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Transmission of bacterial, fungal, and viral pathogens is of primary importance in public and occupational
health and infection control. Although several standardized protocols have been proposed to target mi-
crobes on fomites through surface decontamination, use ofmicrobicidal agents, and cleaning processes, only
limited guidance is available onmicrobial decontamination of indoor air to reduce the risk of pathogen trans-
mission between individuals. This article reviews the salient aspects of airborne transmission of infectious
agents, exposure assessment, in vitro assessment of microbicidal agents, and processes for air decontam-
ination for infection prevention and control. Laboratory-scale testing (eg, rotating chambers, wind tunnels)
and promising field-scale methodologies to decontaminate indoor air are also presented. The potential of
bacteriophages as potential surrogates for the study of airborne humanpathogenic viruses is also discussed.
© 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier

Inc. All rights reserved.

Althoughthemicrobialworld is rich indiversity, onlyasmallportion
of microbes represent a risk to human and animal health. However,
the socioeconomic impact of suchharmfulmicrobes is enormous and
represents an important worldwide challenge in public and occu-
pational health and in veterinary medicine.1 Among the vehicles for
microbial spread, indoor air is perhaps the least understood, likely
because of a general lack of standardized protocols to study the sur-
vival and removal or inactivation of airbornemicrobes. This is a brief
review of airborne transmission of infectious agents, along with an
assessmentof available technologies for thedecontaminationof indoor
air, with particular reference to human pathogenic viruses.

According to Roy and Milton,2 certain types of pathogens are ob-
ligated to spread by air only; pulmonary tuberculosis is a good
example of this.3 Others may do so preferentially (eg, measles,

varicella), and still others may be opportunistic with regard to
their airborne spread (eg, smallpox, influenza, noroviruses). There
are still others that may be carried by air to multiply in their host.
For example, methicillin-resistant Staphylococcus aureus (MRSA) nasal
carriage has been linked to exposure to contaminated air.4

For some airborne infectious agents, the respiratory systemmay
not be the ultimate target. For example, epidemiologic evidence5,6

suggests that airborne particles of human norovirus, a major cause
of acute gastroenteritis, may first be retained in the tonsillar region,
with subsequent translocation to the gastrointestinal tract. Re-
cently,molecular analysis of air foundevidenceof norovirus in several
areas of health care facilities.7 The pandemic potential of human in-
fluenza viruses is related to their ability to spread by air.8,9 In light of
this evidence, safe and effective decontamination of indoor airwould
be an important adjunct to infection prevention and control.10

For most viral infections of humans, epidemiologic profiles cor-
respond to direct-contact transmission through coughing, sneezing,
or speaking-related emissions of pathogen-containing droplets and
subsequent contact with the mouth or nose of a susceptible host.
Droplets emitted by an infected person vary in size between 0.3 and
2,000 μm.11-14 Although the general size range of pathogen-laden
droplet nuclei is 0.5-5.0 μm, it is hypothesized that themicrobe itself
has little influence in this regard. The size of such particles is driven
mainly by their solute content.15

The water content of air will influence the rate at which drop-
lets will evaporate to become droplet nuclei (Fig 1). Droplet nuclei
are preferentially formed at low relative humidity (RH), whereas
high RH may favor maintenance and settling of droplets.14
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Influenza viruses were measured in the air of hospital emergency
rooms in a National Institute for Occupational Safety and Health
study. Over 50% of the detected viruses were found in the <5 μm
fraction, suggesting their presence in airborne droplet nuclei.16

Similar findings were obtained with other respiratory viruses:
cytomegalovirus,17 respiratory syncytial virus,18 rhinovirus,19 and the
coronavirus responsible for the severe acute respiratory syndrome.20

EXPOSURE ASSESSMENT: FROM SAMPLING TO ANALYSIS

Indoor air often contains a varied and variable blend of microbes,21

along with a cocktail of chemicals, allergens, and other particu-
lates. Inhalation of such air may expose an individual to a
combination of potentially harmful microbes and other factors si-
multaneously, making risk assessment a major challenge. For
instance, individuals with preexisting respiratory allergies may react
to an inhaled pathogen differently than individuals without respi-
ratory allergies. Chronic smoking is alsowell known as a predisposing
factor to respiratory pathogens.

