, superoxide, alkoxyl, and peroxyl radicals. These
are formed from Fenton reaction in a Fe2+-dependent reaction.
An increase in ROS leads to the depletion of antioxidant spe-
cies in the parasite (Hunt and Stocker 1990). Initially, it was
believed that the conversion of artemisinin to carbon-centered
radical was crucial to the generation of ROS, but recently, that
hypothesis has been reported to be untenable (Haynes et al.
2013).

Destabilization of the parasite membrane

Artemisinin has been reported to accumulate in neutral
lipids, inducing oxidative damage. The inhibition of
heme polymerization leads to the accumulation of heme
which also induces ROS generation. The generation of
ROS induces oxidative damage of the membrane
(Haynes et al. 2013).

Artesunate

Artesunate (5), also known as dihydroartemisinin-12-α-succi-
nate, is a potent, semisynthetic antimalarial compound derived
from its parent compound, artemisinin, in a two-step reaction
i n vo l v i n g r e du c t i o n a nd e s t e r i f i c a t i o n u s i n g
diisobutylaluminum hydride (DIBAL) and succinic anhydride
respectively (Chekem and Wierucki 2006). Artesunate has
improved solubility, absorption and pharmacokinetics (Li
et al. 1998). This allows it to be recommended as an oral,

Fig. 1 Artemisinin and its
derivatives
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rectal, intramuscular and intravenous medication for uncom-
plicated and severe malaria (Barnes et al. 2004; Harin et al.
2006).

Artesunate has a short half-life of between 20 and 45 min
by oral route (OS) (Morris et al. 2011) and is metabolized
through esterase-catalyzed hydrolysis within this short time
to dihydroartemisinin, which is the active metabolite respon-
sible for its antimalarial activity (Teja-Isavadharm et al. 2001;
Gautam et al. 2009). Dihydroartemisinin is converted to its
inactive form through glucuronidat ion via UDP-
glucuronosyl transferase (Ilett et al. 2002). A little amount of
the DHA is also eliminated via the bile as glucuronides (Teja-
Isavadharm et al. 2001).

Improving the antimalarial activity
of artesunate

Since the discovery of artesunate, several modifications have
been done to this compound, in an attempt to improve its
effectiveness and delay the emergence of resistance to it.
The most widely accepted approach, as approved by the
WHO, is the combination of the fast-acting artesunate with
another slow-acting drug, usually from another class of anti-
malarials. Other approaches to improve its activity are also
well documented. These include the synthesis of hybrid com-
pounds, the use of drug delivery systems, chemical modifica-
tion, etc. (Fig. 2).

Approaches that yielded antimalarials in clinical use

The approaches discussed in this section include those that
have yielded drugs that are currently undergoing clinical trials
and those already in clinical use.

Chemical modification

Sodium artesunate Sodium artesunate (5a) is a basic salt as
opposed to the acidic form and the recommended form
for the treatment of uncomplicated and severe malaria
due to its solubility (Fig. 3). It is a water-soluble com-
pound which can be administered either as an intrave-
nous or intramuscular drug (Batty et al. 1996). Sodium
artesunate is more active in parasite clearance compared
to quinine and some other antimalarials because of its
fast action and better tolerance; however, it is less po-
tent compared to its acidic form. Its activities against
resistant malaria parasite strains are also well document-
ed (Batty et al. 1996; White 1999a, b). The administra-
tion of sodium artesunate was reported to increase uri-
nary excretion of sodium, chloride and potassium ions
in Wistar rats (Campos et al. 2001). In addition,
Campos et al. (2001) reported that administration of
sodium artesunate led to an increase in the concentra-
tions of metabolites of nitric oxide (nitrite and nitrates),
which have been linked with protection against malaria
(Taylor-Robinson and Looker 1998).

