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Theory and observation tell us that many complex systems exhibit tipping
points—thresholds involving an abrupt and irreversible transition to a contrast-
ing dynamical regime. Such events are commonly referred to as critical
transitions. Current research seeks to develop early warning signals (EWS) of
critical transitions that could help prevent undesirable events such as
ecosystem collapse. However, conventional EWS do not indicate the type of
transition, since they are based on the generic phenomena of critical slowing
down. For instance, they may fail to distinguish the onset of oscillations
(e.g. Hopf bifurcation) from a transition to a distant attractor (e.g. Fold
bifurcation). Moreover, conventional EWS are less reliable in systemswith den-
sity-dependent noise. Other EWS based on the power spectrum (spectral EWS)
have been proposed, but they rely upon spectral reddening, which does not
occur prior to critical transitions with an oscillatory component. Here, we
use Ornstein–Uhlenbeck theory to derive analytic approximations for EWS
prior to each type of local bifurcation, thereby creating new spectral EWS
that provide greater sensitivity to transition proximity; higher robustness to
density-dependentnoise andbifurcation type; and clues to the typeof approach-
ing transition. We demonstrate the advantage of applying these spectral EWS
in concert with conventional EWS using a population model, and show that
they provide a characteristic signal prior to two different Hopf bifurcations in
data from a predator–prey chemostat experiment. The ability to better infer
and differentiate the nature of upcoming transitions in complex systems will
help humanity manage critical transitions in the Anthropocene Era.
1. Introduction
Theunderstanding that complex systemscanpossess thresholdsmarking a sudden
shift to an alternative dynamical regime has been around for a long time (e.g. in
ecology [1,2]). Such a threshold may be referred to directly as a tipping point/
catastrophic bifurcation, or by its inferred dynamics, a critical transition/regime
shift. Predicting tipping points and their ensuing dynamics remains a significant
challenge, since the observable state of a system may show little change right up
until it is too late. Even where data are abundant, parametrized models based on
biological principles are rarely able to pinpoint tipping points due to uncertainty
in system parameters andmechanisms. However, a newwave of research is target-
ing stochasticity as a possible treasure trove of information on the otherwise
hidden, and often surprising, dynamics of complex systems [3,4].

A significant development in this area is that of early warning signals (EWS),
which are a suite of statistical metrics that are expected to undergo observable
change prior to a tipping point [5,6]. Most EWS are grounded in the phenomenon
of ‘critical slowing down’, which is a generic feature of local bifurcations [7].
It involves the degradation of restoring forces along some dimension of the
system’s state space, resulting in a longer return time to equilibrium following a per-
turbation. In stochastic systems, this manifests as an increase in variance [8], higher
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correlations in time [9] and space [10], lower frequencies in the
power spectrum [11], and notable changes in several other stat-
istical metrics [4]. We use the term ‘conventional EWS’ to refer
to these EWS that serve as proxies for critical slowing down.

The generality of critical slowing down is both a blessing
and a curse. On one hand, it allows EWS to be applied to a
wide range of systems including socio-ecological [12,13], neuro-
logical [14], financial [15] and climate [16] systems. On the other
hand, bifurcations come in assorted forms which each possess
their own unique dynamics [17], such as a smooth transition
to an intersecting state, the onset of oscillations, or an abrupt
departure to a distant attractor (e.g. Transcritical, Hopf,
Fold bifurcations, respectively). These local bifurcations are all
accompanied by critical slowing down [7] and so cannot be
distinguished by the conventional critical slowing down meth-
odology [18]. As such, EWS that are specific to each type of
bifurcation are required to predict ensuingdynamics.Moreover,
external noise that is correlated or density dependent can distort
EWS [19,20], so there is a need to developmetrics that are more
robust to these forms of noise.

