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Studying and understanding human brain structures and functions have become one of

the most challenging issues in neuroscience today. However, the mammalian nervous

system is made up of hundreds of millions of neurons and billions of synapses. This

complexity made it impossible to reconstruct such a huge nervous system in the

laboratory. So, most researchers focus on C. elegans neural network. The C. elegans

neural network is the only biological neural network that is fully mapped. This nervous

system is the simplest neural network that exists. However, many fundamental behaviors

like movement emerge from this basic network. These features made C. elegans a

convenient case to study the nervous systems. Many studies try to propose a network

formation model for C. elegans neural network. However, these studies could not meet

all characteristics of C. elegans neural network, such as significant factors that play a

role in the formation of C. elegans neural network. Thus, new models are needed to be

proposed in order to explain all aspects of C. elegans neural network. In this paper, a new

model based on game theory is proposed in order to understand the factors affecting

the formation of nervous systems, which meet the C. elegans frontal neural network

characteristics. In this model, neurons are considered to be agents. The strategy for each

neuron includes either making or removing links to other neurons. After choosing the

basic network, the utility function is built using structural and functional factors. In order

to find the coefficients for each of these factors, linear programming is used. Finally, the

output network is compared with C. elegans frontal neural network and previous models.

The results implicate that the game-theoretical model proposed in this paper can better

predict the influencing factors in the formation of C. elegans neural network compared

to previous models.

Keywords: complex network analysis, game theory, network formation models, C. elegans frontal neural network,

C. elegans neural network, computational neuroscience

1. INTRODUCTION

One of the major goals in neuroscience is studying and understanding human brain functions and
structures. Various methods and tools are used to find a way to map the human brain. However, the
mammalian brain has hundreds of thousands of neurons connecting through billions of synapses
(Huttenlocher, 1984). For instance, as reported in The European Union human brain project
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official web site, The human brain is consist of 86 billion
neurons and each neuron has 7,000 connections on average.
This complexity makes it impossible to models the human brain
using current computers (European-Union, 2017). It is clear that
finding the signal between each neuron with other neurons in
the human brain in the laboratory is nearly impossible and time-
consuming. So, this complexity makes it impossible to study such
huge systems by biological reconstruction in the laboratory.

One way to deal with this complexity is by describing
the nervous system in a computational way. Computational
neuroscience is the science of investigating brain and the way the
nervous system generates certain behaviors in a computational
manner (Feng, 2003). The complex network analysis is a part of
computational neuroscience that is used to study structures and
features of the nervous system.

The nervous system can be modeled as a complex network
of neurons, the population of neurons, and the brain regions as
nodes (Sporns, 2012). In this network, the chemical and electrical
synapses and fiber tracks can be considered as connections or
links between neurons and population of neurons as well as brain
regions(Kaiser and Varier, 2011). In the neural network, links can
be sometimes something other than biological links. They may
connect regions or neurons that show similar patterns of activity.
The networks formed by biological links are called structural
networks while others are called functional networks. Studies
show that there are definitive and meaningful relations between
structural and functional networks (Stam et al., 2016; Reimann
et al., 2017). Thus, studying structural networks can shade light
into functional properties.

While some studies that use computational models and
complex network analysis are conducted on the human brain,
it is nearly impossible to simulate human brain structure due
to complexity (Sporns et al., 2005; Elliott et al., 2017). Most of
these studies focus on human brain functional networks and
they usually fail to regenerate structural properties. So, a simpler
nervous systems should be a better start to model and simulate
structural properties of biological neural networks. C. elegans
neuronal network is the only neuronal network that is reported
to be nearly fully mapped (Jarrell et al., 2012). Although the
C. elegans neural network is simple, yet basic behaviors, such
as head movements, forward and backward locomotion, and
turns emerge from this network (Chalfie et al., 1985). So, C.
elegans neuronal network is one of the most favorite networks
for neuroscientists who want to study a real neuronal network.
The adult hermaphrodite worm has 302 neurons connecting
through ∼6,400 chemical synapses, 900 gap junctions, and 1,500
neuromuscular junctions (Jarrell et al., 2012).