Fig. 2 Methods employed in
improving the antimalarial
activity of artesunate
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Combination therapy

The resistance of malaria parasite to chloroquine in regions of
Southeast Asia, South America and along the east coast of
Africa led to the withdrawal of chloroquine as first-line treat-
ment for uncomplicated P. falciparum malaria (World Health
Organization 2001). Similarly, the use of artesunate mono-
therapy, as chloroquine replacement, could not be continued
due to the emergence of parasite resistance to it (Sahr et al.
2001). This, therefore, led to the introduction of ACT (World
Health Organization 2007). Different ACTs containing
artesunate have been used since then with continued monitor-
ing. ACTs are available as fixed dose combinations; the drug
combinations are prepared in “ready to take formulation,” also
known as “co-blister.”Unlike taking a series of drug regimens
in multiple tablets, this ACT formulation approach improves
patient’s compliance during treatments (Lacaze et al. 2011).
The choice of partner drugs for combination with artesunate is
guided by the following principles: (i) the drug should act
synergistically with artesunate (Majori 2004), (ii) it should
be slow-acting, and (iii) it should exhibit a different mecha-
nism of action in order to delay the emergence of drug resis-
tance (White 1998). Studies have indicated that the inclusion
of artesunate does not influence the pharmacokinetics of other
components (van Vugt et al. 1999). When the sensitivity of a
partner drug in the ACT decreases, such drug is replaced with
another which possesses a higher sensitivity. Artesunate-
based combination therapies containing primaquine, meflo-
quine, pyronaridine, amodiaquine, or piperaquine as partner
drug have been formulated as single doses (Fig. 4). Also,
artesunate is combined with chlorproguanil–dapsone,
sulfadoxine–pyrimethamine, atovaquone–proguanil, and

some antibiotics like clindamycin, tetracycline, and doxycy-
cline (Fig. 5).

Primaquine–artesunate combination Primaquine (6) is an 8-
aminoquinoline, which has been in use since the 1950s.
Primaquine is a hypnozoitocidal drug, which when given at
the right dose, is also effective against asexual stages of
P. vivax (Pukrittayakamee et al. 2000). Primaquine is still
the only drug currently used worldwide for the treatment of
relapses from P. vivax malaria due to dormant hypnozoites
(Waters and Edstein 2012) and for the inhibition of formation
of gametocytes of the parasite (Waters and Edstein 2012).
Primaquine is generally absorbed but with short half-life of
between 3.7 and 9.6 h, though longer than that of artesunate
(Edwards et al. 1993; Cuong et al. 2006). Its combination with
artesunate is highly effective against the gametocyte of
P. falciparum and equally effective as a hypnozoitocidal drug
for the treatment of P. vivax and P. ovale infections (Baird and
Hoffman 2004; Graves et al. 2012; World Health
Organization 2012; Galappaththy et al. 2013).

Amodiaquine–artesunate combination Amodiaquine (7) be-
longs to the class 4-aminoquinoline (Teixeira et al. 2014) and
is a derivative of quinoline, with modifications in its side
chain. It has both schizonticidal and gametocytocidal activi-
ties against Plasmodium species. After an oral administration
of amodiaquine, it is rapidly absorbed and metabolized to its
active metabolite called desethylamodiaquine. Amodiaquine
and desethylamodiaquine have longer half-lives (5 h and
above 6 days, respectively) (Krishna and White 1996) com-
pared to artesunate. The combination of the two drugs is rec-
ommended for the treatment of uncomplicated falciparum
malaria. This combination has been demonstrated to be more
effective than amodiaquine monotherapy in African children
by improving the cure rate and reducing gametocytemia
(Adjuik et al. 2002).The mechanism of action of amodiaquine
is still not completely understood. However, earlier reports
have shown that amodiaquine inhibits the polymerization of
heme to the insoluble product, hemozoin, in the parasite
(Ginsburg et al. 1998).

Pyronaridine–artesunate combination Pyronaridine (8) is an-
other drug used in combination with artesunate for the treat-
ment of uncomplicated P. falciparum and P. vivax malaria
(Poravuth et al. 2011; Rueangweerayut et al. 2012).
Pyronaridine was synthesized in the 1970s, after the emer-
gence of parasite resistance to chloroquine. It is a derivative
of 10-phenyl aminobenzo[b][1,5] naphthyridine. The ratio of
artesunate and pyronaridine in the combination is 1:3 respec-
tively. Pyronaridine was reported to be active against erythro-
cytic stages of Plasmodium species in mouse models
(Looareesuwan et al. 1996; Ye and Shao 1990). Also docu-
mented are the in vitro activities of pyronaridine against the