In spite of the availability of a variety of methods for collecting
microbes from indoor air,22 efficient recovery and detection and
quantitation of viable pathogens in field samples of air remain dif-
ficult. The generally low levels of airborne pathogens require the
collection of hundreds of liters of air,23 and such a process can be
quite damaging to the viability of many types of pathogens, leading
to an underestimation of their concentration. Often, the pathogen
recovered may not grow in the laboratory. In addition, molecular
approaches cannot readily distinguish between viable and nonvi-
ablemicrobes, therefore compromising their value in risk assessment
and epidemiologic studies.

Among the major knowledge gaps in the aerobiology of human
pathogens is the lack of understanding of size distribution of air-
borne particles carrying viable infectious agents.24 Such knowledge
(granulometry) will be crucial to the design, assessment, and de-
ployment of indoor air decontamination technologies.

PHAGES AS MODELS FOR AIRBORNE VIRUSES

Phages are already used as models in several areas of research
and field investigations. For example, in the pharmaceutic and food
industries, the U.S. Food and Drug Administration recommends their
use to test the effectiveness of filtration devices. They are also used
as surrogates for enteric viruses in studies of wastewater treatment.25

However, their potential as surrogates in the study of aerobiology
of human pathogenic viruses remains underexplored, despite their
common structural similarities with eukaryotic viruses. For example,
phages can be enveloped or nonenveloped and can possess single-
or double-stranded RNA or DNA genomes, which may be seg-

mented, linear, or circular. The phage capsids also are of a variety
of sizes and shapes reflective of human pathogenic viruses.26 Our
ability to culture and assay phages inexpensively and without the
need for biosafety precautions also adds to their attraction as
surrogates.

Recently, phage models have been developed and compared for
appropriateness in simulating eukaryotic viruses in bioaerosols.27

The resistance of various phages to environmental stresses (RH, ul-
traviolet [UV], temperature, and aerosol duration) was studied, and
it was shown that the response to stresses varied between the various
models.28 Phage MS2 has been the most broadly used surrogate in
aerosol studies and is used mostly in biodefense to predict the fate
and transport of biothreat agents.29 Table 1 presents the phage
models used and validated.

Our laboratory has used phages to predict themost probable areas
in a mechanically ventilated building where airborne viruses could
be efficiently sampled and detected. Further, with a simple smoke
test, it is possible to detect the less ventilated zones where patho-
genic agents have higher odds of being concentrated.30

IN VITRO ASSESSMENT OF MICROBICIDAL AGENTS AND
PROCESSES FOR INDOOR AIR DECONTAMINATION

Pathogenic agents may remain suspended in indoor air even in
the absence of the infected person who is emitting them.16 Hence,
air decontamination should be implemented in situations such as
room cleaning after the release of an infected patient or after a vom-
iting episode in a classroom. In the literature, most of the procedures
developed to decontaminate air in occupied spaces were not vali-
dated in vitro with multiple model microorganisms or size-
distributed microbial aerosols.

Although it would be highly desirable to assess any indoor air
decontamination technology against allmajor types of airbornemi-
crobial threats before its adoption, time and cost constraints and
the unavailability of suitable test protocols essentially preclude such
an approach. Furthermore, the in-field efficiency of a given tech-
nology is also subject to numerous site-specific variables. This
reinforces the need for well-designed experimental settings and
robust test protocols and the selection of suitable surrogates for air-
borne pathogens to evaluate potential means of indoor air
decontamination as thoroughly as possible. It should also be noted
here that experimental aerosolization of infectious agents may in-
crease the risk of biohazards in general, therefore requiring the need
for proper staff training, the availability of proper personal protec-
tive equipment, and the institution of rigorous safety procedures.

