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Abstract 

Motivation:  With the rapid increase of the structural data of biomolecular complexes, novel structural analysis 
methods have to be devised with high-throughput capacity to handle immense data input and to construct massive 
networks at the minimal computational cost. Moreover, novel methods should be capable of handling a broad range 
of molecular structural sizes and chemical natures, cognisant of the conformational and electrostatic bases of molecu-
lar recognition, and sufficiently accurate to enable contextually relevant biological inferences.

Results:  A novel molecular topology comparison method was developed and tested. The method was tested for 
both ligand and binding pocket similarity analyses and a PDB-wide ligand topological similarity map was computed.

Conclusion:  The unprecedentedly wide scope of ligand definition and large-scale topological similarity mapping 
can provide very robust tools, of performance unmatched by the present alignment-based methods. The method 
remarkably shows potential for application for scaffold hopping purposes. It also opens new frontiers in the areas of 
ligand-mediated protein connectivity, ligand-based molecular phylogeny, target fishing, and off-target predictions.

Keywords:  Topology comparisons, Ligand-based design, Binding pocket mapping, Virtual high-throughput 
screening
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Background
Large scale analysis of biomolecular networks has proven 
to be of great utility in offering genuine insights into 
molecular interactions and construction of systematic 
inferences. For instance, this has been demonstrated 
in protein–protein interactions [1], disease underlying 
protein networks [2], protein binding pocket analysis 
[3], shared side-effects networks for drug target iden-
tification [4], protein–ligand phylogenetic analysis [5], 
cross-binding ligand networks [6], and even in network 
pharmacology [7]. Such analyses are normally based on 
a wealth of different types of data (e.g. sequence, struc-
tural, biochemical assays, chemical, etc.) or combinations 
thereof, and can provide highly refined, knowledge-based 
descriptions and models.

The rate of deposition of biomacromolecular struc-
tures in the Protein Data Bank (PDB) has been proven 
to exhibit an exponential growth [8, 9]. This was accom-
panied by a trending increase in average resolution and 
macromolecular complexes sizes. Consequently, there is 
a need for the design of computational tools and analysis 
methods capable of efficiently processing such volumes 
of structural data. This could ultimately enable the con-
struction of large scale networks based on the whole rep-
ertoire of tertiary and quaternary structures.

The aim of this study was to introduce a new method 
capable of conducting large scale topology analyses of 
molecular structures that is specially suited for handling 
large and complicated topologies while being insensi-
tive to minor conformational changes. As the molecular 
topology is defined here as the 3D structure and its asso-
ciated electrostatic landscape, a method capable of effec-
tively including the topology information should have a 
wide variety of applications. Herein, we investigate two 
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particular applications to demonstrate such diverse appli-
cability: ligand-based and binding pocket-based topol-
ogy analyses. The aim was the development of a highly 
efficient fingerprinting method given the scale of the 
problem per se (given the expanse of data at the set defi-
nitions) and the structurally diverse nature of the envis-
aged purposes. Thus, a novel means of high-throughput 
topological analysis was devised and the algorithmic 
details of which are outlined below.

Molecular recognition events are at the core of almost 
every biological process, and are meant to remain an 
active area of research in both basic and applied realms. 
Therefore, the ability of reading through and topologi-
cally analysing the huge arrays of structural data avail-
able comes of a great significance for mapping ligands or 
their binding cavities into large networks. These include, 
for example, the elucidation of protein–protein relations 
in terms of ligand or cavity topological similarity via 
quantitative measures and the prediction of unreported 
potential ligand-target interactions by detecting poten-
tially cross-binding ligands. Also, extension of the latter 
for predicting off-target (polypharmacology and toxic-
ity) interactions of a query ligand, or extension towards 
ligand-based drug design by inspecting topology similar-
ity between a native ligand as query against a library are 
possible applications, or even ligand-based target fishing, 
using instead a single query ligand against the array of 
native ligands.

Conceptually, this can be done directly by comparing 
the ligand–ligand structural relations, or alternatively, 
through comparing the receptor–receptor structural 
relations in light of the information encoded in the cor-
responding binding pockets topologies.

Although the applications are not limited to the above 
mentioned, in this report, the aim was to emphasise 
the strength of such large scale analysis method and to 
demonstrate the capacity to provide a PDB-wide map of 
topological similarity at very low computational expenses 
as well as the robustness of the exact implementation in 
binding pocket classification.

Results
PDB data preparation
As the PDB coordinates files were split into their con-
stituting molecules using OpenBabel, applying the cri-
teria described in the “Methods” section, the number of 
structures obtained was 164,939 without removing any 
redundancy (as redundancy could be optionally removed 
downstream the computations upon results parsing), 
where self-matches indicate similarity between repeated 
PDB molecules with slightly different conformations. 
These molecules were the ones subject to the topological 
analysis.

Case studies
Multiple cases were investigated for a critical assessment 
of the algorithm’s strengths and liabilities. This was done 
by running searches (against all of the ligands retrieved 
from the database) and analysing the top results for a 
number of diverse target-bound structures of different 
chemical natures, where the query structure and search 
space topologies were only obtained from the target-
bound conformations in the PDB structure.

