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A B S T R A C T   

Short-chain per- and polyfluoroalkyl substances (PFAS) have been developed as alternatives to legacy long-chain 
PFAS, but they may still pose risks due to their potential to interact with biomolecules. Cytochrome P450 
(CYP450) enzymes are essential for xenobiotic metabolism, and disruptions of these enzymes by PFAS can have 
significant human health implications. The inhibitory potential of two legacy long-chain (PFOA and PFOS) and 
five short-chain alternative PFAS (PFBS, PFHxA, HFPO-DA, PFHxS, and 6:2 FTOH) were assessed in recombinant 
CYP1A2, − 2B6, − 2C19, − 2E1, and − 3A4 enzymes. Most of the short-chain PFAS, except for PFHxS, tested did 
not result in significant inhibition up to 100 μM. PFOS inhibited recombinant CYP1A2, − 2B6, − 2C19, and − 3A4 
enzymes. However, concentrations where inhibition occurred, were all higher than the averages reported in 
population biomonitoring studies, with IC50 values higher than 10 µM. We also evaluated the activities of 
CYP1A2 and CYP3A4 in HepaRG monolayers following 48 h exposures of the short-chain PFAS at two con-
centrations (1 nM or 1 µM) and with or without an inducer (benzo[a]pyrene, BaP, for CYP1A2 and rifampicin for 
CYP3A4). Our findings suggest that both 1 nM and 1 µM exposures to short-chain PFAS can modulate the 
CYP1A2 activity induced by BaP. Except for PFHxS, the short-chain PFAS appear to have little effect on CYP3A4 
activity. Understanding the effects of PFAS exposure on biotransformation can shed light on the mechanisms of 
PFAS toxicity and aid in developing effective strategies for managing chemical risks, enabling regulators to make 
more informed decisions.   

1. Introduction 

Several decades ago, synthetic chemistry innovations led to the 
development of a versatile class of compounds known as per- and pol-
yfluoroalkyl substances (PFAS) (Teaf et al. 2019; USEPA, 2016). This 
class of chemicals is characterized by chains of carbon–fluorine bonds 
that lend to the unique structural properties that make them suitable for 
use in a broad range of chemical products. However, widespread use and 
frequent exposure to PFAS have warranted much concern by the public 
and regulators. 

PFAS exposure in humans primarily occurs through contaminated 
drinking water sources near fluorochemical manufacturing locations, 
military bases, and airport facilities that utilize aqueous film-forming 
foam (AFFF) and ingesting contaminated food (DeLuca et al. 2022; 
Garrett et al. 2022). Dermal contact with household cleaning products 
and inhalation of dust particles have also been reported as routes of 

exposure (East et al. 2023). PFAS are known to accumulate in serum and 
tissues. Exposure has been linked to hepatotoxic, immunotoxic, and 
neurotoxic effects, including hepatic peroxisome proliferation, altered 
antibody synthesis, and hepatic hypertrophy (De Silva et al. 2021). 

While phasing out of the long-chain PFAS has been mostly successful, 
alternative compounds with similar useful properties have been devel-
oped. These compounds are considered short-chain PFAS because they 
have fewer than seven carbon–fluorine bonds (Brendel et al. 2018). 
While the short-chain structure appears to be less prone to tissue accu-
mulation, they are still resistant to degradation and persist in the envi-
ronment, contributing to the large-scale global contamination of PFAS in 
the environment. The contamination is considered problematic in risk 
mitigation for areas with high concentrations of PFAS, especially since 
shorter-chain variants may have a higher potential to interact with 
biomolecules due to less steric hindrance than the longer-chain PFAS 
(Sunderland et al. 2019). 
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Cytochrome P450 (CYP450) monooxygenases, sometimes called 
oxidoreductases, are a large family of cytoplasm-bound catalytic en-
zymes that generally operate through similar modes of operations. 
CYP450 enzymes play a crucial role in clearing endogenous molecules 
and lipophilic hydrocarbons (Coleman 2010). Thousands of CYP en-
zymes discovered across all biological organisms; of these, humans 
encode 57 individual enzymes in 18 families (Guengerich 2008). The 
pharmacodynamic potency of a drug heavily relies on biotransformation 
processes and nearly 60% of pharmaceuticals are cleared by only six 
CYP450 isozymes (CYP1A2, CYP2C9, CYP2B6, CYP2C19, CYP2D6, and 
CYP3A4) (Coleman 2010). Thus, elucidating the consequences of 
chemical mixtures often focuses predominantly on those key CYPs. 

Biotransformation enzymes are not known to be able to modify PFAS 
to facilitate their elimination from the body (Kemper and Nabb 2005). 
The inability to biotransform these compounds may contribute to the 
long half-life of serum elimination times of PFAS in humans; for 
example, the estimated average for PFOA is 3.5 years (Olsen et al. 2007). 
Evidence for the need to study metabolism enzymes for this class of 
compounds was made apparent by an in vitro study using per-
fluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) 
that investigated three cytochrome P450 enzymes (CYP1A2, CYP2C19, 
and CYP3A4) and two conjugation enzymes (glutathione-S-transferase 
(GST-M1) and UDP-glucuronosyltransferase (UGT-1A1)) (Franco et al. 
2020). Expression of all CYP enzymes was significantly reduced from 
exposure to both PFOA and PFOS after 48 h and concentrations as low as 
40–50 ng/L, with CYP3A4 also presenting the lowest activity. 