Environmentally controlled aerosol-aging chambers are de-
signed to simulate environmental stresses that are imposed on
microbial aerosols in order to understand the role of environmen-
tal parameters, such as temperature, UV, and RH, on the fate of
airborne infectious agents.28 Aerosols can remain airborne for pro-
longed periods in rotating chambers31 because these particles remain
suspended in a rotating mass of air. The gravitational forces exerted
on the particles are countered by centrifugal forces created by the
rotation of the drum.32 The effects on various viral and bacterial aero-
sols held at different levels of air temperature, RH, hydrogen peroxide
vapor, UV radiation, ozone, and other physical and chemical agents
can be studied using the rotating drum28 (Caroline Duchaine, 2016).
Figure 2 shows a picture of a rotating drumwith the desiccants and
the control panel.

AIR DECONTAMINATION FOR CONTROL OF INFECTIOUS AGENTS

Natural ventilation is the most important means of air decon-
tamination, but it is not often applicable because of building design,
climate, security, or pest control.23 Mechanical ventilation is more

Fig 1. Droplet nuclei formation.
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expensive but can be effective if well designed. Portable air-
cleaning systems that incorporate filtration, microbicidal UV
irradiation, or other disinfection technologies can be installed in oc-
cupied spaces, but unless very well designed, portable equipment
does not filter large volumes of air, and short circuiting can occur.23

The airborne environment is intrinsically hostile and stressful to in-
fectious agents because of desiccation, radiation, and osmotic
pressure, but little is known about the actual mechanisms of their
inactivation. No universal approach is available, and decontamina-
tion techniques must be adapted to the target agent in place, given
the agent’s relative resistance and robustness. However, some simple
approaches have been developed for reducing the concentration of
airborne infectious agents. The following are some examples.

Temperature and RH

Air temperature plays a role in lipid stability, and decreases in
temperature tend to stabilize the lipid layers of, for example, en-
veloped viruses, such as influenza viruses.33 RH also affects the
viability of viruses.34 As a function of the genetic material (RNA or
DNA) and the presence or absence of a lipid envelope, virus resis-
tance to RH or temperature can vary, but it can be generalized that
enveloped viruses (eg, influenza, coronavirus, respiratory syncy-
tial viruses, parainfluenza viruses) are more stable under conditions
of low RH and low temperature.35,36 The influence of RH and air tem-
perature on phages used as surrogates for human pathogenic viruses
was assessed in the laboratory using the rotating aerosol chamber.28

Results suggest that viruses behave differently and that no stan-
dard or generalized conclusion can be drawn regarding the virucidal
effects of temperature and RH. However, modulation of RH and tem-
perature in buildings or care facilities could be a promising approach
to controlling the spread of some specific types of viruses in indoor
air. Notably, some viruses, such as noroviruses, are very resistant
to aerosolization stresses and environmental stresses that do not
seem to affect infectivity.7

Ozone

Ozone is a normal atmospheric constituent produced naturally
by the effect of UV rays on oxygen. At ground level, ambient con-
centrations normally range between 0.005 and 0.05 ppm.37 Ozone
can be generated from ambient-air oxygen using UV light, laser, high
voltages, electrostatic discharge, or chemical reaction.38 This in-
stable and highly oxidative gas is often used for disinfection of
wastewater and potable water. Air decontamination could be a po-
tentially useful application for high-scale use of ozone in building
air exchange and ventilation systems. However, the effective use of

Table 1
Characteristics of the 4 phage models developed in previous studies

Fig 2. Rotating chamber for the study of aging bioaerosols and effectiveness of air
decontamination approaches.
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ozone in these systems requires concentrations >5 ppm, concen-
trations at which ozone represents a risk for occupants.39 Ozone
decontamination efficiency at low concentrations in ambient air has
yet to be validated.

Ultraviolet

In hospitals, UV disinfection of upper-room air is being used as
a cost-effective means of reducing the risk of airborne spread of
infections.23 Inactivation of microbial agents in indoor air has been
addressed using photocatalysis as a function of the oxidizing power
of ultraviolet radiations A (UVA)-irradiated semiconductors.40,41 UV
treatment involves the use of a photoreactor, some of them being
commercially available, in which air is drawn through and par-
ticles impact on the photocatalytic surface. The efficiency of air
decontamination varies with aerosol size because smaller aero-
sols are less likely to contact the decontamination surface.40 UV lamps
have traditionally been applied to reduce aerosol transmission of
Mycobacterium tuberculosis, and the potential for UV to kill a variety
of vegetative cells in air is not without merit. UV irradiation has
shown efficacy against certain fungal spores, such as those of As-
pergillus spp, and for removal or inactivation of microbial aerosols
at significant rates; however, this technology was not at the time
of the study applied on a routine basis during outbreaks.42 Use of
a combination of systems and technologies is worth studying; as
an example, a 1% concentration of hydrogen peroxide can in-
crease UV’s lethality 2,000-fold.43