First, two searches were conducted using as query the 
quercetin structure as obtained from the crystal structure 
of quercetin complexed with quercetin-2,3-dioxygenase 
(PDB: 1H1I) and six conformers sampled from the latter. 
Results were sorted according to the dissimilarity score in 
ascending order (Fig. 1). This was a control case with one 
rotatable bond to demonstrate the effect of using multi-
ple conformers.

Then, four more different searches were run using the 
open-form penicillin G bound to the penicillin bind-
ing protein 4 of E.coli (PDB: 2EX8) (with and without 
conformers generation), tetracycline bound to the 30S 
ribosomal subunit of T. thermophilus (PDB: 1HNW), 
erythromycin A in complex with T. thermophilus ribo-
some (PDB: 3OHJ), cyclosporin A as complexed with 
human cyclophilin J, and a thiocholine bound to an ace-
tylcholinesterase (AChE) from hydrolysis of butyrylcho-
line (PDB: 2HA7). The top 50 hits for each query are 
shown in Figs. 2, 3. 

Finally, and according to the discerned performance 
variation, two more cases were specially chosen to 
demonstrate the possible weaknesses of the presented 
method; namely, cortisol bound to the corticosteroid-
binding globulin (PDB: 2V95) and ibuprofen bound to 
ovine COX-1 (PDB: 1EQG) (Fig. 4).

Large scale dissimilarity analysis
Although the computation procedurally gener-
ates the dissimilarity scores for the full matrix (i.e. 
164,939  ×  164,939), however, the score arrays were 
sorted and truncated to the top 100 for each ligand 
search due to the intractably huge volume of the full-
sized matrix, which would imply a volume of 164,9392 
multiplied by the system’s float variable size. The results 
were saved as compressed ANSI-encoded files and are 
provided in the Additional file 1.

Ligand‑based benchmark
As described in the “Methods” section, the enrich-
ment performance of the proposed algorithm was tested 
against 99 datasets from the DUD-E [10]. The perfor-
mance was compared to what was reported by Schreyer 
and Blundell [11] at the 1.0 and 0.25% fractions for 
USR and USRCAT algorithms. The results showed that 
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the proposed method clearly outperforms both USR 
and USRCAT at the 0.25% level, and for some targets 
(marked by asterisks in Additional file 2: Figure S1) all of 
the retrieved compounds in the top fraction were actives 
(Additional file  2: Figure S1). Details on datasets sizes, 
number of conformations sampled, and the individual 
enrichment factors for each query were reported for each 
dataset (Additional file 3).

Binding pocket classification
The Kahraman et al. [12] benchmark is composed of 100 
binding pockets for ten ligand groups (originally consid-
ered as 9 where the estrogens and androgens are in the 
same group, but average area under the curve (AUC) 

values were calculated assuming 9 groups). The cognate 
binding sites were aggregated from phylogenetically dis-
tinct targets (different CATH H-levels). The dissimilarity 
matrix was  generated twice for pocket vs. pocket using 
a similar but more rigorous threshold, by expanding the 
binding pocket vicinity atoms to 6.5  Å, which should 
constitute a more difficult case than selecting a cut-off of 
4 or 5  Å. The all-against-all dissimilarity matrices were 
accordingly generated and the colour legend uniformly 
levelled at 120 (maxima from the three matrices ranged 
between 121 and 134) as shown in Fig. 5, while the Addi-
tional files section shows the corresponding receiver 
operating characteristic (ROC) analyses (Additional 
file 4: Figure S2).

Fig. 1  Two heat map strips of dissimilarity scores using the original conformation of quercetin from 1H1I (right), and six generated conformations 
(left) against the PDB ligands. The strips enlists the top 50 similar ligands (corresponding colour legends shown), upper left shows the chemical 
structure of quercetin, the green dot marks hits with flavonoid scaffold. The colour legend represents the dissimilarity score (d) scale (see “Methods” 
section).
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Discussion
Ligand definition and charges treatment
Different ligand structure databases adopt different tech-
nical criteria for incorporating ligands. For instance, 
FireDB [13], PDBbind [14], and ProtChemSI [15] exclu-
sively consider organic small molecules, whereas PepX 
[16] and RsiteDB [17] focus on peptide and RNA ligands, 
respectively. Binding MOAD [18] and BioLiP [19] offer a 
wider focus of the ligand chemical nature and molecular 
weight.

In this study the aim was to achieve maximal compre-
hensiveness through setting forth very loose criteria for 
ligand definition (as described in “Methods” section), 
with an upper bound for the molecular size of 485 atoms. 
This approximately corresponds to the average molecular 
size of a triacontameric peptide or an average molecu-
lar weight of 3.6  kDa, and is far beyond the generally 
accepted molecular weight cutoff (500  Da) for oral bio-
availability, which in itself is not a hard limit [20]. How-
ever, the chemical nature of the analysed structures was 
not exclusive for peptides, but rather any molecule that 
fitted the described criteria (and hence a generic charges 
method was used for partial charges assignment). These 

criteria resulted in the extraction of 164,939 structures, 
upon which the analysis was based.