In general, short-chain PFAS toxicity data is limited. Mechanism- 
driven information can facilitate the creation of comprehensive toxico-
logical profile and accurate in vitro to in vivo extrapolations that can be 
applied to elements of the risk assessment process. 

Considering the critical role of CYP450 enzymes, the main objective 
of this study was to assess the influence of PFASs on CYP450 enzymes. 
We hypothesized that exposure to short-chain PFAS would inhibit 
clinically relevant metabolism enzymes based on previous studies that 
have indicated the inhibitory potential of PFOA and PFOS (Franco et al. 
2020). Therefore, we assessed the activities of CYP1A2 and CYP3A4 in 
HepaRG monolayers using five short-chain PFAS compounds: per-
fluorobutanesulfonic acid (PFBS), perfluorohexanoic acid (PFHxA), 
[undecafluoro-2-methyl-3-oxahexanoic acid (HFPO-DA)], 6:2 fluo-
rotelomer alcohol (6:2 FTOH) and perfluorohexanesulfonic acid 
(PFHxS) following 48 h exposures of each PFAS at 1 nM and 1 µM, with 
and without an inducer: benzo[a]pyrene (BaP) for CYP1A2 and rifam-
picin for CYP3A4. Additionally, the inhibitory potential of the short- 
chain PFAS was assessed in recombinant CYP1A2, − 2B6, − 2C19, 
− 2E1, and − 3A4 enzymes. 

Although many in vitro studies of CYP450 activities use liver cell 
lines, many of these have been conducted in the HepG2 cell line (Behr 
et al. 2020; Dale et al. 2022; Ojo et al. 2021; Wen et al. 2020; Wielsoe 
et al. 2015). While HepG2 cells have demonstrated many liver-specific 
functions, they lack the functional expression of several relevant 
human liver cytochrome P450s (Skolik et al. 2021). In contrast, the 
HepaRG human liver cell line maintains essential hepatic functions after 
undergoing differentiation, including high expression of biotransfor-
mation enzymes and drug transporters, providing metabolic competence 
comparable to primary human hepatocytes (Franzosa et al. 2021). 

2. Materials and methods 

2.1. Chemicals 

Perfluorobutanesulfonic acid (PFBS), perfluorohexanoic acid 
(PFHxA), [undecafluoro-2-methyl-3-oxahexanoic acid (HFPO-DA)], 6:2 
fluorotelomer alcohol (6:2 FTOH), perfluorohexanesulfonic acid 
(PFHxS), Rifampicin (CAS: 13292–46-1), ethanol (EtOH), and dimethyl 
sulfoxide (DMSO), methanol (MeOH), acetonitrile (ACN) were obtained 
from Sigma-Aldrich (St. Louis, MO). More detailed information on the 

PFAS chemicals is in Table 1. Benzo[a]pyrene (CAS: 50–32-8) was ob-
tained from Thermo Scientific Chemicals (Waltham, MA). The fluoro-
genic substrates and standards for inhibition experiments were 7- 
benzyloxy-4-(trifluoromethyl) coumarin (7-BFC); 7-ethoxy-4-(trifluoro-
methyl)coumarin (7-EFC); 7-methoxy-4-(trifluoromethyl) coumarin (7- 
MFC); 7-hydroxy-4-(trifluoromethyl)coumarin (HFC); 7-methoxyresor-
ufin; and resorufin sodium salt (Sigma-Aldrich, St. Louis, MO). All 
chemicals and reagents were of analytical grade. William’s E Medium, 
Glutamax™, hydrocortisone hemisuccinate, and insulin were obtained 
from Gibco Life Technologies (ThermoFisher Scientific, Waltham, MA). 
Hydrocortisone hemisuccinate and dimethylsulfoxide (DMSO) were 
obtained from Sigma-Aldrich (St. Louis, MO). 

2.2. Cell culture and exposures 

Undifferentiated HepaRG cells were obtained from BioPredic Inter-
national (Paris, France) (distributors in the USA: Lonza Walkersville 
Inc., Walkersville, MD) and maintained at 37 ◦C and 5% CO2. The 
growth medium for HepaRG consisted of Gibco-formulated William’s E 
Medium supplemented with 2 mM Glutamax, 10 % fetal bovine serum 
(FBS), 5 μg/mL insulin, and 50 μM hydrocortisone hemisuccinate. Un-
differentiated HepaRG cells were plated at 1 × 105 cells/mL in 96-well 
flat clear bottom white 96-well microplates and maintained in growth 
media for 14 days with media renewals every 3 days before undergoing 
differentiation. After 14 days, the cells were shifted to growth medium 
supplemented with 1.7% DMSO (differentiation medium). Culturing 
cells with the differentiation medium for 14 days led to confluent, 
differentiated cultures containing equal proportions of hepatocyte-like 
and progenitors/primitive biliary-like cells. 

Exposures were conducted in growth medium without phenol-red 
and contained a reduced serum content (2% FBS) as it is known that 
PFAS have a high affinity for albumin, which can influence affect the 
uptake and intracellular availability during treatment (Bangma et al. 
2020; Yang et al. 2023; Zhang et al. 2020). PFAS exposures were con-
ducted for 48 h at 1 μM and 1 nM either alone or in a binary mixture with 
an inducer (10 μM rifampicin for CYP3A4 experiments and 10 μM BaP 
for CYP1A2 experiments). BaP is a potent CYP1A2 inducer in humans 
with well-established properties (Guengerich 2022), while rifampicin is 
a potent CYP3A4 with well-characterized effects (Chattopadhyay et al. 
2018). The potency of the inducer treatments was selected following 
previous literature estimates for concentrations where induction has 
been observed without significantly compromising cell viability (Buick 
et al. 2021; Jennen et al. 2010). 