Understanding how these neural networks evolved and why
they are in the shape they are, can lead to a better understanding
of the structure of nervous systems. In this paper, a new network
formation model is proposed to investigate factors affecting
neuronal networks development and secrets behind neuronal
networks structures. The candidate factors investigated in this
work includes physical distance between neurons, the difference
between neurons’ birth time, closeness centrality of neurons,
betweenness centrality of neurons, neurons’ page rand, and
average shortest path between neurons.

Needless to say, there are other functional factors that can
contribute to the formation of neural networks. For instance,
recent studies show the importance of stochastic resonance (SR)
in neural networks for information processing. These studies
suggest that the brain works in a noisy environment. There is
plenty of evidence indicating that neuronal noise might facilitate
signal processing in neural networks through an SR behavior
(Guo et al., 2017, 2018). Another study discusses that the
structural heterogeneity of synaptic input connectivity in neural
networks can describe the neuronal avalanches in the brain.
Therefore, the structural heterogeneity can have an important
role in the formation of the neural network (Wu et al., 2019).

The model provided in this paper is a strategic (game-
theoretical) network formation model based on pairwise stability
and is built up based on the C. elegans frontal neuronal network.
The model is compared with previously proposed models for C.
elegans. The remainder of the paper organized as follows: In the
first section, the related literature is reviewed in order to let the
reader follow up work, in the second section the methodology
that is used to implement the model is described, finally in the
discussion section, the model is evaluated and compared with
previous studies.

2. RELATED WORKS

Coelenterates like Cnidaria were the first species to have the
neuronal network (Spencer and Satterlie, 1980). Their neural
network was a two-dimensional regular or lattice network
(Watson and Augustine, 1982). It means that their neural
network formed a regular network (Bergström and Nevanlinna,
1972). In regular networks, neighbors are well-connected and
there is no link between the nodes in long distance (Jerauld
et al., 1984). This type of network still can be seen in two-
dimensional structures of the neuronal network, such as the
retina, cortical, and sub-cortical layered structures(Bassett and
Bullmore, 2017). However, regular networks fail to describe more
complex neuronal networks when neural network wiring is a
combination of genetic information, stochastic processes, and
learning mechanisms (Walters and Byrne, 1983).

Some studies have proposed random networks like Erdos-
Renye, and random scale-free networks to simulate, model or
analysis of biological neural networks, such as the Macaque
cortical connectome or the C. elegans frontal ganglia connectome
(Prettejohn et al., 2011; Cannistraci et al., 2013).

In order to find the factor affecting network formation, Itzhack
and Louzoun proposed a random model based on the distances
between neurons (Itzhack and Louzoun, 2010). The model is a
random network based on the Euclidean distance between each
neuron. This random network is then compared against the C.
elegans neural network. While the average shortest path between
this model and the real network are similar, there is a huge
difference between their clustering coefficients.

The model proposed by Itzhack and Louzoun can describe
some characteristics of C. elegans neural network. However,
sometimes neurons in long distances form synaptic links. To
find the reason for the formation of links between neurons in
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long distance, Kaiser et al. have investigated the role of birth
time in the formation of neurons and have demonstrated the
effect of birth time in the formation of neuronal networks
(Varier and Kaiser, 2011).

Although these models can describe some characteristics of
neuronal networks, they failed to capture all the factors that affect
neuronal network formation processes. These models take one or
two structural or functional factors into account, individually. In
the formation of neural networks, both structural and functional
factors have major roles, and network formation models should
take all these types of factors into account. In this paper, a game-
theoretical network formationmodel for C. elegans frontal neural
network is proposed to include both structural and functional
factors in the formation of neural networks.

3. METHODS

In this section, the new game-theoretic network formationmodel
for the C. elegans frontal neuronal network is described. To
model the network strategically, two aspects are important to
consider. First, the benefit and the cost of the network should be
identified. Second, agents’ incentives need to be translated into
the network benefit. In other words, the right strategies for agents
should be chosen.

3.1. Strategic Network Formation Models
There are two different views on strategic network formation.
One might form the links based on the nodes’ incentive, benefits
they gain or cost they pay through making connections with
other nodes in the network. The second view takes the whole
network into account and decides based on benefit and cost
for the network (Jackson, 2005).Since neurons are added to the
network one at the time, In this paper, the first view is used
to form the model. In the proposed model, neurons assumed
as agents. let N = {n1, n2, ..., n131} be the set of agents as ni
demonstrate the ith neuron, and let S = {L,D} be the set of
strategies for each neuron, where Si,j = L shows the inclination
of neuron ith to form the link with neuron jth and Si,j = D
shows otherwise.