Molecular topologies
Ligand-based drug design methodologies are based on 
the assumption that chemical structure similarity is gen-
erally linked to biological activity relatedness [21]. This 
fact formed the basis for development of a wide array of 
descriptors (chemical, structural, field, pharmacophoric, 
etc.) which resulted in the proliferation of fast algorithms 
suitable for virtual high-throughput screening [22]. 2D 
fingerprints have been so far the most preferable, owing 
to their computational efficiency [23], with better per-
formance reported for global features fingerprints which 
better describe the similarity of biological activity pro-
files, and so capable of scaffold hopping [24].

On this track, the Ultrafast Shape Recognition algo-
rithms (3D structure-based methods) have provided 
remarkable classification accuracy at comparably low 
computation costs, the results were similar to the par-
titioned pharmacophoric shape recognition [11] or 
charge-inclusive 4-dimensional shape recognition [25]. 
However, in these methods the distributions construction 

Fig. 2  Heat map strips of dissimilarity scores for searching by: a open-form penicillin G (green dots penicillin binding proteins inhibitors; gray dots 
neuraminidase inhibitors), b Tetracycline (green dots different tetracycline derivatives bound), corresponding chemical structures are displayed. The 
colour legend represents the dissimilarity score (d) scale (see “Methods” section).
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essentially relies on centroid definitions as discussed in 
the original publications [25, 26], the mapping of which 
is highly sensitive to small conformational changes, espe-
cially, with large-sized molecules (e.g. side-chain flexibil-
ity in a folded peptide). Slight changes in conformations 
could result in a significantly different centroid mapping, 
and consequently totally different shape distributions 
and potential inaccuracy in molecular similarity calcula-
tion. Additionally, in the latter method, which treats the 
atomic partial charge as a fourth dimension in describ-
ing the atom position vector, charge scaling must be 
made, and the way adopted for that was purely a matter 
of trial-and-error to obtain the best enrichment factors. 
As a consequence the optimal value of the scaling factor 
relies on the validation set being used, which might not 
be an appropriate means if the data set optimal scaling 
factor happens to be different from the benchmarking 
set. Lastly, vector normalisation in those methods would 
contribute to scale invariance as described below, which 
makes the method unsuitable for handling datasets con-
taining broad size variance.

The proposed algorithm was sought to avoid such 
drawbacks by detouring centroid definitions and 

constructing distributions of all possible pairwise inter-
atomic distances, instead of centroid-atom distances. 
Averting the inclusion of the scaled partial charges as a 
fourth dimension was done by partitioning atom groups 
into separate charge-tiers. This approach effectively 
decreases the computation cost of the distribution sam-
pling from roughly O(n2) to O

(

n2

k

)

, where n is the num-
ber of atoms, and k is the number of charge-tiers.

Since this method is a variant of shape distribution 
algorithms [27], it has advantages of translational and 
rotational invariance, and hence very fast topological 
matching after initial descriptor vectors have been com-
puted. As an illustration, a graphical depiction of the 
distance measurements was made for a folded conforma-
tion of an acetylated truncated (decapentameric) histone 
peptide (PDB: 2RNY), with global (Fig.  6a) and parti-
tioned (Fig.  6b) distance measurements. As the global 
distribution sampling would harbour information perti-
nent only to the overall molecular steric field, it cannot 
describe any electrostatic details. Therefore, partitioning 
the atoms into separate charge groups can be described 
as a form of coarse-grained encoding of the electrostatic 
field, whereas the charge-tier comprising the non-polar 

Fig. 3  Heat map strips of dissimilarity scores for searching by: a erythromycin A (green dots different protein synthesis inhibitor macrolides), b 
cyclosporin A (green dots different immunosuppressant cyclosporin derivatives). The colour legend represents the dissimilarity score (d) scale (see 
“Methods” section).
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charges interval could implicitly account for the distribu-
tion of the hydrophobically interacting molecules, and 
collectively, they still encode the net steric field.

Another significant advantage is that this approach of 
partitioning also circumvents the inherent defect of shape 
distribution methods, which is the propinquity to distri-
bution normality with the increased shape complexity (as 
is the case with larger molecules), that in turn results in 
little discriminating power among such shapes. This is 
because partitioning provides simpler sub-shapes with 
less dense distance distributions that still span the whole 
charge-tier spatial coordinates, resulting in more canoni-
cal distributions with lesser probability of approaching 
normality. The higher order charge-tiering schemes (i.e. 
where k > 3) has indeed proven beneficial in discriminat-
ing between complex and large structures (e.g. globular 
protein domains) by resolving the degeneracy through 
assigning less atoms per charge-tier (data not shown).

This method of describing molecular topologies is sen-
sitive to conformational changes, which was the ration-
ale behind including ligand structural data from the PDB 
only, as such data would harbour the additional informa-
tion of the biologically relevant conformer. While pro-
found conformational distortions of the same hashed 

molecule can result in significant alterations in the over-
all topology (i.e. significant dissimilarity scores), small 
conformational changes result in fairly similar topologies 
(i.e. negligible dissimilarity scores). This is of importance 
because in a biological reality, a ligand might exhibit sim-
ilar or different conformational binding modes in differ-
ent complexes.