The PFAS concentrations were selected below the median effective 
concentrations (EC50) for cytotoxicity values determined by Solan et al. 
(2022). DMSO (0.1% v/v) was the solvent vehicle for 6:2 FTOH, PFBS, 
PFHxA, PFHxS, Rifampicin, and BaP. EtOH was used as the solvent 
vehicle (0.1% v/v) for HFPO-DA due to the rapid degradation of this 
compound in aprotic, polar solvents (Liberatore et al. 2020). The ex-
periments were performed with biological (plates of different passages) 
and technical (wells) replicates. Four biological with four technical 
replicates were used. 

2.3. CYP1A2 and 3A4 enzyme activities in HepaRG cells 

CYP1A2 and CYP3A4 enzyme activities in differentiated HepaRG 
monolayers were determined using luminescence-based P450-GloTM 

assay kits supplied by Promega Corporation (Madison, WI, USA) were 
used following the 48 h exposures. Reagents were prepared according to 
the manufacturer’s instructions. The protocol for the lytic P450-Glo™ 
assays using cultured cells in monolayers was followed. Cell monolayers 
were washed twice with phosphate-buffered saline (PBS), then 50 µL of 
medium containing 3 µM luciferin-IPA (CYP3A4) or PBS (supplemented 
with 3 mM salicylamide) containing 6 µM luciferin-1A2 was added to all 
wells and incubated 37 ◦C, 5% CO2 for 60 min. Next, an equal volume of 
luciferin detection reagent was added to the wells and briefly mixed on a 
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plate shaker to form a lysate. The plate was allowed to equilibrate to 
room temperature for 15 min, then the luminescence signal (RLU) was 
read directly from the plates using a Varioskan Lux multimode micro-
plate reader (Thermo Fisher, Waltham, MA). The net signals were 
calculated by subtracting background luminescence values from back-
ground wells (no-cells) from the treatment and solvent control values. 
The percent change was determined by dividing net treated values by 
net untreated values and multiplying by 100. 

2.4. Human recombinant CYP450 enzyme inhibition assays 

The Corning SupersomesTM were prepared by thawing and making a 
4X solution in 100 mM potassium phosphate buffer (pH 7.4), with 
optimized concentrations of CYP protein as specified in Table 2. To 
prepare test inhibitor solutions (4X), PFAS were dissolved in ACN 
(MeOH for HFPO-DA) and diluted in 100 mM potassium phosphate 
buffer (pH 7.4) to obtain a final solvent concentration of 1% v/v in the 
reaction mixtures. The concentrations used were 1 pM, 100 pM, 10 nM, 
1 µM, and 100 µM. The assay was performed by adding 25 µL of the 4X 
SupersomeTM and 25 µL of the 4X test inhibitor solutions to each well of 
a black 96-well plate. After a 10-minute incubation at room tempera-
ture, 50 µL of 100 mM potassium phosphate buffer (pH 7.4) containing 
the appropriate substrate (Table 2) and NADPH Regenerating System 
(Promega, Madison, WI, USA) was added to each well to start the re-
action. The plate was read immediately in kinetic mode at appropriate 
wavelengths every minute for 60 min at 37 ◦C. Each plate included 
background wells, negative controls (solvent controls), and positive 
controls (without the NADPH regenerating system). Background fluo-
rescence was corrected with a reading from control blank samples. The 
corrected fluorescence signals were used to calculate the percent inhi-
bition of the respective CYP isoform. The inhibition experiments were 
performed independently in triplicate with three technical replicates per 
plate. 

2.5. Statistical analysis 

Data were analyzed before statistical analysis to meet the homosce-
dasticity and normality assumptions. Statistical analyses and graphing 
were carried out using GraphPad Prism version 9 (GraphPad Software, 
San Diego, CA). The statistical significance of CYP1A2 and 3A4 enzyme 
activities in HepaRG cells was assessed using two-way ANOVA tests. 
Post-hoc analyses were performed using Tukey’s multiple comparisons 
tests. Inhibition data were fitted to a log(inhibitor) vs. response–variable 
slope model, and the IC50 values were obtained from the best-fit values 
where able to be determined. All values were calculated using the 
average of the assessed endpoint of the independent experimental re-
sults and their associated errors. A p-value of < 0.05 was considered 
statistically significant unless otherwise indicated. 

3. Results 

3.1. CYP1A2 activity in HepaRG 

The mean CYP1A2 activities (presented as % of the solvent control) 
following 48 h exposures to the short-chain PFAS are presented in Fig. 1. 
The two independent variables tested in this experiment were the con-
centration of PFAS (with 1 nM and 1 µM) and the presence of an inducer 
(with or without 10 μM BaP). Exposure levels chosen were within 
environmentally relevant ranges (including for human exposure). 

The two-way ANOVA of the CYP1A2 activity of treatments with PFBS 
(Fig. 1A) demonstrated an overall statistically significant interaction 
effect between PFBS and the inducer, 10 μM BaP (p < 0.0001). However, 
the main effects of PFBS alone and the presence or absence of 10 μM BaP 
were not statistically significant (p = 0.1726 and p = 0.1005, respec-
tively). In addition, Tukey’s multiple comparisons tests demonstrated 
that single exposures to 1 nM PFBS and 1 µM PFBS increased the CYP1A2 
activities significantly compared to the solvent control with 205.4% and 
204.4%, respectively (p < 0.0001). In contrast, treatments with 1 nM 
PFBS and 1 µM PFBS in binary mixtures with 10 µM BaP were lower than 
the treatments of 10 µM BaP alone, with activities of 130.9% and 

Table 1 
PFAS chemicals used in this study. All chemicals were of analytical grade (≥97%) (CAS: Chemical Abstracts Service. IUPAC: International Union of Pure and Applied 
Chemistry. MW: Molecular Weight (g/mol)).  