The power spectrum has shown potential as a tool for
detecting bifurcations from time-series data [11,21–24] and
has a rich history in time-series analysis more generally
[25,26]. A seminal study in the physics literature derived
analytical approximations for its behaviour prior to bifurcations
of periodic orbits [21], showing how different patterns emerge
depending on the type of bifurcation. Later studies investigated
how changes in the power spectrum could warn of an upcom-
ing Fold bifurcation [11], and constructed EWS to pick up
changes in spectral properties such as a spectral ratio [22] and
the spectral exponent [23]. We refer to EWS based on the
power spectrum collectively as ‘spectral EWS’. Current spectral
EWS are based on the phenomenon of spectral reddening—the
movement towards lower frequencies in the power spectrum as
a bifurcation approaches—and have shown promise in provid-
ing warning of upcoming Fold bifurcations. However, if the
bifurcation has an underlying oscillatory component (e.g.
Hopf/Flip/Neimark–Sacker), which we argue is more likely
in high-dimensional systems than simplified models would
suggest (electronic supplementary material, Note), then spec-
tral reddening does not occur, and these spectral EWS cannot
be expected to provide a signal. Given that the power spectrum
is a complete representation of a (stationary) time series, it
possesses a lot of information. The question then becomes:
how does one harness this information to provide maximum
information about the underlying system?

For assessing and developing EWS, the theory of stochas-
tic processes has much to offer [3,27–29], though most studies
do not go beyond the rule of thumb provided by critical slow-
ing down. This is well illustrated by the general framework of
a system of variables s that evolves in time according to

ds ¼ f(s) dtþ sdW(t), (1:1)

where f captures the within-system dynamics and dW(t) is a
vector of Wiener processes representing environmental noise
with amplitudes and correlations given in the matrix σ. For
relatively small noise, the dynamics about an equilibrium
state are well approximated by

dx ¼ Axdtþ sdW(t), (1:2)

where x is the deviation of the state from equilibrium and A is
the Jacobian matrix of f at equilibrium, which contains the
local interaction terms between the variables. This process,
originally studied in physics to model Brownian motion
[30], is an Ornstein–Uhlenbeck process, for which general
statistical properties can be derived [19,27]. Therefore, given
a system that fits into this framework, analytical approxi-
mations for EWS can be derived in terms of system
parameters (within A) and relative noise strengths and corre-
lations (within σ). This way, one can move beyond generic
indicators of an upcoming transition (which do not always
behave as expected), towards more reliable indicators that
are specific to the system being modelled.

This analytical approach was recently adopted in previous
studies to investigate the behaviour of EWS specific to particular
models [31,32], and different regimes of noise [20,28]. It has also
been used to derive EWS approximations for a subset of local
bifurcations in continuous-time [28] and analytical approxi-
mations of the power spectrum prior to continuous-time
bifurcations of period orbits [21]. However, a more complete
descriptionofEWS in continuous-time is required to understand
their behaviour prior to oscillatory bifurcations. This description
should also include discrete-time systems, since a corresponding
discrete-time model can exhibit fundamentally different
dynamics (e.g. the logistic model for population growth exhibits
steady-state dynamics in continuous-time, but regimes of
oscillatory and chaotic dynamics in discrete-time [33]).

Here, we build on previous analytical work to derive EWS
approximations for every local codimension-1 bifurcation in
discrete and continuous-time systems (table 1). This provides
a more complete framework for which EWS to expect preced-
ing each type of bifurcation.We then develop two spectral EWS
that are motivated by the insights from the analytical approxi-
mations. The first metric scales with the distance to the
bifurcation in a favourable manner compared to conventional
EWS, therefore providing a signal that is more likely to be
detected. It is also more robust to density-dependent noise,
andworks for both oscillatory and non-oscillatory bifurcations,
to which current spectral EWS are not suited. The second
metric determines the class of bifurcations towhich the upcom-
ing instability belongs, allowing one to distinguish between
certain types of transition. Finally, we apply the spectral EWS
to model and empirical data, to demonstrate their ability to
provide characteristic signals of different bifurcations.
2. Results
2.1. Insights from analytical approximations
The mathematical forms provided in table 1 reveal character-
istic features of EWS that can be used to distinguish certain
types of bifurcation. For example, the Fold and Hopf bifur-
cations are preceded by very different autocorrelation and
power spectra (figure 1). The behaviour of these EWS preced-
ing the other local codimension-1 bifurcations is shown
graphically in electronic supplementary material, figure S1.