(5a)
Fig. 3 Chemical structure of sodium artesunate
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multidrug-resistant P. falciparum isolates (Institute of
Parasitic Diseases Chinese Academy of Medical Sciences
1980). Resistance to pyronaridine has been observed in some
Plasmodium strains (Wu 1988; Li et al. 1995). The mecha-
nism of action of pyronaridine involves the inhibition of β-
hematin formation, resulting in the death of the parasite. It also
involves the formation of a drug–hematin complex. This al-
lows pyronaridine to inhibit the glutathione-dependent degra-
dation of hematin and enhance hematin-induced lysis of red
blood cell. Pyronaridine is active against all the asexual stages
of P. falciparum, with higher potency than chloroquine (Croft
et al. 2012).

Mefloquine–artesunate combination Mefloquine (9) was de-
veloped in the USA by the United States Army. Mefloquine is
recommended for chemoprophylactic treatment of the infec-
tions of all Plasmodium species.Mefloquinewas initially used

Fig. 4 Chemical structures of
some artesunate partner drugs

Fig. 5 Some antibiotics co-administered as antimalarial
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in combination with sulfadoxine/pyrimethamine, to success-
fully treat resistant P. falciparummalaria (Nosten et al. 1987),
until resistance emerged some years later (Nosten et al. 1991).
The new formulation of artesunate–mefloquine was suggested
by the WHO technical consultation team on antimalarial drug
combination therapy in 2001 (World Health Organization
2001). The fixed dose of artesunate–mefloquine was recom-
mended for daily use over a period of 3 days (ter Kuile et al.
1995; World Health Organization 2001). Mefloquine has a
half-life of about 2 weeks and rapid asexual blood-stage and
gametocyte clearance rate (White 1998). Mefloquine acts as
an active schizonticidal drug but not as an effective
gametocytocidal drug. Though its exact mechanism of action
is not clear, it has high affinity for erythrocyte membrane and
seems to act by inhibiting heme polymerization in malaria
parasite (Palmer et al. 1993; Nosten et al. 2012; World
Health Organization 2015).

Sulfadoxine–pyrimethamine–artesunate combination
Sulfadoxine (10) has a structure which is similar to p-
aminobenzoic acid (PABA), which serves as the basis for its
use as an antifolate. Sulfadoxine blocks the production of
dihydrofolic acid, which is essential for the biosynthesis of
nucleic acid, by inhibiting the key enzyme dihydropteroate
synthase (Nzila 2012). The combination of artesunate with
sulfadoxine–pyrimethamine (SP) is among the antimalarial
drugs strongly recommended by the WHO for the treatment
of uncomplicated malaria in children and adult, except in the
first trimester of pregnancy (World Health Organization
2015), which has been adopted in different countries with no
adverse drug reactions (Obonyo et al. 2003; Marquiño et al.
2005). Sulfadoxine/pyrimethamine (11) combination with
mefloquine was previously used for the treatment of resistant
P. falciparummalaria before the development of resistance to
this combination (Nosten et al. 1987; Nosten et al. 1991).
Sulfadoxine–pyrimethamine–artesunate combination ensured
a rapid decrease in fever and asexual parasite density;
gametocytemia was also significantly lowered by the combi-
nation therapy compared to sulfadoxine–pyrimethamine treat-
ment alone (Obonyo et al. 2003; Marquiño et al. 2005).

Atovaquone–proguanil–artesunate combination

Proguanil (12) is a prodrug, which is metabolized to
cycloguanil (13). Proguanil is a strong schizonticidal drug
and acts on asexual forms of the parasite. Proguanil inhibits
dihydrofolate reductase (DHFR) activity of the parasite, there-
by suppressing the reduction of dihydrofolate to tetrahydrofo-
late, which is necessary for the biosynthesis of amino acids
and nucleic acids (Nzila 2012). Atovaquone (14), on the other
hand, interferes with the integrity of parasite mitochondria and
depolarizes its electron transport, thereby blocking parasite
cellular respiration. In various clinical trials conducted,