Hydrogen peroxide and other microbicides

Nebulization of microbicides in occupied spaces can be per-
formed when the agent is not toxic for humans or corrosive for
materials. Hydrogen peroxide has a low toxicity and is safe for most
materials. Nebulized hydrogen peroxide delivered in the form of dry
mist or vapor has shown efficacy for the reduction of health care–
associated infections.44 In hospitals, highly resistant pathogenic
microbes, such as Clostridium difficile spores, are known to be present
in the air.45,46 In hospital rooms, nebulized hydrogen peroxide has
been shown to reduce surface contamination by both C difficile spores
and MRSA, in fact contributing to eradication of persistent envi-
ronmental contamination with MRSA.

Studies have also shown the virucidal effects of natural com-
pounds such as essential oils (eg, eucalyptus oil, tea tree oil).47,48 These
studies demonstrated the complete loss of viability of influenza virus,
and nonenveloped phage M13, when exposed to aerosolized oils
for >30 seconds; however, concentrations were harmful. Other ma-
terials, such as eugenol, a natural oil, and several commercially
available air sanitizers were tested against aerosolized viruses (phage
surrogates) and shown to have an efficacy that varied with RH and
the phage type (ie, enveloped or nonenveloped, RNA or DNA) (Caro-
line Duchaine, 2016).

Electrostatic precipitation

An electrostatic precipitator (ESP) is a device that removes air-
borne particles by charging the particles with an electric field and
then attracting them to charged collector plates. In laboratory set-
tings, an ESP has demonstrated its air filtration effectiveness over
a wide range of particle sizes,49,50 and efficacy of bacterial and fungal
aerosol capture has been studied as well.51 An ESP has been used
for enhancing indoor air quality in industrial settings and in homes
and public buildings. It has also been used, but without success, in
bedrooms during the night to improve peak expiratory flow rates
of asthmatic children.52

Filtration

Mechanical, microbicidal, and electrically charged fibrous filters
are commercially available and used in heating, ventilation, and air
conditioning systems. Usually, because these filters are not wash-
able, an upstream prefilter is recommended for eliminating coarse
particles and extending the life span of the filter. Antimicrobial and
electrically charged fibrous filters are composed, respectively, of
fibers that incorporate an antimicrobial solution (eg, virucide, bac-
tericide, fungicide) and electrical charges that have been induced
during the manufacturing process. As an example, the antimicro-
bial properties of fibers coated with tea tree and eucalyptus oils have
been evaluated against influenza virus, Escherichia coli, Pseudomo-
nas fluorescens, and Bacillus subtilis.53 The findings were that E coli
and P fluorescenswere inactivated on the surface of the coated filter
within 8 and 2 minutes of exposure, respectively, whereas the more
robust B subtilis was inactivated at a rate of 1 log10 per 30 minutes
of process operation. Electrically charged filters are composed of
relatively large fibers and characterized by bigger pore sizes than
other types of fibrous filters in order to reduce cost and airflow re-
sistance. The capture efficiency of airborne particles is related
primarily to the electrostatic charges.