As shown in the “Methods” section, the selected 
distribution descriptors encode distinct features per-
taining to the distribution, for c1 through c5 would 
give an account on atomic spatial dispersion; average 
interatomic distance, statistical dispersion, distribu-
tion skewness, and distribution kurtosis, respectively, 
within each charge-tier. Hence, such elements do 
implicitly encode a variety of physically translatable 
features.

Topology comparison measures
According to the topology encoding method and the 
use of arrays for canonical molecular indexing, it is 
noteworthy to emphasise the global descriptive nature 
of such method. The addition or removal of sufficiently 
large moieties to the molecular structure would result 
in a significant change in its descriptors values (and 

Fig. 4  Top search results for searching by: a cortisol (green dots hits with either steroidal scaffold or steroidal activity; purple dots with glucocorticoid 
activity, yellow dots with mineralocorticoid activity, red with estrogenic activity, black other), b ibuprofen (green dots NSAID hits). The colour legend 
represents the dissimilarity score (d) scale (see “Methods” section).
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consequently its similarity or dissimilarity scores in rela-
tion to reference structures). Subsequently, the method 
strictly compares global molecular features, rather than 
local molecular features (substructures), and hence also 
its conformational sensitivity.

Although using the Manhattan distance as distance 
measure, the moments composing the vectors were 
not of the exact value range, with the second and third 
moments (i.e. c2 and c3) being approximately one order 
of magnitude larger than the other moments. The for-
mer indeed physically account for the average distance 
and spatial dispersion of the corresponding charge-tier 

atoms, rendering the method more sensitive to the size 
and extendedness in space, which is a desirable effect, as 
significant distortions in such parameters (either due to 
conformational changes or chemical modification) would 
severely affect the binding capacity of the ligand. Moreo-
ver, upon testing the effect of variable and vector normal-
isation, scale invariance was observed, which was totally 
undesirable with such a comprehensive definition for 
ligand inclusion. It might be only tolerated where a nar-
row range of molecular sizes is allowed, which is the case 
with handling training sets of actives and decoys, but not 
with diverse sets.

Fig. 5  Dissimilarity matrices for the Kahraman benchmark [12]. The colour code represented by the legend shows the dissimilarity score value. a 
Pairwise dissimilarity matrix for binding pockets using complete amino acid structures, b pairwise dissimilarity matrix for binding pockets using 
atoms within a 6.5 Å distance from the bound ligand, c pairwise dissimilarity matrix for ligand structures.



Page 8 of 14ElGamacy and Van Meervelt ﻿J Cheminform  (2015) 7:42 

Performance analysis
Initial observation of the results shows an excellent 
enrichment of the topologically relevant hits with obvi-
ous scaffold similarity in top ranking portion. The green 
dots in Fig.  1 (e.g. myricetin, dihydroquercetin, api-
genin, kaempferol) could be regarded as the affirmed hits 
(affirmed true positives owing to the obvious structural 
similarity). Such subject molecules are complexed with 
a variety of receptors such as reductase, oxidase, dehy-
dratase, different kinases, and transferases, with a slightly 
better enrichment by the single conformation of 1H1I 
as the query structure than by the combined results of 
the six other conformations. This target diversity is due 
to the polypharmacological properties of the flavonoids 
class. However, unobvious topological similarity could be 
traced in the results. For instance, the result from 1E8W 
and 1E90 clearly bares a remarkable degree of topological 
similarity between indirectly relatable chemical classes 
(flavonoids and nucleotides) [28], which is stressed by the 
nucleotide-like ligands among the top hits (Fig. 1).

Searching with open-form returned different penicil-
lins and cephalosporins (all in the open-form, owing to 

the significant topological differences between the open-
form and the closed-form). Interestingly, among the 
top-ranked (topologically similar) hits were molecules 
of notable structural dissimilarity (Fig.  2a), which were 
a lactivicin (2JE5), an open-form penem (3BFF), and an 
incomplete peptidomimetic penicillin structure (3BEB; 
terminal 2-aminobutanoate coordinates missing from 
the PDB entry), leading to the assumption that such form 
of topological similarity is dictated by the compositional 
conservation of binding cavities among the penicillin 
binding proteins (which are responsible for conforming 
the ligands in the corresponding complexes). Another 
observation was the high propensity of finding neurami-
nidase inhibitors among the top hits (gray dots in Fig. 2a), 
which points out a degree of topological similarity to 
open-form penicillin G. This was consistent with the high 
rate of penicillins retrieval using oseltamivir analogues 
as queries (Additional file 1). In order to assess more the 
effect of conformational distortion on such a highly flex-
ible query molecule, 40 conformations were generated 
and used as combined queries where the hits were collec-
tively sorted to inspect the dissimilarity minima, which 

Fig. 6  Depiction of descriptor vector construction out of distributions of pairwise distance measurements of a decapentameric peptide (PDB: 
2RNY) from all atoms (a yellow all interatomic distances) versus from three charge-tiers (b red negative, grey non-polar, blue positive), hydrogens 
were removed from display for simplicity.
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as expected resulted in a much lower hit-rate among the 
top 50 which is expected due to the 40× expansion of the 
search results.