Preferred name Abbreviation CAS IUPAC Formula MW Provider 

Undecafluoro-2-methyl-3- 
oxahexanoic acid 

HFPO-DA 13252–13- 
6 

2,3,3,3-Tetrafluoro-2- 
(heptafluoropropoxy) propanoic acid 

C6HF11O3  330.05 Synquest Laboratories 
(2121–3-13) 

Perfluorobutanesulfonic acid PFBS 375–73-5 Nonafluorobutane-1-sulfonic acid C4HF9O3S  300.09 Sigma-Aldrich (562629) 
Perfluorohexanoic acid PFHxA 307–24-4 Undecafluorohexanoic acid C6HF11O2  314.05 Sigma-Aldrich (43809) 
Perfluorohexanesulfonic acid 

potassium salt 
PFHxS  

3871–99-6 
1,1,2,2,3,3,4,4,5,5,6,6,6- 
tridecafluorohexane-1-sulfonate 

C6HF13KO3S   
438.20 

Sigma-Aldrich (50929) 

6:2 Fluorotelomer alcohol 6:2 FTOH 647–42-7 Potassium 3,3,4,4,5,5,6,6,7,7,8,8,8- 
tridecafluorooctan-1-ol 

C8H5F13O  364.10 Sigma-Aldrich (370533) 

Perfluorooctane sulfonic acid 
potassium salt 

PFOS 2795–39-3 Potassium heptadecafluorooctane-1- 
sulfonate 

CF3(CF2)7SO3K  538.22 Cayman Chemical Company 
(DRE-C15987122) 

Perfluorooctanoic acid PFOA 335–67-1 Pentadecafluorooctanoic acid C8HF15O2  414.07 Alfa Aesar (L08862)  

Table 2 
Summary of the parameters for the CYP SupersomeTM inhibition assays.  

SupersomeTM Substrate Vehicle Substrate concentration 
(µM) 

Metabolite Ex/Em 
(nm) 

P450 conc. (pmol/ 
mL) 

Reference 

CYP1A2 7-MR DMSO 1 Resorufin 530/580 5 (Ghosal et al. 2003) (Turpeinen et al. 
2006) 

CYP2B6 7-EFC ACN 2.5 7-HFC 409/530 7.5 (Turpeinen et al. 2006) 
CYP2C19 7-BFC ACN 25 7-HFC 409/530 25 (Turpeinen et al. 2006) 
CYP2D6 7-MFC ACN 100 7-HFC 409/530 15 (Lee et al. 2012) (Turpeinen et al. 2006) 
CYP2E1 7-MFC ACN 100 7-HFC 409/530 15 (Ghosal et al. 2003) (Turpeinen et al. 

2006) 
CYP3A4 7-BFC ACN 50 7-HFC 409/530 75 (Turpeinen et al. 2006) 

ACN: acetonitrile; DMSO: dimethylsulfoxide; BFC: 7-benzyloxy-4-(trifluoromethyl) coumarin; EFC: 7-ethoxy-4-(trifluoromethyl)coumarin; MFC: 7-methoxy-4-(tri-
fluoromethyl) coumarin; MR: 7-methoxyresorufin; HFC: 7-hydroxy-4-(trifluoromethyl)coumarin. 
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128.5%, respectively (p < 0.01), indicating a significant inhibitory effect 
of PFBS on the CYP1A2 induction by BaP despite an apparent induction 
in the single exposures. 

The results of treatments with PFHxA (Fig. 1B) also showed a sig-
nificant interaction effect (p < 0.0001), indicating that the effect of 
PFHxA on CYP1A2 activity depends on the presence of the inducer and 
vice-versa. In addition, significant differences were observed between 
the solvent control and single exposures of 1 nM PFHxA (p = 0.0195) 
and 1 µM PFHxA (p = 0.0023), resulting in increased CYP1A2 activity. 
On the other hand, there were no significant differences in mean 
CYP1A2 activity between solvent control and binary mixture of either 1 
nM or 1 µM PFHxA with 10 μM BaP, indicating an inhibitory effect of 
PFHxA on the CYP1A2 induction by BaP. 

While the interaction between HFPO-DA (Fig. 1C) and BaP presence 
was considered significant (p < 0.0001), neither concentration of HFPO- 
DA nor inducer presence alone had a significant main effect on CYP1A2 
activity. However, similar to PFBS and PFHxA, the decreased activity 
observed in the binary mixtures with BaP indicated an inhibitory effect. 

Similar to observations in the exposures with PFBS and PFHxA, the 
two-way ANOVA analysis revealed that the interaction between PFHxS 
(Fig. 1D) and inducer presence had a significant effect on CYP1A2 ac-
tivity (p < 0.0001). The main effect of concentration by PFHxS was also 
significant on CYP1A2 activity (p = 0.0188). There were no significant 
differences between the solvent control and any treatments, including 
PFHxS (p > 0.05). The binary mixtures of 1 nM PFHxS and 1 μM PFHxS 

with 10 μM BaP were significantly lower than 10 μM BaP alone (p <
0.05), with mean activities that were 80.17% and 122.5%, respectively, 
of the solvent control activity. The decreased activity values in treat-
ments that included the inducer and lack of significance relative to the 
solvent control indicated an inhibitory effect on CYP1A2 activity. 