In North America, the American Society of Heating, Refrigerat-
ing and Air-Conditioning Engineers (ASHRAE) published a standard
to evaluate the performance of commercially available air-cleaning
devices as a function of salt particle size entitled Standard 52.2-
2012: Method of Testing General Ventilation Air-Cleaning Devices for
Removal Efficiency by Particle Size (https://www.ashrae.org/standards
-research--technology/standards-addenda). Per the standard, filter
testing is conducted in a test duct at airflow rates between and
1.4 m3/s, using particles ranging in size from 0.3 to 1, 1 to 3, and 3 to
10 μm. The overall efficacy is then expressed using the minimum
efficiency reporting value (MERV) scale, which ranges from 1-16.
As an example, using 0.3- to 1-μm particles, MERV 14 filters have
75%-85% capture efficiency, MERV 15 filters have 85%-95% capture
efficiency, and MERV 16 filters have an efficiency >95%. The ASHRAE
classification is appropriate for mechanical filters, but does not take
into account the microbicidal properties of filters. There is no stan-
dard rating for microbicidal or virucidal air-cleaning devices, and
studies using ASHRAE standard 52.2 to challenge filters against mi-
crobial aerosols are rare.54,55

Air filtration by heating, ventilation, and air conditioning systems
equipped with high-efficiency particulate air filters has been shown
to ameliorate air quality in hospital rooms andwards.56 A few studies
have investigated the efficiency of portable high-efficiency partic-
ulate air–filtered units in preventing invasive aspergillosis in
immunocompromised patients in hospital settings.57,58

Other methods

Plasma discharge has been tested for the microbiologic decon-
tamination of air and has been shown to be efficient against
filamentous fungi.59,60 Plasma alters microbes’ viability by
charging the particles, making themmore prone to capture by elec-
trical filtration. AirLyse technology (AirLyse, France) has been shown
to destroy airborne particles in ambient air by denaturing organic
compounds by means of UV light and titanium dioxide
photocatalysis.61 Photocatalysis effectively destroys a wide range of
gram-negative and gram-positive bacteria and fungi, algae, proto-
zoa, and viruses.62 Several patented devices and technologies claim
air decontamination by combining several approaches to filtra-
tion and chemical treatment of air (eg, filter exposure to UV radiation
on both the upstream and downstream sides and permeation of
filters, in situ, with ozone).
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Other approaches to reducing the infectious microbial load in
the air of indoor environments have been explored. Themost studied
setting has been the cabins of aircraft, where air contamination is
a major concern.63 Several studies have reported transmission of in-
fectious agents during aircraft flights, including influenza,64 measles,65

tuberculosis,66 and severe acute respiratory syndrome.67 Concen-
trations of selected contaminants in the cabin air of Airbus aircrafts
were analyzed, and high-efficiency air filtration, coupled with fresh
air dilution, was implemented. Unfortunately, this approach did not
prevent the airborne transmission of infectious agents between pas-
sengers in aircrafts.68 For this reason, the development of air
decontamination systems currently focuses on microbial destruc-
tion by photocatalysis, electric shock, or activated carbon fibers.

CONCLUDING REMARKS

Indoor air is increasingly being recognized as a vehicle for a
variety of human pathogens. Exposure to airborne pathogens can
be via direct inhalation or by contamination of secondary ve-
hicles, such as environmental surfaces. Pathogens on surfaces and
objects initially contaminated by air can be resuspended in air for
further transport.

The study of human pathogens in air continues to present major
challenges, which include the following:

1. Experimental facilities to study the survival and transport of air-
borne pathogens (viruses, in particular) remain limited because
of the need for specialized equipment and appropriate infra-
structure and technical skills.

2. Practical and standardized means of recovering viable patho-
gens from field samples of air also remain unavailable; this
prevents us from linking air directly as a vehicle for a variety
of infections.

3. Simultaneous or sequential exposure of hosts to airborne patho-
gens, and other harmful substances, makes risk assessment
particularly challenging because of possible combined nega-
tive health impacts.

4. Surrogatemicrobes often used to study the aerobiology of human
pathogens may be unsuitable for this purpose because of their
inability to withstand aerosolization and remain viable in air.
Amajor research need is identification of better surrogates. Many
attributes of bacteriophages make them attractive as surro-
gates for the study of airborne human pathogenic viruses. This
is another topic for further investigation.

5. In spite of the increasing number and variety of technologies
claiming indoor air decontamination, robust and scientifically
valid protocols remain unavailable for their validation.

Anymeaningful approach to addressing the previouslymentioned
knowledge gaps will require the joint efforts of microbiologists, ar-
chitects, and specialists in indoor air handling systems.
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