A very good enrichment was also observed for tetracy-
cline (Fig. 2b) and the results comprised different tetracy-
cline derivatives bound to different proteins (tetracycline 
repressors, Tetx monooxygenases, multidrug binding 
protein, elongation factor Tu, ribosomal subunit and a 
tetracycline aptamer). Another polyketide, the macro-
cyclic lactam-based antibiotic, erythromycin A (Fig.  3a) 
was used as a search query. The latter retrieved different 
but related macrolides bound to different targets. The 
retrieved ligands contained erythromythin derivatives as 
well as other macrolides (clarythromycin, oleandomycin, 
telithromycin and azithromycin). The hits were bound to 
different targets including ribosomal subunits, macrolide 
biosensor proteins, macrolide glycosyltransferases, mul-
tidrug exporter protein and cytochrome P450.

In order to demonstrate the effect of the query struc-
ture size, a relatively large molecule was used as query. 
The cyclic non-ribosomal peptide cyclosporin A (a 
potent immunosuppressant), which is approximately 
1.2  kDa, was chosen. The query conformation was of 
the cyclophillin J bound state. Results (Fig.  3b) show 
superior enrichment performance compared to other 
small molecule examples, comprising different modified 
cyclosporins.

As an additional case where the binding pocket is nar-
row and the ligand is small, searching with the structure 
of an AChE-bound thiocholine query structure was per-
formed. The retrieved top hits were enriched with cho-
line derivatives (or mimetics) bound in a very similar 
(extended) conformation to a variety of specific targets 
from distant proteins; including acetylcholinesterases, 
acetylcholine binding proteins, choline transporters, a 
choline acetyltransferase and a choline kinase (Additional 
file  5: Figure S3). This may point to the role of specific 
binding in rigidifying the ligand pose in related bind-
ing pockets (in this case, the prevailing feature was the 
cation-π contact with anchoring hydrogen bond by the 
hydroxyl/thiol functional group).

As a general observation, score trends appear to be 
conforming to the enrichment performance, which 
could be deduced from the number of affirmed hits in 
the top scoring fractions, as a very high concentration of 
affirmed hits were found roughly around and below a dis-
similarity score value of 4. It was also noticed that sub-
structure overlapping hits become more evident with the 
trendy increase in dissimilarity scores, however, if such 
sub-structures are of small size proportion, then major 
topological differences exist with the consequence of an 
abrupt increase in the dissimilarity score.

In view of the test-cases results, some main factors 
were noticed to influence the enrichment. Firstly, the 
molecular size of the query structure, as this would entail 
more distinct topological features (as long as the distri-
butions are not excessively dense per charge partitioning 
scheme) which was clearly illustrated by the cyclosporine 
example. At large molecular sizes the distribution shapes 
become less sensitive to the relatively small sized chemi-
cal modifications, or proportionally subtle conforma-
tional changes as compared to major fold alterations. 
This should be considered inline with the expectation 
that better enrichment at a particular molecular size is 
achieved when the query structure atoms are best dis-
persed between the different charge-tiers; the situation 
where the intramolecular atomic charge diversity is great-
est. Secondly, the relative abundance of the topological 
classes in the PDB can directly affect the respective num-
ber of true positive hits in the top ranking fraction when 
searching for under-represented topologies. Noteworthy, 
with the advancement of structural data deposition rates, 
this should be subdued with time. Thirdly, in case of 
covalent inhibitors, which do not abide by a well-defined 
pharmacophore, these are expected to be distantly scored 
from non-covalently interacting ligands. Finally, in some 
ligand classes the biological response or target specificity 
can vary significantly upon very slight chemical modifica-
tions, and subsequently, minor topological modifications. 
Therefore specific analysis methods need to be addi-
tionally considered when studying such classes with the 
described method.

In order to demonstrate this, two special cases are 
shown. Corticosteroids can provide an example of rigid 
ligands that can exhibit a very wide range of biologi-
cal activities upon minor chemical modification of its 
nucleus. This implies that minor topological changes can 
significantly alter the receptor specificity. In fact this was 
evidently observed upon the analysis of the top hits when 
using cortisol as the query structure (Fig. 4a). The results 
comprise corticosteroids of diverse biological effects and 
not just glucocorticoids (i.e. mineralocorticoids, estro-
genic compounds, as well as other steroidal topologies), 
and interestingly, various non-steroidal structures with 
steroidal activity (modulating different steroidal recep-
tors) were also entrained in the top hits, which further 
stresses the capacity of the method to identify structur-
ally unrelated topological similarity between different 
ligands. The other case was ibuprofen, which is a rela-
tively small molecule, and effectively underlines the low 
accuracy that can originate from sub-structural similarity 
and the poor level of topological discrimination at such 
small molecular sizes. This is due to interference from 
other small molecules with relatively close distribution 
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averages and or their narrow variances. This is evident 
from the very low dissimilarity scores reported and the 
relatively poor enrichment performance (Fig. 4b). How-
ever, ligands of the same pharmacology with unrelated 
structures are still among the top hits.