The statistical analyses for treatments containing 6:2 FTOH (Fig. 1E) 
revealed a significant interaction effect between 6:2 FTOH and inducer 
presence on CYP1A2 activity (p < 0.0001). The main effect of 6:2 FTOH 
concentration was also significant (p = 0.0391), indicating that 6:2 
FTOH significantly affected CYP1A2 activity. The CYP1A2 activities of 1 
nM and 1 μM 6:2 FTOH were significantly increased, with means of 
168.4% and 148.4% of the solvent control activity (p < 0.05). In binary 
mixtures, the mean CYP1A2 activities were lower, with the main effect 
of 10 μM BaP not being considered significant, which indicated an in-
hibition effect by 6:2 FTOH on the CYP1A2 induction by BaP despite an 
apparent induction in the single exposures. 

3.2. CYP3A4 activity in HepaRG 

Fig. 2 presents the mean CYP3A4 activities expressed as a percentage 
of the solvent control after 48 h of exposure to short-chain PFAS. Similar 
to the CYP1A2 experiments, there were two independent variables: 
PFAS concentration (1 nM and 1 µM) and inducer presence (with or 
without 10 μM rifampicin). 

For all five of the short-chain PFAS tested, neither 1 nM nor 1 μM 
treatments of the compounds alone had mean CYP3A4 activity levels 
that were statistically different from the solvent controls, signifying the 
short-chain PFAS did not affect the activities in single exposures. How-
ever, the mean difference between the (negative) solvent control and 10 
μM rifampicin (positive) control was significant in all of the experiments 
(p < 0.0001). 

The results of the two-way ANOVA showed that the interaction be-
tween PFBS (Fig. 2A) concentration and inducer were not significant, 
nor was the main effect of concentration. However, the inducer presence 
had a significant main effect on the response variable (p < 0.0001). 

The two-way ANOVA of experiments with PFHxA (Fig. 2B) demon-
strated that there was a significant effect of the concentration of PFHxA 
(p = 0.0013) and inducer presence (p < 0.0001) on CYP3A4 activity. 
However, there was no significant interaction between the two factors 
(p > 0.05), suggesting PFHxA did not affect CYP3A4 activity in the bi-
nary mixtures. 

No significant interaction effects were observed in exposures that 
included HFPO-DA (Fig. 2C), indicating that HFPO-DA did not influence 
the CYP3A4 activity. 

Experiments with PFHxS (Fig. 2D) had significant interaction effects 
between both concentration and inducer presence (p < 0.0001). The 
main effects of PFAS concentration and inducer presence were also 
considered significant (p < 0.0001). Both 1 nM and 1 μM mixtures of 
PFHxS with rifampicin had CYP3A4 activity significantly lower relative 
to rifampicin alone (p < 0.05), indicative of an inhibitory effect by 
PFHxS on the expected induction by rifampicin. 

There were no statistically significant differences between the sol-
vent control and the treatments with 6:2 FTOH alone (Fig. 2E), addi-
tionally, the binary mixtures of 6:2 FTOH and rifampicin were not 
statistically different from the inducer nor the solvent control. 

3.3. Inhibition of human recombinant CYP450 enzymes by PFAS 

Inhibition experiments with the selected SupersomesTM were con-
ducted over a range of five concentrations for each PFAS (1 pM, 100 pM, 
10 nM, 1 µM, and 100 µM) to determine the concentration of PFAS that 
resulted in 50% inhibition of the solvent control fluorescence signal of 
the probe metabolite (expressed as IC50). The mean IC50 values and 
associated confidence intervals of three independent experiments eval-
uating the effects of seven PFAS on CYP1A2, − 2B6, − 2C19, − 2E1, and 
− 3A4 are presented in Table 3. 

Fig. 1. Bar plots of the CYP1A2 enzyme activities determined using 
luminescence-based P450-GloTM assays in differentiated HepaRG monolayers 
following 48 h exposures to (A) PFBS, (B) PFHxA, (C) HFPO-DA, (D) PFHxS, and 
(E) 6:2 FTOH at 1 nM and 1 µM and with or without 10 μM BaP). A heatmap 
summary of the data (presented as % of the solvent control ± standard devia-
tion) is depicted in Fig. 1F. The statistical significance was assessed using two- 
way ANOVA with Tukey’s post-hoc comparisons. Different letter denotes sig-
nificant differences between exposure groups. A p-value of < 0.05 was 
considered statistically significant. 
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None of the PFAS tested (PFBS, PFHxA, HFPO-DA, PFHxS, 6:2 FTOH, 
PFOA, and PFOS) significantly inhibited CYP2E1 within the concen-
tration range tested. Of the short-chain PFAS tested, only PFHxS resulted 
in inhibition that could be confidently determined for the CYP enzymes 
evaluated. The IC50 values (95% CI) determined for PFHxS were 13.8 
(5.77–33.1) µM and 51.6 (27.5–96.9) µM for CYP1A2 and CYP2C19, 
respectively. 

Two legacy long-chain PFAS were also assessed, PFOA and PFOS. 
Only CYP2B6 was inhibited by PFOA, with a mean IC50 of 96.9 
(68.7–137) µM. Experiments with PFOS, however, demonstrated quan-
tifiable inhibition of CYP1A2, − 2B6, − 2C19, and − 3A4 activities. The 

lowest IC50 for experiments with PFOS was for CYP3A4, with a mean 
IC50 of 23.3 (14.6–37.2) µM, and the highest was CYP2C19 with a mean 
IC50 of 46.6 (14.4–150) µM. 