Next, the Utility function should be identified. The utility
function shows the consent of each agent, against the strategy
adopted by its opponent. In the model presented in this paper,
the factors that seem to affect network formation are used as
parameters of the utility function. The utility function will be
described in the next sections.

In this paper, a random network is used as the basic network
of the model. The main model is formed upon this basic network.
To form the main model in this paper, instead of the Nash
equilibrium, the concepts of pairwise stability is used. In the next
parts of this section, the concept of pairwise stability and the basic
networks will be described in detail.

3.2. Pairwise Stability
Conceptually, in light of strategic network formation,
forming a link is usually a pairwise decision. This means in
forming a link, both sides of the relationships tend to form

the link while leaving the relation is a one-way decision
(Calvó-Armengol and İlkılıç, 2009).

To model this concept, something stronger is needed than
Nash-equilibrium in non-cooperative solutions in game theory.
In that, the concept of pairwise stability is used in this paper.
Assume that i, j are two nodes in a network and ui shows the
utility of the node i. Then Network g is considered pairwise
stable if:

(i) for all i, j ∈ g, ui(g) ≥ ui(g − i, j) and uj(g) ≥ uj(g − i, j), and
(ii) for all i, j /∈ g, if ui(g + i, j) > ui(g) then uj(g + i, j) < uj(g)

In other words, network g is pairwise stable, if no agent tends to
delete a link and no pair of agents tend to make a new link in the
network g (Calvó-Armengol and İlkılıç, 2009).

3.3. Basic Network of the Model
Most of game-theoretical network formation models have a
random network as their basic network. To choose the best
random network for the basic network of the presented model, a
range of directed and undirected random networks are compared
with C. elegans frontal neural network using complex network
measures. In this section, these random networks and how they
are generated for C. elegans frontal neural network is described.

3.3.1. Undirected Random Networks

• Watts-Strogatz RandomNetwork: To generateWatts-Strogatz
random network, at first, a ring of N nodes is formed where
each node connected to k nearest neighbors in the ring. This
forms a regular network. Assume u, v, andw are three different
nodes in the network. Then each edge (u, v) would be switched
with a new edge (u,w) with probability of P. Node w would
be chosen with normal distributed probability from existing
nodes (Watts and Strogatz, 1998). In order to generate this
network for C. elegans frontal neural network, neurons put
together in a ring and then each neuron is connected to 5 other
neurons based on physical distance. After forming a regular
network each edge would be chosen with the probability
of 0.5 with another edge. Since edges are more important,
probabilities are chosen in a way to make random network
proportional to edges of C. elegans frontal neural network.

• Expected Degree Random Network: In this random network,
an edge is formed between node u and node v with a
probability based on a specific degree distribution. In this
paper, undirected C. elegans frontal neural network degree
distribution is used to make expected degree random network
(Newman et al., 2001).

• Power-law Clustering Random network: This random
network begins with an empty network and in each time step,
a new node is added to the network. In this random network,
number of nodes, number of random edges for each randomly
added node and probability of adding a new triangle (Cluster)
to the network according to randomly added edge is identified
(Barabási and Albert, 1999). To generate this random network
for C. elegans frontal neural network, 131 nodes added to
the network. The number of random edges for each added
node and the probability of adding a new cluster to the model
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considered 6 and 0.2, respectively. These parameters are
chosen to make random network edges proportional to edges
of C. elegans frontal neural network.

3.3.2. Directed Random Networks

• Havel-Hakimi Random Network: Havel-Hakimi Random
Network is generated based on an in-degree and out-degree
sequences. This Network is generated based on the Havel
theory (Erdos et al., 2010). To make a directed Havel-Hakimi
random network proportional to C. elegans frontal neural
network the in-degree and the out-degree of C. elegans
neural network are used. Nodes are chosen with a normal
probability distribution.