Ligand‑based virtual screening benchmark
To demonstrate the fitness of the proposed method 
for applications for the purpose of ligand-based vir-
tual screening, the enrichment performance was tested 
against datasets from the DUD-E [10]. The targets 
spanned a diverse group of ninety-nine receptors and 
enzymes of strong pharmacological relevance. The 
enrichment results were compared to those of the USR 
[26] and the USRCAT method [11]. Analysing the enrich-
ment performance at a top scoring fraction of 1.0% shows 
a clearly superior enrichment compared to the USR 
(higher enrichment factors for 83 out of 99 datasets), 
which was not the case for USRCAT (higher enrich-
ment factors for 42 out of 99 datasets), albeit that some 
targets (e.g. FPPS, SAHH or PUR2) witnessed a great 
boost in enrichment. More interestingly, was the per-
formance boost for various targets at the 0.25% fraction 
and the superior enrichment in comparison to both, the 
USR (higher enrichment factors for 81 out of 99 datasets) 
and USRCAT (higher enrichment factors for 66 out of 
99 datasets). Noteworthy, is the number of cases at the 
0.25% fraction where the average enrichment factors 
were incalculable (using the equation described in the 
“Methods” section), as some actives as queries retrieved 
no negative hits in this fraction of top hits (Additional 
file 2: Figure S1; Additional file 3). This boost in enrich-
ment may be attributed to the aforementioned algo-
rithmic design differences which build on the previous 
methods weaknesses. This also bares the method’s com-
petence as a practical choice for ligand-based drug design 
applications, especially, with its demonstrated chemo-
type-insensitivity, and thus, its capacity for scaffold-hop-
ping design.

Binding pocket classification benchmark
The demand for protein sequence- and secondary struc-
ture-independent methods for mapping binding pockets 
has risen recently for the purposes of binding site clas-
sification, functional relationships predictions, and pre-
diction of pharmacological intersections [29, 30]. To this 
end, pharmacophore multiplets-based fingerprints have 
been reported for representing both binding pockets and 
ligands [31, 32], but which are expected to behave simi-
larly to other pharmacophore-based methods.

It is arguably safe to assume that the binding cleft on 
a receptor harbours sufficient information to encode 
the shape complementarity between the ligand and the 

receptor, and thus, ligand–ligand structural similarity 
should imply pocket–pocket similarity, and vice versa. 
However, Kahraman et  al. [12] concluded that perfect 
shape complementarity is not necessarily observed in 
natural complexes, and that the binding pockets even 
exhibit, on average, a threefold larger cleft volume than 
the bound ligands. Therefore, they tried to readjust their 
spherical harmonic shape signature by normalising their 
shape coefficients to eliminate size-based interference, 
and conversely by using zeroth order coefficients to elimi-
nate shape-based interference. These tests were applied 
to their three models; the Conserved Cleft (fingerprinting 
restricted to conserved cleft regions shapes), Interact Cleft 
(fingerprinting restricted to protein atoms interacting with 
the ligand), and Ligand Cleft (fingerprinting restricted 
to ligand atoms). Their best cleft vs. cleft performance 
resulted in AUC values of 0.53 (Conserved Cleft model) 
and 0.77 (Interact Cleft model). Our models for cleft defi-
nition were defined to be more rigorous; in our first model 
we used all of the cleft residues atoms (including backbone 
atoms) (Fig. 5a; Additional file 4: Figure S2A), in the sec-
ond model we used a uniform atom inclusion distance 
from the ligand of 6.5  Å (which is around 2.6  Å further 
than HBPLUS interaction distance cut-off) (Fig. 5b; Addi-
tional file  4: Figure S2B). Interestingly, our average AUC 
values are much better, with values of 0.76 and 0.85 for 
the first and second models, respectively. The results were 
still better compared to more recent reports of the PSIM 
method [33] and the Top-3 method [34] which yielded 
average ROC AUC values of 0.79 and 0.82, respectively.

The superiority of the represented—albeit still a 
global geometrical fingerprint—to the above discussed 
spherical harmonic signature could be attributed to the 
electrostatic (and implicitly the hydrophobic) informa-
tion encoded in it. Notably, the average AUC values are 
almost similar between the two methods when compar-
ing ligands (0.94 for the method presented here, and 
0.92 for the spherical harmonics fingerprint). This per-
formance similarity for ligands can be attributed to the 
much simpler topologies in comparison to their binding 
pockets and the very small size of the benchmarking set, 
which renders it an easier classification task for a shape-
only signature. It can also be observed that in general 
more rigid molecules tend to be better classified as noted 
above (Additional file  4: Figure S2C; e.g. FMN vs. FAD, 
AMP vs. ATP and NAD vs. FAD).

Considering the ligand–ligand similarity as the ground 
truth (Fig. 5c), we demonstrate the presence of a reminis-
cent similarity footprint at the pocket–pocket side. The 
dissimilarity matrices (Fig.  5) bare this proposition and 
show that the pattern becomes clearer as atoms closer 
to the interior of the cleft are exclusively fingerprinted 
(Fig.  5b). This pocket–pocket similarity is that of the 
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ligand’s complementary topology, which is supposed to 
provide the above-random relationships between inter-
nal pocket topologies regardless of their amino acid 
sequence composition.

Conclusion
A novel molecular topology comparison method that is 
based on a combined shape distribution and charge bin-
ning scheme was described. The method presented bared 
the advantages of: generality as to the input chemical 
structures, capability of handling a wide range of struc-
tural sizes, demonstrable utility in scaffold hopping 
design (which is a merit of ligand-based design), suit-
ability for high-throughput searches (due to the very low 
CPU-footprint of the calculations involved) and superior 
performance in mapping of binding cavities.