artesunate–atovaquone–proguanil combination was highly ef-
fective and well tolerated in the treatment of multidrug-
resistant P. falciparum malaria (van Vugt et al. 1999, 2002;
Tahar et al. 2014;Wojnarski et al. 2019; Clinicaltrials.gov/ct2/
show/NCT02297477). In the right combination as a single
formulated drug, it provides alternative treatment for
pregnant women infected with multidrug-resistant P.
falciparum (McGready et al. 2003). Although it may be ex-
pensive in its formulation, it provides an effective 3-day treat-
ment for pregnant women (McGready et al. 2003). In a pre-
clinical study, the use of nanosuspension of atovaquone in
triple combination, in order to reduce the high cost and dose
of atovaquone, has been reported to be effective, increasing its
bioavailability two-fold (Harsha et al. 2020).

Chlorproguanil–dapsone–artesunate combination
Artesunate, dapsone (15), and chlorproguanil (16) were devel-
oped as an affordable, fixed dose ACT for use in tackling the
emergence of resistance of parasites to chlorproguanil–
dapsone combination in Africa. They are metabolized after
ora l admin is t ra t ion in to the ac t ive metabol i t es
d i hyd r o a r t em i s i n i n , monoa c e t y l d ap son e and
chlorcycloguanil, respectively. The latter provides a longer
half-life to the ACT (Zuidema et al. 1986; Edstein and
Veenendaal 1987). This antifolate combination is similar to
SP, but with a rapid elimination from the body (Winstanley
et al. 1997). This triple combination therapy has undergone
phase III clinical trial (ClinicalTrials.gov Identifier:
NCT00344006).

Artesunate–lumefantrine–amodiaquine combination
Artesunate–lumefantrine–amodiaquine is another triple com-
bination that is currently undergoing phase III clinical trial
(Thu et al. 2017). Actually, the rationale for this triple combi-
nation therapy is to circumvent the limitations of the double
combination therapy such as the emergence of resistance and
high doses of partner drugs. This drug was effective when
administered as a 3-day regimen (ClinicalTrials.gov
Identifier: NCT02453308).

Combination with antibiotics Antibiotics are used for the
prevention and treatment of diseases arising from micro-
bial infection. Just like the malaria parasite, bacterial
infection does not only pose health challenges but also
economic burden due to the development of resistance
by bacteria to conventional drugs (Gandra et al. 2014).
The combination of an antibiotic with an antimalarial, if
effective and safe, has been recommended for malaria
endemic regions (White and Olliaro 1996; World Health
Organization 2015). Clindamycin (18), tetracycline (19),
and doxycycline (20) have been used specifically in
combination with artesunate for the treatment of malaria
(Fig. 4).
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Clindamycin is an effective antibacterial compound used
for the treatment of pneumonia, inflammatory diseases and
endocarditis. It is also active against methicillin-resistant
Staphylococcus aureus (MRSA) (Daum 2007). Clindamycin
is well tolerated when used for the treatment of P. falciparum
malaria. Quinine/clindamycin combination is particularly rec-
ommended for children and is the drug of choice for pregnant
women (Lell and Kremsner 2002; Griffith et al. 2007).
Clindamycin is not recommended for use as an antimalarial
monotherapy because isolates of P. falciparum have
exhibited resistance to it (Dharia et al. 2010). However, it is
used effectively in combination therapy because of its slow
action when administered with a fast-acting drug, such as
artesunate (Lell and Kremsner 2002; Griffith et al. 2007).
Similarly, doxycycline is used to treat infection caused by
protozoans or bacteria. It is recommended as a prophylactic
drug, co-administered with quinine or artesunate as follow-up
treatment for severe malaria or in combination with other
antimalarials for uncomplicated malaria (World Health
Organization 2015). Doxycycline is a preferred partner drug
due to its longer half-life, reliable absorption and its renal
safety profile (World Health Organization 2015). It acts by
imp a i r i n g P l a smod i um a s e x u a l d e v e l o pmen t
(Pukrittayakamee et al. 2008). Also, its use is associated with
increase in gametocytes and clearance time as recorded for
sulfadoxine–pyrimethamine combination (Pukrittayakamee
et al. 2008). Doxycycline is used to prevent malaria but it
is not recommended for the initial treatment of malaria, even
when the parasite is sensitive to it, since its antimalarial action
is delayed (Dahl et al. 2006).