Consider lag-τ autocorrelation, which computes the
correlation between data points spaced τ time units apart.
The mathematical forms imply that bifurcations without
an oscillatory component (Fold/Transcritical/Pitchfork) yield
increasing autocorrelation for all lag times, conforming to the
expected behaviour of critical slowing down (figure 1b). Choos-
ing the most suitable lag time is not trivial however: smaller
lag times can diminish the signal since nearby points are highly
correlated even far from the bifurcation, and larger lag times



Table 1. Analytical approximations for EWS preceding each local, codimension-1 bifurcation. Approximations are for the normal form of each bifurcation [17]
with additive white noise of amplitude σ. The asymptotic behaviour of the peak in the power spectrum is most easily seen for the Fold bifurcation in
continuous-time, where setting ω = 0 shows Smax scales like 1/λ

2, whereas variance scales at the slower pace of 1/λ. Derivations use standard techniques from
stochastic process theory [27], making the assumption of small noise (such that nonlinear terms are negligible) and quasi-stationarity (the bifurcation parameter
varies sufficiently slowly). The dominant eigenvalue(s) is that of the Jacobian matrix about equilibrium. Shorthand notation includes TC, Transcritical; PF,
Pitchfork, NS, Neimark–Sacker. Note that PF, Hopf, Flip and NS can be both super- and sub-critical. Expressions for the Fold, TC and PF in continuous-time are
reported in [28]. Expressions for the power spectrum in continuous-time are reported in [21]. Derivations of expressions and asymptotic properties are provided
in electronic supplementary material, Methods.
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can provide a delayed signal. By contrast, bifurcations with an
oscillatory component (Hopf/Flip/Neimark–Sacker) yield an
increasing or decreasing trend, that depends on the relationship
between the lag time τ, and the underlying period of oscillations
T (figure 1e). At sufficiently low lag times (τ <T/4), autocorrela-
tion increases as the bifurcation is approached. However, for lag
times near to half the period of oscillations, the autocorrelation
decreases. This can be understood intuitively by noting that at
a lag time of T/2, one is computing the correlation between
peaks and troughs of the underlying frequency, which become
more pronounced as the bifurcation is approached. Since these
points occur on opposite sides of the trajectory mean, they
possess negative correlation. This finding corroborates previous
studies that have found decreasing autocorrelation in both
empirical [34] andmodel [35] studies preceding oscillatory bifur-
cations. Studies that have found increasing autocorrelation prior
to Hopf bifurcations [18,36] have used lag times much smaller
than the period of oscillations. The analytical approximation
for autocorrelation explains these previously contradictory out-
comes. It also suggests that autocorrelation should be
computed at multiple lag times, not just at lag-1, which is
common practice in EWS studies.

The power spectrum provides perhaps the most intuitive
picture of the approaching bifurcation. Prior to non-oscillatory
bifurcations it moves to lower frequencies, which is a manifes-
tation of critical slowing down, and coined ‘spectral reddening’
[11]. Prior to oscillatory bifurcations it moves to the frequency
of oscillations that occur at the bifurcation. The fact that this
frequency is observed in the power spectrum prior to the bifur-
cation is due to resonant amplification of stochasticity [37–39],
which occurs in systems possessing damped oscillations
subject to environmental or demographic noise.

2.2. Spectral early warning signals
We use the analytical expressions for the power spectrum to
construct metrics (spectral EWS) that capture the important
features that relate to the bifurcation. First, we use the peak
in the power spectrum (Smax) as an indicator of bifurcation
proximity. This metric increases asymptotically like σ2/μ2,
where σ is the external noise amplitude, and μ is the distance
to the bifurcation. By contrast, variance increases like σ2/μ,
which is a slower rate of increase as the bifurcation is
approached (halving the distance to the bifurcation, doubles
the variance, whereas Smax increases fourfold). Moreover,
this scaling allows the metric to be more robust to changes
in σ that may occur in systems with multiplicative or time-
varying external noise. Second, we use AIC weights [40]—a
metric that determines the relative parsimony of a set of
models fitted to a dataset—to determine which bifurcation
the measured power spectrum corresponds to. The ‘models’
here are the analytical forms for the power spectra preceding
each bifurcation, and a flat power spectrum to serve as a null
model (white noise). These spectral EWS should be used
together as they provide complementary information about
an upcoming transition. Smax warns of an upcoming bifur-
cation, and the AIC weights provide information on the
type of transition to expect by indicating which analytical
form most parsimoniously fits the power spectra.