4. Discussion 

This study investigated the effects of short-chain PFAS on the ac-
tivities of CYP1A2 and CYP3A4 in HepaRG monolayers following 48 h 
exposures of PFBS, PFHxA, HFPO-DA, PFHxS, 6:2 FTOH at 1 nM and 1 
µM, with and without an inducer (BaP for CYP1A2 and rifampicin for 
CYP3A4). Additionally, recombinant CYP1A2, − 2B6, − 2C19, − 2E1, and 

Fig. 2. Bar plots of the CYP3A4 enzyme activities determined using luminescence-based P450-GloTM assays in differentiated HepaRG monolayers following 48 h 
exposures to (A) PFBS, (B) PFHxA, (C) HFPO-DA, (D) PFHxS, and (E) 6:2 FTOH at 1 nM and 1 µM and with or without 10 μM rifampicin). A heatmap summary of the 
data (presented as % of the solvent control ± standard deviation) is depicted in Fig. 2F. The statistical significance was assessed using two-way ANOVA with Tukey’s 
post-hoc comparisons. Different letter denotes significant differences between exposure groups. A p-value of < 0.05 was considered statistically significant. 
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− 3A4 were utilized to assess the potential of PFAS to directly inhibit the 
catalytic activity of CYP450 enzymes in an isolated system. Combining 
cell-based measurements and recombinant enzyme assays facilitates a 
more complete picture of PFAS effects on CYP450 enzymes by providing 
insight into enzyme-targeted inhibition and off-target effects (e.g., 
possible nuclear receptor interactions) indicated by activity in the 
HepaRG cells. 

Inhibition experiments with the human recombinant CYP450 en-
zymes indicate that most of the PFAS tested did not significantly inhibit 
CYP1A2, − 2B6, − 2C19, − 2E1, and − 3A4 up to 100 μM. However, 
PFHxS showed significant inhibition of both CYP1A2 and CYP2C19. The 
long-chain PFAS, PFOA, and PFOS demonstrated inhibition of CYP2B6 
and CYP1A2, − 2B6, − 2C19, and − 3A4 for PFOS. These findings suggest 
that short-chain PFAS may not significantly impact CYP enzyme activity, 
while long-chain PFAS may have more potent inhibitory effects. The 
inhibition of the human recombinant CYP450 enzymes supports previ-
ous findings by Franco et al. (2020) that found PFOS and, to some extent, 
PFOA are inhibitors of CYP1A2. 

Similar to the approach we used with the SupersomesTM, Amstutz 
et al. (2022) used Vivid® CYP2E1, CYP2D6, CYP2C19, and CYP3A4 
screening kits to assess the inhibitory potential of several PFAS on 
CYP450 BACULOSOMES®. Our results were mostly consistent with their 
findings for PFBS, PFHxA, PFHxS, and 6:2 FTOH. However, the PFOS 
IC50 we derived for CYP3A4 was roughly 30 times lower than the value 
given by Amstutz et al. (2022). This discrepancy could be due to dif-
ferences in experimental approach and possible differences in sensitivity 
of SupersomesTM and BACULOSOMES®. Regardless, the concentrations 
reported to result in significant CYP3A4 inhibition here, and in previous 
studies are both higher than the average quantified PFOS serum con-
centration (4.7 μg/L or 8.7 nM) for the U.S. population from the National 
Health and Nutrition Examination Survey (2011–2018) (NHANES 
2018). 

Recombinant CYP450 enzymes are suitable for studying inhibition 
involving binding site interactions but not for evaluating other end-
points associated with CYP450 metabolism, such as induction or inhi-
bition that may result from nuclear receptor interactions that regulate 
the enzyme expression. Cell-based CYP450 activity assays, on the other 
hand, may also use a probe substrate metabolism. However, the changes 
in activity can indicate potential interactions of xenobiotics with other 
cellular components, including the receptor responsible for enzyme 
synthesis. This is highlighted by the findings of the PFBS, PFHxA, and 
6:2 FTOH exposures that resulted in increased CYP1A2 activity in the 
HepaRG cells that is suggestive of induction – a mechanism which is 
typically modulated through the aryl hydrocarbon receptor (AhR) (Guo 
et al. 2021). 

Additionally, the significant relevance of PFBS, PFHxA and 6:2 FTOH 
inducing CYP1A2 expression more prominently than BaP lies in the 
potential implications for human health and environmental risk 
assessment. CYP1A2-mediated metabolism is a vital determinant of drug 
efficacy, toxicity, and the activation or detoxification of environmental 
chemicals. If PFAS compounds induce CYP1A2 more robustly than BaP, 
it implies that PFAS may modulate the metabolism of co-administered 

drugs and co-exposed environmental pollutants differently. This 
discrepancy in enzyme induction could potentially influence the phar-
macokinetics, efficacy, and toxicity of various therapeutic agents and 
enhance the risk of adverse health outcomes in exposed individuals. 

Despite the prototypical activator of AhR being polycyclic aromatic 
hydrocarbons (PAHs), like BaP, bioactivity profiling of PFAS has sug-
gested that some PFAS may also be capable of indirect AhR activation 
(Houck et al. 2021). Over the last decade, several studies have presented 
evidence suggesting that planar geometry and aromatic/heteroaromatic 
rings are not necessary for AhR agonism (Dolciami et al. 2020; Endirlik 
et al. 2023; Guo et al. 2021). Furthermore, AhR is also known to 
participate in cellular redox balance and act as a modulator of redox 
signaling (Grishanova and Perepechaeva 2022). We have previously 
demonstrated that PFBS, PFHxA, and 6:2 FTOH are associated with 
biomarkers of oxidative stress at the same concentrations tested here 
(Solan et al. 2023). 