• Scale-free Random Network: In scale-free random network
generation process, edges are added randomly in discrete
times. In each time step, a new node might be added to the
network. In generation process, α, β , λ, σin, and σout are
defined as parameters of the model, where α + β + λ = 1,
σin and σout are the bias of choosing a new node based on
in-degree and out-degree sequences. Note that in this random
network model number of nodes is not guaranteed (Barabási
et al., 1999). To make a random network proportional to C.
elegans neural network, the degree distribution of C. elegans
neural network is used and the probability of adding a new
node and a new edge between existing nodes, σin and σout are
set to 0.15, 0.8, 0.2 and 0, respectively.

• Erdos-Renyi Random Network: Suppose N = {n1, n2, ..., nn}

is set of the nodes. So there could be N(N−1)
2 edges possible

between these nodes. A random network can be generated
choosing a subset of these edges (Csardi andNepusz, 2006). To
generate a network proportional to C. elegans frontal neural
network, 131 nodes considered and to generate edge (u, v),
probability of generating a link between u and v is set to 0.5.

After generating all directed and undirected networks they
compared with C. elegans neural network. Between these
networks directed Havel-Hakimi random network seem to have
more similarities with the C. elegans neural network according
to measures used for comparison. So, Havel-Hakimi random
network is used as the basic network in this paper. Comparisons
of these random networks are described in detail in the
discussion section.

3.4. Utility Function
After defining agents and their strategies, a proper utility function
should be defined for the model. To achieve this end, in this
paper, several functional and structural properties that seem to
have impact on C. elegans frontal neural network formation
are used as parameters of utility function. These factors include
physical distance between the neurons, difference between
neurons birth-time, average shortest path of each neuron to the
other neurons in the network, page-rank, betweenness centrality,
and closeness centrality. Consider ui↔j(g) is the utility function
for neuron i in the network g, against its opponent that is neuron
j, Dij is the physical distance between neuron i and neuron j, Bij
is the difference between birth-time of neuron i and neuron j, Sig
is the average shortest path of neuron i in the network g, pi is

the page-rank of neuron i in the network g, Ci is the closeness
centrality of neuron i and finally Bei is the betweenness centrality
of neuron i and α,β , λ, θ , ρ and ω are coefficients of the used
parameters. Then The utility function for each neuron is made
as follow:

ui↔j(g) = αDij + βBij + λSig + θpi + ρCi + ωBei (1)

4. IMPLEMENTATION

To implement the model, first, the coefficients of the
utility function should be identified. These coefficients are
calculated applying the concept of pairwise stability and using
linear programming.

The Pulp python package is used for linear programming
(Mitchell et al., 2011). To calculate the limiting constraints for
linear programming, with this assumption that the C. elegans
frontal neural network is pairwise stable, first the utility function
is calculated for each pair of neurons with a link between them.
Then, the link deleted and again the utility function is calculated
in this situation, and the different of these two utilities is used
as constraints of linear programming to satisfy the requirements
of pairwise stability. The constraints are calculated as depicted in
Equation (2).

(ui↔j − u
′

i↔j) = α(Dij)+ β(Bij − B
′

ij)+ λ(Sij − S
′

ij)

+ρ(Pi − P
′

i)+ θ(Ci − C
′

i)+ ω(Bei − Bei
′) ≤ 0

(2)

Again for each pair of neurons departed from each other, the
utility is calculated in both situations, with and without the
link between the neurons, and the difference is used as the
constraints. This time, the constraints are calculated using
Equation (3).

(ui↔j − ui↔j
′) = α(Dij)+ β(Bij − Bij

′)+ λ(Sij − Sij
′)

+ρ(Pi − Pi
′)+ θ(Ci − Ci

′)+ ω(Bei − Bei
′) ≥ 0

(3)

These constraints are calculated for each pair of neurons
and added to the dictionary of the constraints. Dictionary of
constraints is a data structure that is used to pass the constraints
to the Pulp for linear programming.

In the next step, an objective function should be identified to
minimize by linear programming. Thus, the sum of all utilities
for all the neurons is used as the objective function of linear
programming. Then, linear programming is applied with the
defined constraint dictionary. The objective function and the
required coefficients are calculated, accordingly. The coefficients
after applying linear programming are shown in Table 1. Pulp
uses heuristic algorithms to solve linear programming problems.