Combination of clindamycin with artesunate or quinine has
been recommended for the treatment of severe or uncompli-
cated malaria in patients, including women in the second tri-
mester of pregnancy; its administration is for 7 days (World
Health Organization 2010). Themechanism of action involves
the inhibition of microbial protein synthesis by binding to the
50S ribosomal subunit and interfering with peptide chain ini-
tiation (Tenson et al. 2003; World Health Organization 2010).

Approaches that have yielded promising
antimalarials at preclinical stage

Combination therapy

Ferroquine–artesunate combination Ferroquine (17) is a 4-
aminoquinoline derivative of chloroquine with ferrocenic at-
tached to its side chain. Ferroquines are the most potent of the
chloroquine derivatives with antimalarial properties.
Ferroquine and its derivatives, such as hydroxyferroquines,
trioxaferroquines and chloroquine-bridged ferrocenophanes,
have been extensively studied due to their promising antima-
larial properties (Wani et al. 2015). They are used in combi-
nation with artesunate to ensure better activities and delay

in the emergence of resistance to both compounds.
Ferroquine alone is effective against the chloroquine-
resistant strain of P. falciparum (Biot 2004). It is believed to
act by inhibiting hemozoin formation in the parasite (Biot
et al. 2005).

Synthesis of hybrids

Hybrids are chemical compounds with two or more different
structures and biological functions (Meunier 2007). Hybrid
molecules are synthesized in order to bring a new
pharmacophore, which is expected to bring a new property
to the hybrid. Hybrid molecules with higher antimalarial ac-
tivity or with a synergistic effect are reported to be good can-
didates for new antimalarial development.

Mefloquine–artesunate hybrid Mefloquine and artesunate
have been used in combination therapy since 2001 (World
Health Organization 2001), as well as with sulfadoxine/
pyrimethamine for the treatment of P. falciparum malaria
(Nosten et al. 1987). The choice of artesunate and mefloquine
as ACT partners is ideal because fast-acting and slow-acting
drugs are combined (Wiseman et al. 2006). The quinolinic
ring of mefloquine and the endoperoxide ring of artesunate
were combined in a new hybrid molecule MEFAS (Varotti
et al. 2008). MEFAS (21) had new features different from the
parent compounds and was more potent than the parent com-
pounds when administered alone and in different mass pro-
portions (Fig. 6). The hybrid compound was effective against
both chloroquine-sensitive (3D7, IC50 1.1 ng/ml) and
chloroquine-resistant (W2, IC50 1.0 ng/ml) strains of
P. falciparum parasites (Table 1). MEFAS was active
in vivo against P. berghei, with no recrudescence during the
30 days of parasite monitoring (Varotti et al. 2008). MEFAS
did not have SERCA as its target but altered the pH gradient
across the parasite’s digestive vacuole (Varotti et al. 2008).

Primaquine–artesunate hybrid Primaquine and artesunate
(PRIMAS) is a hybrid molecule prepared from primaquine
and artesunate in a similar manner to MEFAS. It is also a
hybrid salt between the two parent compounds. The hybrid
compound was designed to minimize the toxicity associated
with primaquine (Boechat et al. 2014). Studies on PRIMAS
(22) showed that it was a potent drug with less toxicity com-
pared to the parent compound, primaquine. Also, results
of in vitro and in vivo experiments revealed it to be more
active against drug-resistant isolates compared to the parent
compounds (Boechat et al. 2014).

Indoloquinoline–artesunate hybrid Indoloquinolines are iso-
lates from the root of the medicinal plant Cryptolepis
sanguinolenta, which is a climbing shrub. The isolated phy-
tochemicals , c ryptolep ine , i socryptolepine , and