Few studies on the effect of PFAS on the AhR function have been 
reported (Hu et al. 2003; Liu et al. 2008; Watanabe et al. 2009). Spe-
cifically, the lack of direct transactivation of AhR by long-chain PFAS 
has been observed in the mouse hepatoma cell line Hepa1.12cR cells, as 
noted by Long et al. (2013). Two potential explanations for the observed 
activation of AhR by short-chain PFAS are proposed: a) short-chain PFAS 
may exhibit different modes of action compared to long-chain PFAS, or 
b) short-chain PFAS may activate AhR through an indirect mechanism. 
Although the chemical behavior of PFAS, including solubility, is influ-
enced by the length of their chains, no distinct effects or mechanisms of 
action have been described (Mokra 2021). The second explanation ap-
pears more plausible, as certain PFAS have been shown to indirectly 
activate AhR as an alternative to direct ligand-binding mechanisms, as 
described by Houck et al. (2021). 

It is noteworthy that the induction of CYP1A2 may not solely be 
attributed to AhR (aryl hydrocarbon receptor) activation. Research has 
shown that other nuclear receptors, such as liver X receptor alpha 
(LXRα), can also stimulate the expression of CYP1A2 in hepatocytes 
(Araki et al. 2012). Moreover, while peroxisome proliferator-activated 
receptors (PPARs) have primarily been associated with sensing lipid 
metabolism, it has been demonstrated that PPARα also regulates several 
genes involved in biotransformation. Specifically, PPARα plays a role in 
the transcriptional control of CYP4, which is crucial for the metabolism 
of biologically significant compounds like fatty acids. In human hepa-
tocytes, PPARα activation leads to the expression of various members of 
the CYP1A, CYP2A, CYP2B, CYP2C, CYP2E, CYP2J, and CYP3A sub-
families, as well as certain conjugating enzymes (e.g., EPHX2, GSTA, 
and UGT1A9) (Cizkova et al. 2012; Rakhshandehroo et al. 2010). 

It should be emphasized that assessing the impact of 6:2 FTOH 
(perfluorohexanoic acid) is highly intricate due to its demonstrated 
rapid metabolism into PFHxA (perfluorohexanoic acid), 5:3 fluo-
rotelomer carboxylic acid, and PFHpA (perfluoroheptanoic acid) 
(Kabadi et al. 2018; Rice et al. 2020). 

The results of the exposures of HepaRG cells to PFAS mixtures with 
an inducer yielded surprising results. The results showed that at 1 nM 
and 1 µM, PFBS, PFHxA, and 6:2 FTOH exposures increased CYP1A2 

Table 3 
IC50 values for experiments determining inhibition of human recombinant CYPs by PFAS; data presented as IC50 values and the associated 95% CI. (n = 3). Daggers (†) 
denote treatments that did not result in >50% inhibition within the concentration tested.    

IC50 (µM) 

PFAS  CYP1A2 CYP2B6 CYP2C19 CYP2E1 CYP3A4 

PFBS  † † † † †

PFHxA  † † † † †

HFPO-DA  † † † † †

PFHxS  13.8 (5.77–33.1) † 51.6 (27.5–96.9) † †

6:2 FTOH  † † † † †

PFOA  † 96.9 (68.7–137) † † †

PFOS  25.7 (4.69–141) 30.6 (22.7–41.2) 46.6 (14.4–150) † 23.3 (14.6–37.2)  
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activity when tested alone but decreased CYP1A2 activity when tested in 
combination with the inducer BaP. In contrast, neither concentration of 
HFPO-DA nor PFHxS had a significant effect on CYP1A2 activity alone, 
but in the presence of the CYP1A2 inducer, BaP, significant decreases in 
CYP1A2 activity were also observed. 

Exposure of cells to BaP results in complex transcription responses 
that involve multiple cellular signaling cascades, many of which are cell- 
specific (Hockley et al. 2007). The decrease in CYP1A2 activity observed 
in the binary mixtures of the PFAS with BaP may have resulted from the 
rapid biotransformation of this AhR ligand; however, AhR-mediated 
transcriptional repression is another possibility. When this occurs, 
AhR can act as a transcriptional repressor by modifying chromatin 
structures and preventing the binding of transcriptional activators, 
inhibiting gene expression (Safe 1995). However, further studies 
employing transcriptional data would need to be used to elucidate 
possible mechanisms of the activity further decreases here. 

The results of the CYP3A4 activity measurements in the HepaRG 
were also unexpected. None of the five short-chain PFAS tested signifi-
cantly affected CYP3A4 activity when tested alone at 1 nM and 1 µM 
alone. However, the PFBS exposures resulted in a concentration- 
dependent decrease of CYP3A4 activity when exposed to the inducer, 
with effects only being significant at 1 µM. In addition, significant de-
creases in CYP3A4 activity were observed only in cells exposed to lower 
(1 nM) concentrations of PFHxA with rifampicin but not in those 
exposed to the higher (1 µM) concentrations of PFHxA with rifampicin. 
The findings also showed no significant interaction effects in exposures 
that included HFPO-DA, indicating that this compound did not influence 
CYP3A4 activity. 