Since the problem space is not convex, it doesn’t guarantee the
optimum answer andmay stop in local optimums. Note that only
satisfying constraints is critical and suffice here and the global
minimum solution is not sought for.
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TABLE 1 | Calculated coefficients for utility function.

Parameters α β λ ρ θ ω

Calculated coefficient −1 −1 −0.02344 0 −1 0

The result shows that throughout all factors assumed to have
the impact on the formation of C. elegans frontal neural network,
physical distance, the difference of birth times, average shortest
path, and closeness centrality affect the C. elegans neural network
formation. The negative sign in the result also shows that in the
formation of C. elegans neural network, neurons try to shorten
their physical and functional distance, have lower closeness
centrality and make links with neurons with closest birth time.
After determining the utility function, the final strategic model
for C. elegans network formation can be created.

The utility function should be applied on directed Havel-
Hakimi random network that was chosen as the basic network
of the model. To use physical distance and birth time as the
parameters, Havel-Hakimi nodes should be mapped to the real
neurons in C. elegans frontal neural network. To do this, in-
degree and out-degree for each node are added together in both
directed Havel-Hakimi and C. elegans frontal neural network
and then sorted ascendingly. Thus, two sorted list of Dh =

{Dh1,Dh2, ...,Dhn} and Dc = {Dc1,Dc2, ...Dcn} are created, in
which Dhn stands for the sum of the in-degree and out-degree of
node n in the Havel-Hakimi random network, and Dcn denotes
the sum of in-degree and out-degree of node n in the C. elegans
neural network. Now, the nodes can be mapped to neurons based
on these sorted lists. For instance, a node with degree Dh1 would
be mapped to a neuron with degreeDc1. To form the final model,
again pairwise stability is used as follow:

(i) For each pair of nodes connected to each other, the utility of
each node is calculated using the utility function. Then, the
link between them is deleted and the new utility is calculated
again for both nodes. If the utility of each node increases,
the link is deleted from Havel-Hakimi random network,
otherwise, the link will be kept.

(ii) For each pair of departed nodes in Havel-Hakimi random
network, the utility of the nodes is calculated using utility
function. Then, a new link is added between these nodes and
the utility is calculated again for each node in this state. If
the utility increases for both nodes, a new link will be added
to Havel-Hakimi random network, otherwise, the state of the
network will remain unchanged.

Note that according to the concept of pairwise stability, adding
a new link is a pairwise decision. However, deleting a link is the
decision that each agent in the relation makes by itself. A concise
description of the model can be seen in Figure 1.

5. DISCUSSION

In this section, first, the choice of the best random network
for the basic network is evaluated and described. Then, the
strategic model is built upon the chosen basic network. Finally,
the proposed model will be compared with random networks

and previous models in the literature for C. elegans neural
network formation.

5.1. Evaluation of the Random Networks
As previously mentioned, directed Havel-Hakimi random
network was chosen as the basic network of the mode. In this
part,the logic behind this selection will be described by evaluation
of different random networks.

5.1.1. Evaluation of Undirected Random Networks

One can see neural networks as undirected graphs for simplicity.
In this paper, some undirected networks are compared with C.
elegans frontal neural network to assess the performance and
availability of this assumption.

In Table 2, average clustering coefficient, average shortest
path, average neighbors, network diameter, betweenness
centrality, network homogeneity, network density for Watts-
Strogatz, expected degree distribution, and power-law clustering
random networks are presented. As it can be seen in Table 2,
clustering coefficient, the average of neighbors, networks density
of Watts-Strogatz, and expected degree of random networks are
very different with the ones of C. elegans frontal neural network.

The results from power-law clustering random network and
the ones in C. elegans frontal neural network, specially for the
case of clustering coefficient, have more similarities compared
to the other models. The most significant difference between C.
elegans frontal neural network and power-law clustering is in
network diameter and network homogeneity. Among undirected
random networks, power-law clustering seems to be the most
similar random network to the C. elegans frontal neural network.
This resemblance can be the result of C. elegans power-law degree
distribution. In Figures 2A–D, the degree distribution of the
C. elegans frontal neural network and these random networks
are shown.