2756 Parasitol Res (2020) 119:2749–2764



neocryptolepine, are promising antimalarial compounds
(Kirby et al. 1995; Cimanga et al. 1997; Paulo et al. 2000).
Wang et al. (2014) synthesized a series of indoloquinoline
hybrids (artesunate–indolo[2,3-b]quinoline, artesunate–
indolo[3,2-c]quinoline and artesunate–indolo[3,2-b-
]quinolone) and evaluated their antimalarial properties.
Indoloquinoline was linked to artesunate through the substitu-
tion of 3-aminopropylamino group of indoloquinolines with
artesunate moiety to form an amide bond. The hybrid (23)
expressed low cytotoxicity and increased antimalarial activity.
They were active against chloroquine-sensitive (NF54) and
chloroquine-resistant (K1) strains of P. falciparum with IC50

values of 0.45 nM and 0.42 nM respectively. The in vivo
studies revealed that the hybrids had good antiplasmodial ac-
tivities, reducing parasitemia by 89.6% on the 4th day and
expressing a mean survival time of 7.7 days (Wang et al.
2014). This hybrid molecule was a more potent inhibitor of

β-hematin formation compared to its parent compounds, in-
dicating it as one of its mechanisms of action.

Polyphenol–artesunate hybrids Recently, we synthesized an-
timalarial hybrid compounds from artesunate and some poly-
phenols present in Cocos nucifera husk, the decoction of
which is used for the treatment of malaria in indigenous med-
icine in Nigeria (Adebayo et al. 2012, 2013). The compounds
synthesized were artesunate–ellagic acid and artesunate–
procyanidin hybrid compounds with a ratio of 1:1 of the com-
ponents in each hybrid compound (Adebayo et al., unpub-
lished; Balogun et al., unpublished). The artesunate–ellagic
acid hybrid compound was found to be more active than
artesunate against P. falciparum W2 in vitro, while
artesunate–procyanidin hybrid compound was more active
against P. berghei NK65 compared to artesunate in vivo
(Adebayo et al., unpublished; Balogun et al., unpublished).

Fig. 6 Artesunate hybrid
compounds

Table 1 IC50 values for
artesunate hybrid compounds S/

no.
Drug/hybrid IC50 (parasite strain) Reference

1. Artesunate 6.3 nM (D10) 31.2 nM (Dd2) Singh et al. (2014)

2. Chloroquine 21.8 nM (D10) 140 nM (Dd2) Singh et al. (2014)

3. Mefloquine/artesunate 1.1 ng/ml (3D7) 1.0 ng/ml (W2) Varotti et al. (2008)

4. Primaquine/artesunate 4.07 ng/ml (W2) Boechat et al. (2014)

5. Indoloquinoline/artesunate 0.45 nM (NF54) 0.42 nM (K1) Wang et al. (2014)

CQ-sensitive P. falciparum strains: D10, 3D7, and NF54; CQ-resistant strains: Dd2, W2, and K1
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Use of drug delivery systems

Nanohybrids have been used as drug delivery systems to re-
lease drugs into a particular site in the body at a specific rate.
Different drug delivery systems have been developed, includ-
ing liposomes, lipid nanoemulsions and polylactide-co-
glycolide (PLGA) and the use of natural polymers such as
collagen and chitosan (Al-Qaraghuli et al. 2017; Obeid et al.
2017a, b).

Various strategies utilize liposomes and pheroids to im-
prove the solubility and transport of antimalarial drugs to their
target sites. Pheroids are biocompatible, biodegradable, and
safe compounds used in medical applications. The poor solu-
bility and erratic absorption of artemisone (25) following oral
administration have been improved by using pheroids (Steyn
et al. 2011). The formulation consisted of ethyl ester,
cremaphor, α-tocopherol, and butylated hydroxyanisole as
oil phase, with nitrous oxide water as the water phase; the
final pheroids obtained were 3.81 μm in size (Steyn et al.
2011).

Liposomes were among the first drug delivery systems ap-
plied in disease therapy (Gregoriadis 1976). They are made up
of phospholipid bilayers surrounded by central aqueous phase
and are self-assembling spherical colloidal entities. They are
amphiphilic, shielding hydrophobic groups from aqueous en-
vironment while maintaining contact with aqueous phase
through their hydrophilic head groups (Makino and Shibata
2006). Liposomes have been used to encapsulate several an-
timalarial compounds, including artesunate, in order to im-
prove their delivery to target organs. Gabriёls and Plaizier-
Vercammen (2003) developed a liposome formulation to im-
prove patient’s compliance to the use of artesunate. To
achieve this, liposome consisting of 4:3 molar ratio of
phosphatidylcholine/cholesterol was used to develop a drug
delivery system that ensured the slow release of artesunate.