Regulation and expression of the CYP3A4 enzyme occur through the 
pregnane X receptor (PXR) (Rashidian et al. 2022). Behr et al. (2020) 
used luciferase-based reporter gene assays to determine the capacity of 
several PFAS (including PFOA, PFOS, PFBS, PFHxA, and PFHxS) to 
activate human nuclear receptors and determined that PXR, among 
several others, were not affected by PFAS. These findings are supported 
by the lack of CYP3A4 activity in the exposures conducted with PFAS 
alone. Furthermore, because PFAS are not known to be PXR agonists, the 
decreased activity of CYP3A4 seen in mixtures of PFHxS and PFHxA 
with the CYP3A4 inducer rifampicin is likely not the rapid clearance of 
the agonist that has been observed when co-administered with CYP3A4 
inducers (Kapetas et al. 2019). 

While the activation of PXR by ligands such as rifampicin is well 
established, the mechanism behind ligand-mediated inhibitory or 
antagonistic effects on PXR is not as well understood. The bioactivity 
profiling conducted by Houck et al. (2021) and evaluations of bioac-
tivity profiling of nuclear receptors by Behr et al. (2020) both employed 
the HepG2 cell line, which has low expression of PXR and constitutive 
androstane receptor (CAR) (Gerets et al. 2012). While the in vitro studies 
with HepG2 indicated that CAR was not affected by PFAS, studies in 
mice indicated that PFHxS activated CAR despite having little effect on 
PXR (Kublbeck et al. 2020; Oshida et al. 2015). CAR activation by PFAS 
in HepaRG may have resulted in marked inhibition of CYP3A4 activity 
in the presence of an inducer via recruitment of corepressors to the 
CYP3A4 promoter or induction of drug-metabolizing enzymes, for 
example, CYP2B6 (Olack et al. 2022). Further studies exploring the ef-
fects of PFAS on other clinically relevant biotransformation enzyme 
activities and their expression profiles may give insight into the possi-
bility of crosstalk and modulation in these complex exposure scenarios. 

Understanding the effects of PFAS on CYP450 enzymes may help 
elucidate the mechanisms of hepatoxicity by PFAS. We have previously 
demonstrated that exposures to the short-chain PFAS studied here are 
associated with biomarkers of oxidative stress at the same concentra-
tions tested here (Solan et al. 2023). The properties of the heme group in 
CYP450 enzymes that are adequately expressed in HepaRG cells can 
facilitate ROS generation through reaction uncoupling or via reactive 
intermediates which modify endogenous substrates, including lipids, 
proteins, and nucleic acids, leading to oxidative stress (Veith and 

Moorthy 2018). 
Alterations to the expression and activity of CYP have also been 

implicated in the etiology of inflammatory diseases, such as cancer 
(Stipp and Acco 2021). The Adverse Outcome Pathways (AOPs) frame-
work can be used to understand the relationship between CYP450 en-
zymes, oxidative stress, and cytotoxicity implicated in the carcinogenic 
of potential PFAS. AOPs are a conceptual framework that links infor-
mation from molecular initiating events and intervening key events to 
an adverse outcome at higher levels of biological organization (Ankley 
et al. 2010). For example, modulation of CYP450 enzymes and the 
production of reactive oxygen species resulting in cytotoxicity in hepa-
tocytes have been established as an AOP leading to liver tumor forma-
tion (https://aopwiki.org/aops/220). 

Additionally, information on alterations to biotransformation en-
zymes can provide insight into the possibility of PFAS exposure causing 
disruptions to endogenous functions and drug metabolism by CYP450 
enzymes. CYP enzymes play a crucial role in the metabolism of xeno-
biotics, and changes in their activity or expression can affect the toxicity 
and efficacy of pharmaceuticals (Rey-Bedon et al. 2022). Disruptions to 
biotransformation pathways can also lead to dysfunctions in intracel-
lular processes created by an inability to regulate fatty acid metabolism 
and the accumulation of unmetabolized harmful substrates (Deodhar 
et al. 2020). While CYP450 enzymes play a critical role in biotransfor-
mation, many other enzymes are involved. To fully understand the 
impact of PFAS on drug-metabolizing enzymes, it will be necessary to 
comprehensively profile other biotransformation enzymes, such as UDP- 
glucuronosyltransferases (UGTs), sulfotransferases (SULTs), and gluta-
thione-S-transferases (GSTs). Future studies should consider including 
these and the other major CYP450 enzymes. 

5. Conclusions 

This study highlights the importance of considering the interactions 
between PFAS and other chemicals in assessing their effects on drug 
metabolism and toxicity. The findings here suggest that short-chain 
PFAS can modulate CYP1A2 activity in a complex manner, with some 
compounds acting as inducers and others as inhibitors. Except for 
PFHxS, the short-chain PFAS appear to have little effect on CYP3A4 
activity. The study also highlights the limitations of recombinant 
CYP450 enzymes for evaluating other endpoints associated with 
CYP450 metabolism, such as induction or inhibition that may result 
from binding to the receptor that regulates the enzyme’s activity. PFAS- 
mediated alterations to biotransformation enzymes can affect drug 
metabolism and disrupt cellular processes. CYP450 enzymes are neces-
sary for both endogenous and xenobiotic metabolism. While CYP450 
enzymes are crucial, other enzymes like UGTs, SULTs, and GSTs should 
also be studied to fully understand the effects of PFAS on drug- 
metabolizing enzymes. For many pollutants, including PFAS, under-
standing how exposure affects CYP450 enzymes can help develop more 
effective strategies for managing the risks associated with chemical 
exposure, allowing for more informed regulatory decisions. 
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