Figure 2A depicts the degree distribution for undirected C.
elegans frontal neural network. As it can be seen, the majority
of nodes have a degree between 10 and 40. However, the
degree distributions for expected degree distribution network
and Watts-Strogatz random network, on the contrary, show
a distribution between 0 and 10 for most of the nodes. As
Figures 2B,C suggest, the degree distribution of The expected
degree distribution random network and the Watts-Strogats
random network degree distributions are very different from the
degree distribution of the C. elegans frontal neural network.

As Figure 2D suggests, power-law clustering random network
degree distribution, similar to undirected C. elegans frontal
neural network, shows a distribution between 10 and 40 for
predominant of the nodes.

5.1.2. Evaluation of Directed Random Networks

On the other hand, the interactions between neurons through
chemical synapses is directional. With this in mind, some
directed random networks are also compared with C. elegans
frontal neural network. In Table 3, measurements of average
clustering coefficient, average shortest path length, average
neighbors, and network diameter for directed Havel-Hakimi,
Erdos-Renyie, and the scale-free random networks are shown.
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FIGURE 1 | Visual illustration of the model. For each pair of nodes, the strategy set encompasses two actions. The potential factors affect the C. elegans neural

network are used as parameters of the model (A). To calculate the coefficients of the parameters, linear programming and concept of pairwise stability are applied to

the C. elegans frontal neural network (B). The game-theoretical model is made upon Havel-Hakimi random network using coefficients calculated in previous steps.

The nodes are considered as agents and the game is continued until the conditions for pairwise stability are met (C).

TABLE 2 | Comparison between undirected random networks.

Average clustering Average shortest Average

neighbors

Network

diameters

Betweenness

centrality

Network

homogeneity

Network

densitycoefficient path length

C. elegans frontal neural network 0.24 2.523 10.48 6 0.160226 0.54463 0.0806

Watts Strogatz network 0.08 3.807 4.0 7 0.015623 0.29628 0.0307

Expected degree network 0.08 2.672 6.42 6 0.160585 0.68080 0.0648

Power-law clustering network 0.23 2.208 11.28 4 0.318067 0.72531 0.0867

For all of these three directed random networks, the average
shortest path length is nearly similar to the one for C.
elegans frontal neural network. Although the average clustering
coefficient of Erdos-Renyie is very different from the average
clustering coefficient of C. elegans neural network, the predicted
values for this coefficient are very similar between C. elegans

frontal neural network, Havel-Hakimi, and scale-free network.
The average number of neighbors and network density are also
similar between C. elegans frontal neural network, Havel-Hakimi
and the random scale-free network.

As previous studies indicate, C. elegans neural network has
some characteristics of scale-free networks. The resemblance
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FIGURE 2 | Undirected networks degree distribution. (A) C. elegans degree distribution. (B) Expected degree distribution random network degree distribution.

(C) Watts-Strogats random network degree distribution. (D) Power-low clustering random network degree distribution.

TABLE 3 | Comparison between directed random networks.

Average clustering Average shortest Average neighbors Network diameter

coefficient path length

C. elegans frontal neural network 0.24 3.12 10.48 9

Directed Havel-Hakimi random network 0.12 1.98 11.72 6

Erdos-Renyie random network 0.56 2.42 13.28 5

Scale-free random network 0.16 2.04 3.49 5

between C. elegans, power law clustering random network and
the random scale-free network can be the result of power-law
degree distribution in C. elegans neural network. In Figures 3–5
the histograms of degree distribution ofC. elegans neural network
and these directed random networks are shown.

Figure 3 depicts the degree distribution for C. elegans frontal
neural network and the Havel-Hakimi random network. As it
can be seen, the in-degree distribution for predominant of the
nodes is between 1 and 15 and the majority of the nodes have
an out-degree distribution between 1 and 25 for both the C.
elegans and the Havel-Hakimi random network. Since the Havel-
Hakimi random network is created based on the C. elegans in-
degree and out-degree distribution and it tries to retain the degree
distribution, it is no surprise that the in-degree and out-degree
distribution of these two networks is so similar to each other.
However, the degree distribution is used as a factor to compare

networks, for the degree distribution may be coded in DNA of
the worm somehow.