Although no attempts of tuning the performance of the 
method for the sake of maximal generality, the descrip-
tor vectors are very easily amenable to machine learning 
implementation, which is expected to greatly enhance the 
discrimination power of the method (albeit at the cost 
of generality and the requirement of a training set). This 
generality was evidently useful in obviating a clear rela-
tion between the pairwise pocket dissimilarity patterns 
and the corresponding pairwise ligand patterns, which 
were generated by the exact same implementation. More-
over, the method was able to capture topological relation-
ships between pharmacologically similar but chemically 
dissimilar ligand classes. These features combined, may 
allow the use of the described method for a large-scale 
study of ligand and binding-site promiscuity determi-
nants, and potentially, the prediction of ligand selectivity 
in prospective scenarios based on topological similarity 
profiles.

As an outlook from the findings above, we foresee 
the development of an ultra-fast implementation of a 
3D local topological mapping (as opposed to the global 
mapping described) and surface-restricted sampling, for 
the purpose of capturing sub-structural relations and 
acquiring only the surface-laden information (which is 
the most pertinent to the molecular recognition events), 
respectively.

Methods
PDB data treatment and structure preparation
A snapshot of all of the Protein Data Bank entries (the 1st 
of January-2013 release) was obtained from the relevant 
ftp server (ftp://snapshots.wwpdb.org/) which amounted 
to 87,090 PDB coordinates files.

The coordinates were then processed by removing all 
records pertaining to molecules comprised of less than 
10 atoms (including solvent atoms and monoatomic 
ions), and for the sake of charge treatment generality, 

organometallic complexes were stripped of their metal-
lic cores. For multi-model PDB files, the first model was 
extracted as the representative of the corresponding 
entry coordinates. The upper cut-off for the ligand num-
ber of atoms was defined as 485 atoms regardless of its 
chemical nature.

Because of the heterogeneous chemical nature of the 
processed molecules, the atomic partial charges were 
computed using a general charges method; hydrogens 
were added to the structures at a pH of 7.4 and Gasteiger 
charges were assigned using Open Babel [35]. The gener-
ation of conformations in some test-cases was carried out 
using Confab [36]. The conformation sampling procedure 
used an RMSD cutoff of 0.65 Å, energy cutoff of 35 kcal/
mol, and a maximum of of 5,000 sampled conformers 
while keeping the input conformer.

Topological computations and fingerprinting
The Python programming language [37], and the NumPy 
and SciPy packages [38] were used to implement the 
algorithm of molecular topology fingerprinting, which 
consisted of the following main steps: (1) partitioning 
the molecular coordinates into different charge-tiers, 
i.e. each of the latter contains a substructure of atoms 
belonging to its partial charge interval; (2) pairwise shape 
distribution matrices are computed within each charge-
tier; (3) a vector was constructed for each molecule, the 
components of which are descriptors of the respective 
shape distributions.

In the first step, after inspecting the full propensity 
distribution of atomic charges of all the ligand atoms, 
tripartite partitioning was performed among three 
charge-tiers. The intervals net charge bounds were 
selected as: greater than +0.1, smaller than or equal +0.1 
and greater than or equal −0.1, and smaller than −0.1. 
These intervals lead to a reasonably symmetrical popula-
tion of the charge-tiers (to avoid charge bias).

The fifteen elements composing a descriptor vector; 
five distribution descriptors of each of the three distribu-
tions (of each charge-tier), were calculated as follows:

c1 =

∑n
i=1

∑n
j=1 xij

n3

c2 = xij

c3 =
1

n2

n
∑

i=1

n
∑

j=1

(xij − xij)
2

c4 =

1

n2

∑n
i=1

∑n
j=1(xij − xij)

3

(m3)3/2

ftp://snapshots.wwpdb.org/


Page 12 of 14ElGamacy and Van Meervelt ﻿J Cheminform  (2015) 7:42 

where xij is the atomic pairwise distance between the ith 
and the jth atoms in the distances matrix (skipping the 
diagonal points; where i = j), c2 is the sample mean, c3 is 
the sample variance, c4 is the distribution skewness, while 
c5 is the distribution Fisher kurtosis. Zero- or one-atom-
tiers had their corresponding moments elements valued 
to zero. Although the contribution of some elements to 
the inter-vector distances is much greater than others 
(which is also influenced by general structural features 
of the dataset), all the described elements were kept for 
their potential utility in combination with weighting fac-
tors (e.g. in a machine learning context).

Dissimilarity quantification
Since the distribution descriptors information was 
loaded into a vector form, various vector distance meas-
ures could provide a quantitative estimate. Although 
the moments’ values were not of the same unit, neither 
vector nor variable normalisation was adopted (due to 
reasons in the discussion section), and for comparing 
descriptor vectors the Manhattan distance was used as 
follows:

where d is the dissimilarity score between the vectors v1 
and v2, which was intended in order to give equal weights 
to all of the moments composing a vector. This gave bet-
ter performance than the Euclidian distance, but also 
provides a linear response upon vector element reweight-
ing (e.g. in machine learning applications). Alternatively, 
clustering approaches could be used, which can be opti-
mised to give better results, albeit on the expense of the 
computation cost.