2.3. Application to a model system
We test the spectral EWSon the classical Rickermodel of a logis-
tically growing population subject to harvesting (Methods).
This model exhibits different bifurcations depending on the
parameter that varies [35]. An increase in harvesting rate
yields a Fold bifurcation to a diminished population state,
whereas increasing the intrinsic growth rate of the population
(which can occur through size-selective harvesting [41]) yields
a Flip (period-doubling) bifurcation to an oscillatory regime.
Whereas the Fold bifurcation results in a critical transition
to an alternative state, the Flip bifurcation results in a smooth,
and therefore reversible transition. Given these contrasting out-
comes, it is important to be able to distinguish the upcoming
bifurcation in advance. The EWS are computed on boot-
strapped samples from segments of the time series within a
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Figure 1. Contrasting analytical EWS preceding the Fold and the Hopf bifurcation. Analytical approximations for the autocorrelation function and power spectrum
(table 1) are plotted at various distances to the bifurcation given by μ = {− 1,− 0.5,− 0.25,− 0.1}, where μ is the real part of the system’s dominant eigen-
value. (a) The Fold bifurcation involves a single real eigenvalue becoming positive. (b) Autocorrelation increases at all lag times, though very small lag times give a
less noticeable increase, and large lag times yield a delayed increase. (c) The power spectrum becomes dominated by lower frequencies, with a peak amplitude that
increases asymptotically faster than the variance (as μ→ 0). (d ) A Hopf bifurcation involves a complex-conjugate pair of eigenvalues obtaining positive real part.
The imaginary part of the eigenvalues (ω0) corresponds to the frequency of oscillations that occur at the bifurcation. (e) The trend of autocorrelation depends on
how the lag time compares with the underlying period of oscillations (T = 2π/ω0). For lag times near to half the period of oscillations, one in fact observes
decreasing autocorrelation. (f ) The power spectrum becomes dominated by ω0, with the peak amplitude increasing favourably compared to variance. Parameter
values are ω0 = 0.5, σ = 1. Similar figures for each type of local codimension-1 bifurcation are provided in electronic supplementary material, figure S1.
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rollingwindow (Methods), which provides the error bars in the
EWS metrics. We emphasize that these error bars are not from
multiple simulations of the system, but from the single trajec-
tory as shown. We do this since, in reality, one usually only
has a single realization to work with. To verify their trends
over multiple simulations, we use Kendall tau values, which
serve as a measure of increasing or decreasing trend. EWS
from multiple realizations of this model are provided in
electronic supplementary material, figures S2–S3.

In the scenario undergoing the Fold bifurcation (figure 2),
the trajectory shows a strong increasing trend in lag-1 autocor-
relation, but no discernible trend in variance. The protocol of
requiring increasing variance and lag-1 autocorrelation to
signal a transition therefore fails in this case. This is an example
of how an increase in variance does not necessarily precede
transitions in systems with multiplicative noise [19]. However,
since Smax is a more sensitive metric to changes in bifurcation
proximity than variance, it still provides a signal prior to the
bifurcation. The AIC weights correctly favour the power spec-
trum of the Fold bifurcation, and do so by the time t = 300 for 98
of the 100 realizations.

The scenario undergoing the Flip bifurcation (figure 3)
looks somewhat similar prior to the transition with regards
to the population trend. The spectral EWS, however, tell a
very different story, in agreement with the analytical approxi-
mations. Note that a Flip bifurcation from equilibrium yields
oscillations of period T = 2 and so one expects an underlying
frequency of ω = 2π/T = π prior to the transition, as observed
in the power spectrum. Correspondingly, autocorrelation
decreases at lag-1 and increases at lag-2 (seen analytically in
figure 1e). Smax shows a marked increase (stronger than that
of variance), and the AIC weights favour the power spectrum
of a Hopf bifurcation, indicative of upcoming oscillations. The
predicted frequency of these oscillations can be read off from
the power spectrum as ω0 = π, in line with that of a Flip
bifurcation. The spectral EWS together therefore provide a
characteristic EWS of the Flip bifurcation that can be
distinguished from the approaching Fold bifurcation.