For more comparison between Havel-Hakimi and other
directed random networks, the betweenness centrality and the
shortest path distribution of C. elegans and directed random
networks are depicted in Figures 6–10. As Figure 9 suggests the
shortest path distribution of the C. elegans frontal neural network
and The Havel-Hakimi random network are also more similar to
each other in comparison with other directed random networks.
According to all aspects of directed and undirected networks,
directed Havel-Hakimi random network was chosen as the basic
network of the model.

5.2. Evaluation of the Main Model
After choosing the basic network for the model, using pairwise
stability concept and utility function described in the previous
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FIGURE 3 | C. elegans frontal neural network and Havel-Hakimi random network degree distribution. (A) C. elegans and Havel-Hakimi random network in-degree

distribution. (B) C. elegans and Havel-Hakimi random network out-degree distribution.

FIGURE 4 | Erdos-Renyie degree distribution. (A) Erdos-Reynie in-degree distribution. (B) Erdos-Reynie out-degree distribution.

FIGURE 5 | Scale-free degree distribution. (A) Scale-free in-degree distribution. (B) Scale-free out-degree distribution.

section, the game-theoretical model is created. The output of the
model is a network.

According to the development process of directed Havel-
Hakimi random network, the nodes with higher degrees join
together in the first place. Based on the resemblance between
directed Havel-Hakimi random network and C. elegans frontal

neural network, it can be concluded that in the formation of
C. elegans frontal neural network, or maybe all neural networks
in general, hubs may play a critical role. The process of
creating the model is described in the implementation section.
In Table 4 the network resulted from the game-theoretical
model is compared with C. elegans frontal neural network
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FIGURE 6 | Betweenness centrality of C. elegans frontal neural network.

FIGURE 7 | Betweenness centrality of Havel-Hakimi random network.

FIGURE 8 | Betweenness centrality of scale-free random network.

and directed Havel-Hakimi random network. In this table, the
clustering coefficient, average shortest path, average neighbors,
and network diameter are compared. As Table 4 suggests, the
difference between average shortest path length of the game-
theoretical model and the C. elegans frontal neural network

FIGURE 9 | C. elegans frontal neural network and Havel-Hakimi random

network shortest path distribution.

FIGURE 10 | Scale-free random network shortest path distribution.

is 0.98, which is closer compared to the directed Havel-
Hakimi random network with a difference of 1.14. The average
neighbors of the game-theoretical model are also more similar
to the C. elegans neural network with a difference of 0.66 in
comparison with the directed Havel-Hakimi random network
which has a difference of 1.24. As it can be seen, the network
diameter of the strategic model is improved by 1 compared
to the Havel-Hackimi random network. As Table 4 depicts,
in the comparison between network forms from the game-
theoretical model and directed Havel-Hakimi random network,
which is the basic network of the model, all measures improved
and became more similar to the C. elegans frontal neural
network, except for betweenness centrality that is worsened
by 0.002.

The in-degree and out-degree distributions, shortest path
length distribution, and betweenness centrality distribution
of the network generated using game theory are shown in
Figures 11–13. As Figure 12 illustrates, predominant of the
nodes that have 1–22 neighbors have a betweenness centrality
between 0 and 0.04. As previously depicted in Figures 6, 7. The
C. elegans have a betweenness centrality between 0 and 0.04 for
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TABLE 4 | Comparison between C. elegans and proposed model.

Average clustering Average shortest Average neighbors Network diameter

coefficient path length

C. elegans frontal neural network 0.24 3.12 10.48 9

Directed Havel-Hakimi random network 0.12 1.98 11.72 6

Strategic model for C. elegans f.n.n. 0.118 2.14 11.14 7

FIGURE 11 | Game-theoretical network formation model degree distribution. (A) Game theoretical model in-degree distribution. (B) Game theoretical model

out-degree distribution.

FIGURE 12 | Game-theoretical model betweenness centrality distribution.

nodes that have between 1 and 22 neighbors and the Havel-
Hakimi random network have a betweenness centrality between
0 and 0.06 for nodes that have between 1 and 22 neighbors. In
Figure 13 the shortest path distribution of the game-theoretical
model is compared with theC. elegans frontal neural network and
the Havel-Hakimi random network. As the figure suggests, the
game-theoretical model is more similar to the C. elegans frontal
neural network in comparison with the Havel-Hakimi random
network. In that, from these figures and results that are reported
in Table 4, it seems that the game theoric model has more in
common with the C. elegans neural network compared to the
Havel-Hakimi random network.