A testing implementation of the described method was 
made available (Additional file 6).

Test cases
Seven different examples were selected for assessing the 
capacity of the method of detecting ligand-based rela-
tionships and to demonstrate optimal search influencing 
factors. In order to explore diverse chemical examples 
of high pharmacological importance, three of which 
were small molecules, two were chosen to be of peptide 
nature, while the remaining two were particularly chosen 
to demonstrate the conditional inferential weaknesses of 
the method. The examples were: quercetin, open-form 
penicillin G, tetracycline, erythromycin A, cyclosporine 
A, cortisol, and ibuprofen.

c5 =

1

n2

∑n
i=1

∑n
j=1(xij − xij)

4

(m3)2
− 3

d(v1, v2) =

n
∑

i=1

|v1i − v2i|

Ligand‑based virtual screening benchmark
The directory of useful decoys-enhanced (DUD-E) [10] 
was used for benchmarking sets. The dataset was com-
prised of ninety-nine targets of different natures, for 
which enrichment results were already reported for the 
USR and USRCAT algorithms [11].

A more rigorous conformational sampling scheme was 
used for both actives and decoys, with an RMSD cutoff 
of 1.1  Å, an energy cutoff of 50  kcal/mol, and a maxi-
mum of 10,000 sampled conformers while keeping the 
input conformer. The lowest energy conformer of each 
active was identified through the obenergy application 
from the OpenBabel suite [35]. The search conditions 
enrichment factor calculation procedure were chosen to 
reproduce those described for the previous benchmark-
ing [11]; through conducting the searches using the low-
est energy conformer of each active, while excluding the 
query active from the results, followed by the calcula-
tion of the averaged enrichment factor for all actives. No 
charge assignment was performed since charges were 
already reassigned by the Confab software. The individ-
ual enrichment factor was calculated using the previously 
described equation:

where ai,x% is the number of actives retrieved in the top 
x% fraction of the search results using the ith active 
as query, di,x% is the number of decoys retrieved in the 
same fraction, while A and D are, respectively, the total 
numbers of unique actives and decoys in the dataset of 
a single target. The averaged enrichment factors for each 
target were calculated at x% fractions of 1.0 and 0.25%.

Binding pocket classification benchmark
The exact same procedure for data pre-processing, hash-
ing and dissimilarity measurement was followed. The 
structures were handled using the same partial charges 
treatment and the same charge-tier scheme for the case-
testing above. The ROC analyses were conducted as 
described in the reference study [12]. Three dissimilar-
ity matrices were generated, pocket vs. pocket using all 
binding site atoms (of every amino acid within a 5 Å dis-
tance from the ligand), pocket vs. pocket using binding 
site atoms only within 6.5 Å of the ligand, and inversely, 
ligand vs. ligand using the ligand atoms only.

Construction of a reduced dissimilarity matrix
Python scripts were written for preparing and staging a 
batch job on the Hydra supercomputing facility with the 
aim of generating a reduced pairwise dissimilarity matrix 
(for all of the ligands included in the analysis) with the 
dimensions of 100 × 164,939, i.e. computing the top 100 

EFi,x% =
ai,x%/di,x%

A/D
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hits resulting from a PDB-wide search using each ligand 
as query.
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Additional file 1:  Results large scale dissimilarity analysis. Top 100 
dissimilarity scores for each ligand search saved as split-compressed ANSI-
encoded file. File available at https://github.com/ElGamacy/PDB-ligands.

Additional file 2:  Figure S1. Enrichment factors for 99 DUD-E datasets 
as resulted from the presented method (TopMap) and reported from the 
USR and USRCAT methods [11]. The left and right panes show the average 
enrichment factors for each target at top scoring fractions of 1.0% and 
0.25%, respectively. Asterisks indicate that one or more actives retrieved 
no decoys in the top scoring fraction by TopMap (rendering the described 
enrichment factor calculation inapplicable).

Additional file 3:  A tar archive containing the details of the enrichment 
results, including the individual query (uniquely retrieved actives and 
decoys at the 1% and 0.25% top fractions), averaged enrichment factors 
for all of the sets, number of unique ligands and decoys and the number 
of generated conformers.

Additional file 4:  Figure S2. Receiver operating characteristic (ROC) 
plots showing classification true positive rates vs. false positive rates and 
the corresponding area under the curve (AUC) values for Fingerprinting: 
A. using all binding pocket residues atoms, B. using binding pocket resi-
dues atoms within 6.5 Å from the ligand, and C. using ligand structures.

Additional file 5:  Figure S3. Top search results for searching by: 
Thiocholine bound to AChE (green dots: hits with choline or choline-
mimicking scaffold; blue dots: bound to AChE proteins, red dots: bound 
to acetylcholine-binding proteins, yellow dots: bound to acetylcholine 
transporters, black: other). The colour legend represents the dissimilarity 
score scale.

Additional file 6:  Linux and Windows builds of a testing implementa-
tion are provided along with walk-through test-usage instructions on 
an exemplary fingerprinting and dissimilarity calculation. The builds and 
instructions are available on https://github.com/ElGamacy/TopMap-SD.
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