To assess the predictive power of the EWS, we compute
receiver operator characteristics for forced and null simulations
for each bifurcation (figure 4).We find that prior to both
bifurcations, Smax outperforms variance as a warning signal
(AUC= 0.83 versus 0.53 for the Fold bifurcation and AUC=
0.98 versus 0.96 for the Flip bifurcation). Lag-1 autocorrelation
provides the strongest prediction; however, it requires prior
knowledge as to whether an increase or decrease is expected,
which depends on the bifurcation. In this assessment, we
take decreasing lag-1 autocorrelation as indication of the tran-
sition in the Flip scenario. To assess the efficacy of the EWS at
alternative parameter values, we compute EWS over all combi-
nations of the bifurcation parameters and find that the spectral
EWS distinguish the transition in each case (electronic
supplementary material, figures S4–S5).
2.4. Application to empirical data
To test the spectral EWS in an empirical setting, we use
chemostat data from a predator–prey experiment conducted
in a previous study [42] (electronic supplementary material,
figure S6). The authors showed using both experiments and
a parametrized model that the system exhibits two Hopf
bifurcations (H1, H2) as the dilution rate (controlling nutrient
uptake) is varied (figure 5a). The observed Hopf bifurcations
occur at slightly higher dilution rates than the model predicts
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[42], highlighting the difficulty of locating bifurcations in
real systems, and the importance of having additional
predictive tools such as EWS. We compute EWS for each
experimental time series and find good agreement with
theoretical expectations (figure 5b–d ). Preceding both Hopf
bifurcations, the spectral EWS provide a characteristic indi-
cation of a Hopf bifurcation—Smax shows an upward trend,
and wHopf is the significant AIC weight. Unlike for H2, var-
iance and Smax do fluctuate prior to H1, which is likely due
to the data points being more tightly spaced in the region
further from the bifurcation. In addition, the power spectrum
in the pre-bifurcation regime of H1 (δ = 0.04) shows a domi-
nant frequency, ω0≈ 1/3 (electronic supplementary material,
figure S8) corresponding to an underlying period of oscil-
lations, T = 2π(1/3)−1≈ 19 days, which approximates the
period observed in the oscillatory regime. This suggests
that in addition to determining the type of bifurcation, the
power spectrum can provide an early estimate of the period
of oscillations at the bifurcation.
3. Discussion
The ability to not only detect, but characterize bifurcations is
essential for obtaining knowledge of upcoming qualitative
changes in a system’s dynamics. In this paper, we have derived
analytical expressions for EWS prior to each type of local bifur-
cation, enabling us to construct spectral EWS that distinguish
oscillatory from non-oscillatory bifurcations and provide a
more sensitive warning of changes in bifurcation proximity.
We demonstrated these tools with a well-known population
model, showing how the onset of collapse can be distinguished
from the onset of oscillations, and applied them to empirical
data of a population exhibiting a Hopf bifurcation. This
paper shows that spectral EWS offer complementary infor-
mation to conventional EWS and should be added to the
repertoire of tools for predicting tipping points in real systems.

There exist other recent developments in tipping point
detection that, under appropriate circumstances, show poten-
tial to predict specific bifurcations. Eigenvalue reconstruction
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( j ) At time t = 300, whopf dominates for 98 of 100 realizations. Computation details are as in figure 2.
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[43] allows one to obtain an approximation of the Jacobian
matrix from time-series data. Thismethodpermits themonitor-
ing of stability loss via a diminishing eigenvalue, and the
underlying frequency via the eigenvalue’s imaginary part
(figure 1a,d). This approach, however, requires time-series
data from multiple variables in order to make assertions on
the type of bifurcation, whereas the power spectrum can be
computed from an individual time series. Another approach
considers the scaling of critical slowing down as a bifurcation
is approached [14]; however, this requires a controlled setting
whereby changes in the bifurcation parameter can be
measured. Finally, promising studies in large perturbation
theory [44,45] demonstrate how information on the bifurcation
type and distance can be obtained by carefully monitoring a
system’s recovery trajectory following a perturbation. This
again requires a controlled environment, and a system
whereby large perturbations are feasible.