Kim et al. (2015) prepared artesunate nanohybrids by in-
tercalating it in zinc salt in an attempt to increase its solubility
and oral bioavailability and prevent its degradation in acidic
medium. Kim et al. (2015) also encapsulated the artesunate–
zinc basic salt (ZBS) in an enteric coating agent to further
decrease the release of artesunate and prevent its decomposi-
tion at intestinal pH. The synthesized nanohybrid significantly
improved the aqueous solubility and chemical stability of
artesunate in acidic conditions.

Recently, we also reported the use of mesoporous silica
nanocarriers as effective drug delivery systems for artesunate
and quinine (Amolegbe et al. 2018). Mobil Composition of
Matter (MCM)-41 was found to be the most effective in de-
livering artesunate and quinine to the target site, the red blood
cells, compared to other delivery systems. However, it was
more effective in delivering quinine than artesunate. The
MCM-41 nanoparticle delivery system for quinine enhanced
the antimalarial activity of quinine by about 240-fold, with

0.0625 mg/kg body weight of quinine encapsulated
in MCM-41 nanoparticle exhibiting higher inhibition of par-
asite growth compared to 15 mg/kg body weight of quinine
(Amolegbe et al. 2018).

Use of synthetic matrix

Drug solubility is very important for delivery to target sites.
Drug candidates from biological base screening or combina-
tion chemistry are mostly lipophilic and are expected to exert
their therapeutic action across biological membranes or
membrane-associated proteins (Fahr and Liu 2007).

Artesunate is a potent blood schizonticidal drug, the solu-
bility of which has been described as poor. Its bioavailability
is also low when administered through the oral route (Li et al.
1998). These properties limit the therapeutic applications of
artesunate (Zhang et al. 2009). Thus, improving its solubility
could increase its delivery and therapeutic effects.
Carbohydrate and noncarbohydrate matrices are employed to
increase the solubility of drugs and enhance their delivery to
target sites (Fahr and Liu 2007; Douroumis and Fahr 2013).
This process transforms hydrophobic drugs to more water-
soluble forms, thereby improving their delivery. Chadha
et al. (2011) investigated the inclusion of artesunate in a car-
bohydrate matrix. β-Cyclodextrin (β-CD) along with other
matrix was prepared and evaluated for their physicochemical
properties and therapeutic indices. Similarly, Muder and
Sunderland (2014) investigated the inclusion of artesunate in
hydroxypropylβcyclodextrin (HPβCD), which is a chemical-
ly modified β-CD with some hydroxyl groups substituted
with hydroxypropyl groups. The artesunate–cyclodextrin
molecules increased the solubilization strength of artesunate,
which was highest in methyl-β-cyclodextrin (Me-β-CD)
(Chadha et al. 2011). More so, the binary Me-β-CD–lyophi-
lized suspensions were effective against P. berghei infection
in mice with no mortality recorded throughout the duration of
the study (Chadha et al. 2011).

Synthesis of co-crystals

Synthesis of co-crystals of artesunate and nicotinamide using
two separate methods of solvent evaporation and slurry in-
creased the solubility and dissolution rate of artesunate but
caused no significant increase in the in vivo antimalarial ac-
tivity of artesunate alone (Setyawan et al. 2015). Co-crystal
formation has been used to design crystals with improved
properties such as solubility, bioavailability and stability,
amidst other properties without altering the effectiveness of
the parent compound (Chadha et al. 2012). The effect of nic-
otinamide in the crystal formed with artesunate seems to im-
prove the dissolution of artesunate in water, but not its anti-
parasitic activities in vivo (Setyawan et al. 2015).
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Chemical modifications

Artemisone Artemisone (25), a polar heterocyclic compound,
was synthesized from artesunate as a second-generation drug
(Fig. 7). The modification conferred on artemisone improved
pharmacokinetics and prolonged half-life and also alleviated
the neurotoxicity associated with artesunate (Haynes 2006).
Also, artemisone has been reported to be active against early-
stage gametocytes and asexual stages (Coertzen et al. 2018).
Its mechanism of action has been shown to include the inhi-
bition of PfATPase6. It was also more efficient in killing ma-
laria parasite than artesunate in animal studies. Further studies
are still being carried out on the development of artemisone
(Anthony et al. 2012; Schrader et al. 2012; Barnett and Guy
2014). Artemisone has undergone phase II clinical trial (Held
et al. 2015).