FIGURE 13 | Game-theoretical model shortest path length.

The game-theoretical model for C. elegans neural network
formation is also compared with the regular network and the
distance based random model that was proposed by Itzhack and
Louzoun in Table 5. In order to compare the new proposed
model with distance based random model, this model is also
implemented for the C. elegans frontal neural network. As
illustrated in Table 5, game-theoretical model leads to the most
similar network with C. elegans frontal neural network.

In the networks compared in Table 5, regular network
model predicts average neighbors and network density better
than the other models except for game-theoretical model. But
it fails to predict average clustering coefficient and average
shortest path length of C. elegans frontal neural network. On
the other hand, although distance based random predicts the
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TABLE 5 | Comparison between game-theoretical model and previously proposed models.

Average clustering Average shortest Average neighbors Network diameter

coefficient path length

C. elegans frontal neural network 0.24 3.12 10.48 9

Game-theoretical model 0.118 2.14 11.14 7

Regular network 0.77 8.11 11.61 6

Distance based random model 0.48 1.46 86.10 3

clustering coefficient and the average shortest path better than
regular network model, it fails in the other aspects. This shows
neural networks are somewhere in between random and regular
networks as neither of these models can explain neural network
formation by itself.

As previously stated in the methods section, various structural
properties include physical distance, birth time, and different
functional properties, such as betweenness centrality, page rank,
average shortest path as well as closeness centrality are used to
implement the game-theoretical model. the results suggest that
between all these factors, physical distance, birth time, average
shortest path, and betweenness centrality have more influence on
the formation of the C. elegans frontal neural network. According
to the results, game theoric model suggested here explain the
formation of the C. elegans neural network more accurately
compared to previously suggested models. It also takes more
properties into account. Since the game theoric network uses the
Havel-Hakimi random network as the basic network, according
to the process of creating the Havel-Hakimi model, it highlights
some important features, such as the importance of the hubs in
nervous systems.

It worth mentioning that using genetic data and using
more complex equation instead of a simple linear relation
between factors in utility function may result in a more
accurate model. Furthermore, as mentioned in the introduction
section, stochastic resonance and the heterogeneity of synaptic
input connectivity can also be translated to factors that
can be used in the utility function. While using these
parameters can lead to more accurate and more descriptive
model, adding these features to the model would increase the
complexity of the model exponentially. In the future, using
more computational resources, these features can be added to
this model and more complex relationship between factors in
the utility function can be used to make a more accurate and
descriptive model.

6. CONCLUSION

Understanding how the nervous system is formed and how the
structure of the neural network affect the functional properties
of the nervous system can shed light on the understanding of
diseases like dementia and autism.

In this paper, a new model based on game theory is proposed
for the formation of C. elegans frontal neural network. In the

model introduced in this work, neurons are considered as agents
of the system that try to maximize their benefits posing their
best strategies. The strategy set for each neuron includes making
a link or removing an existing link with other neurons in the
network. Neurons are assumed to be self-incentive and the model
is implemented as a non-cooperative game-theoretical approach.
To create the model, directed Havel-Hakimi random network
is chosen for the basic network of the model. The main model
is built on this random network. After choosing the best basic
network, utility function is defined and potentially influential
factors are used as parameters of the utility function. To find these
factors coefficient, linear programming is used. Then, by the use
of pairwise stability concept, the main model is constructed upon
the basic network and using utility function. The results show
that the presented model can describe the formation of C. elegans
frontal neural network better than random and regular networks
and previously proposed models. Based on this model, it can be
concluded that physical distance, the difference of neurons birth-
time, average shortest length, and the closeness centrality can
affect the formation of neural networks with this assumption that
all neural networks have some fundamental formation processes
in common.

In future works, the focus would be on more complex neural
networks like mammalian and homo sapiens neural networks
and on simulation of the complex neural networks on the
computer based on formation processes. The simulators that use
formation processes and factors impacting the neural network
formationmay create neural networksmore accurately. They also
can be used to simulate the evolution of the neural networks,
as well.
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