This study uses ecological data from controlled chemostat
experiments, where environmental conditions are kept fixed.
Similar to other studies on EWS in experimental populations
[46,47], this allows us to obtain estimates for the EWS at differ-
ent values of the bifurcation parameter without requiring a
rolling window. Our empirical results show that spectral EWS
behave according to theoretical predictions in an empirical
system. For real ecosystems however, environmental conditions
vary over time, more similar to our model scenarios. Future
studies should therefore test spectral EWS on high-resolution
data of natural systems subject to time-varying environmental
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conditions. Unfortunately, many ecological datasets are too
sparse for EWS to be effective [48]. However, technological
advances in measurement devices are facilitating high-
frequency data collection across many scientific disciplines.
In ecology, sondes that are deployed on lakes to measure
chlorophyll concentration are able to transmit data every
minute, helping to anticipate algal blooms [49]. In medicine,
wearable devices can now provide continuous physiological
data to help detect disease transitions [50]. We anticipate that
natural systems for which high-frequency data are available,
will be those to most benefit from spectral EWS and EWS
more generally.

Aside from detecting transitions, spectral EWS could con-
tribute to a better understanding of systems where competing
models exist. For example, the transition from quiescence to
the spiking of neurons in the mammalian cortex has beenmod-
elled as both a Fold and Hopf bifurcation, depending on the
underlying model assumptions [14]. Computing spectral EWS
of empirical data, one could discern which bifurcation the tran-
sition corresponds to, providing stronger validation for one
model over the other and therefore learning something about
the underlying mechanisms of the system.

The findings of this study have to be seen in light of some
limitations, which should be addressed in future studies.
First, the spectral EWS proposed here only distinguish between
oscillatory and non-oscillatory bifurcations, and not between
bifurcations within these groups. For example, a supercritical
and subcritical Hopf bifurcation, while giving rise to the
same spectral EWS, result in structurally different transitions.
Whereas the supercritical Hopf yields a smooth, reversible
transition to small oscillations, the subcritical Hopf yields
a critical, irreversible transition to a distant limit cycle.
Distinguishing between such bifurcations requires consider-
ation of nonlinear terms, which this study has assumed to be
negligible—a valid assumption for systems subject to small
noise relative to the width of the basin of attraction. Future
studies should investigate how nonlinear terms alter the
power spectrum prior to a bifurcation.

Second, this study only considers transitions arising
due to local codimension-1 bifurcations. However, complex
systems may lose stability via global bifurcations, which
are not accompanied by critical slowing down, resulting in
the failure of corresponding EWS [51,52]. In such situations,
EWS based on other dynamical features are required,
such as critical attractor growth, which has been shown to
precede interior crises of excitable systems [53]. Given that
the spectral EWS here are derived from changes in local
dynamics, they cannot be expected to provide warning of
global bifurcations. In addition, bifurcations of a higher
codimension (number of parameters that must be varied for
the bifurcation to occur), such as the Bautin bifurcation,
remain little explored in the EWS literature yet arise in
many models (e.g. [54]).

Third, spectral EWS, as with conventional EWS, may be
distorted in cases of large noise, multiple scales of correlation
and sparsely sampled data [48]. Further research should
investigate the robustness of spectral EWS to these factors,
and how the power spectrum varies in each case. For
example, one would expect correlated environmental noise
to create an additional peak in the power spectrum at the
characteristic frequency of the noise. Finally, the work here
does not consider spatial systems, where a power spectrum
can be computed in both space and time. Investigating the
behaviour of the power spectrum prior to different bifur-
cations in these systems may inspire further spectral EWS
to predict and characterize transitions in spatial systems.

The spectral EWS developed here have several implications
for science and policy. Competing hypotheses can lead to
models with different types of bifurcations [14,55]. Monitoring
time-series datawith spectral EWS can be used to infer particular
models based on their bifurcation structure, and therefore
deepen our understanding of the system itself. To avoid a
regime shift, action must be taken well in advance of the
bifurcation [22], requiring indicators that respond quickly to
changes in bifurcation proximity. Incorporating Smax may
improve the likelihood of a sufficiently early warning due to its
high sensitivity to bifurcation proximity. Moreover, the ability
to distinguish oscillatory bifurcations (Hopf/Flip/Neimark–
Sacker) from non-oscillatory ones is crucial, since their inferred
dynamics produce contrasting outcomes.Ourworkhere furthers
methodology to learn useful information from stochasticity [3]
and offers ready-to-go tools for further application.
4. Material and methods
4.1. Analytical derivations of early warning signals
Derivations use the normal form of each local bifurcation [17]
with additive white noise. For example, derivations for the
Fold bifurcation in continuous-time come from the system

dx
dt

¼ a� x2 þ sj(t), (4:1)