Artesunate–polyamines The synthesis of polyamines of
artesunate (26) and the evaluation of their activities against
NF54 and K1 strains of P. falciparum were done by Pearce
et al. (2017). Among the active artesunate–polyamine com-
pounds are (Bis)-Boc-(bis)-artesunate–polyamine and (tetra)-

artesunate–polyamine conjugates which were active in vitro
against the two strains with IC50 values ranging from 0.3 to
1.1 nM. These polyamine conjugates also caused 95.5–99.8%
reduction in parasitemia with no death recorded for two of
them in experimental animal studies after a 30-daymonitoring
period (Pearce et al. 2017).

Artesunate dimers, trimers, and tetramers

The peroxide bridge of artesunate is critical to its activity.
Thus, hybrid compounds were synthesized from two or more
compounds such that each monomer had an endoperoxide
bridge and they were evaluated for their activities, relative to
the monomers. Chaturvedi (2011) synthesized trimer and tet-
ramer derivatives of artesunate (27), with some of the oligo-
mers exhibiting good in vitro activities against chloroquine-
sensitive parasites. Some dimers were also synthesized and
one of them had similar in vitro activity (IC50 =
0.00077 μM) against chloroquine-sensitive Plasmodium spe-
cies compared to artesunate (Paik et al. 2006). Artesunate
trioxane dimer (28) prepared by Conyers et al. (2015) gave
promising results in an animal model of malaria (Fig. 7). The

Fig. 7 Chemical structures of
modified artesunate compounds
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trioxane dimer was the most effective among the drugs tested,
exhibiting complete parasite clearance and also extending the
mean survival time of testedmice beyond 30 days. Reiter et al.
(2015) prepared several artesunate dimers and trimers and
evaluated their activities against P. falciparum 3d7. The di-
meric derivatives of artesunate (29 and 30) were more active
compared to the trimers, with IC50 of 2.6 nM for both of them
(Reiter et al. 2015).

Artesunate triazine hybrids (31 and 32) synthesized by
Cloete et al. (2014) were active antimalarial compounds
against both chloroquine-resistant (Dd2) and chloroquine-
sensitive (NK65) strains of P. falciparum. The synthesized
dimer derivatives of artesunate were more active than their
monomeric counterparts (Cloete et al. 2014). Among the
promising compounds, one of them (32) exhibited IC50 of
0.0079 and 0.0102 mM against NF54 and Dd2 strains of
P. falciparum, respectively. The compound exhibited higher
activity against P. falciparum NF54 but was less active
against P. falciparum Dd2 compared to artesunate and
dihydroartemisinin (Cloete et al. 2014).

Beyond enhancing artesunate activities

Malaria still poses a high health risk to the populace, especial-
ly where the occurrence of the resistant strains of the parasite
is widespread in areas with poor vector control. Several treat-
ment approaches have been mired by the complex nature of
the life cycle of malaria parasite and the emergence of drug-
resistant species. Researchers are keen on finding a compound
that will be effective and possess a novel mechanism of action
different from those of existing drugs, in order to avoid resis-
tance by the parasite. Over the years, several methods have
been used to improve existing antimalarial compounds. This
review has highlighted some approaches that resulted in im-
proved antimalarial activity of artesunate, such as combina-
tion therapy, the use of synthetic matrix, synthesis of hybrid
compounds, and chemical modifications of the structure of
artesunate. Reported cases of resistance or reduced sensitivity
have made some of these combination therapies to be with-
drawn. It is believed that modifications of the chemical struc-
ture of artesunate and the synthesis of its hybrid compounds
may avail us the opportunity of getting an array of new com-
pounds which are more effective than artesunate and also
possess novel mechanisms of action which can be deployed
sequentially in combating the emergence of artesunate-
resistant strains over a long period of time. This is expected
to reduce the scourge of the disease, especially in Africa where
majority of malaria deaths occur.
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