where α is the bifurcation parameter, ξ(t) is a white noise process
and σ is the noise amplitude. The corresponding normal form
system in discrete-time is

xtþ1 ¼ xt þ a� x2t þ set, (4:2)

where now ϵt is a normal random variable of mean zero and unit
variance. For each bifurcation, we linearize the system, yielding
an Ornstein–Uhlenbeck process (in continuous-time) or a vector
autoregression (in discrete-time). EWS for the corresponding
stationary process are then derived from first principles using
standard techniques from stochastic processes [25,27] (electronic
supplementary material, Methods).
4.2. Population model
We use a Ricker-type model that describes the logistic growth of
a population subject to harvesting [35]. The model reads

Ntþ1 ¼ Nte(r(1�Nt=K)þset) � F
N2

t

N2
t þ h2

, (4:3)

where Nt is the population size at time t, r is the intrinsic growth
rate, K is the carrying capacity, F is the maximum rate of harvest-
ing, h is a half-saturation constant, σ is the noise amplitude and ϵt
is a normal random variable with zero mean and unit variance.
Baseline parameters are r = 0.75, K = 10, F = 0, h = 0.75, σ = 0.04.
The model exhibits a Fold bifurcation at F = 2.36, and a Flip
(period-doubling) bifurcation at r = 2.00 followed by a sequence
of further Flip bifurcations to chaos.

We simulate two model scenarios, similar to a previous study
[35]. In one, the harvesting rate F increases linearly over [0, 2.7],
resulting in a Fold bifurcation. In the other, the growth rate r
increases linearly over the interval [0.5, 2.3] resulting in a Flip
bifurcation. All other parameters remain fixed. Both scenarios
are simulated for 500 time-steps. Negative population values
arising from noise are reset to zero. To test statistical significance
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of EWS, null trajectories are also simulated in which the bifur-
cation parameter is fixed.

4.3. Chemostat data analysis
Chemostat data were available for 14 different dilution rates [42]
(electronic supplementary material, figure S8). The dilution rate
was held constant in each of the experimental treatments and
hence, as in the original study, the empirical Hopf bifurcations
are considered to occur between two neighbouring dilution rates
such that one dilution rate gives rise to observable oscillations
and the other does not. For computing EWS, we considered only
time series with greater than 25 data points, of which there
were 11. The data were initially detrended with a Lowess filter
with an 80 day span to account for any unintentional drift in the
dilution rate.

4.4. Bootstrapping time-series data
Prior to computing EWS, we use block-bootstrapping to generate
an ensemble of samples. This involves detrending the data using
a Lowess filter, followed by using a rolling window to obtain over-
lapping segments that can be considered approximately stationary.
For each segment, we generate 100 bootstrapped samples. Each
sample is built by selecting blocks of the time series randomly
with displacement. The block length is drawn from a geometric
distribution [56], with an average large enough such that
significant temporal correlations in the time series are retained.

4.5. Computing early warning signals
Conventional EWS were computed according to common prac-
tices [6]. The power spectrum was approximated using Welch’s
method [57], which computes multiple periodograms from
overlapping segments of the time-series data and averages
them. The periodogram is given by P(k) ¼ j~x(k)j2 where

~x(k) ¼ 1ffiffiffi
n

p
Xn
j¼1

xje(2pi(j�1)(k�1))=n (4:4)
is the discrete Fourier transform, and n is the number of data
points in each segment. From the resulting power spectrum
S(k), we compute Smax =maxk S(k). The AIC weights wfold,
whopf and wnull are found by fitting the canonical power spec-
trum forms

Sfold(v; s, l) ¼ s2

2p
1

v2 þ l2
, (4:5)

Shopf(v; s, m, v0) ¼ s2

2p
1

(v� v0)
2 þ m2

þ 1

(vþ v0)
2 þ m2

� �
(4:6)

and Snull(v; s) ¼ s2

2p
(4:7)

to the measured power spectrum using a nonlinear optimization
procedure, and taking appropriate ratios of the AIC scores [40].
Finer details are provided in electronic supplementary material,
Methods. In addition, we have developed ewstools, an open-
source Python package located at https://github.com/ThomasM
Bury/ewstools and available on the Python Package Index. To
date, ewstools provides general functionality for computing con-
ventional and spectral EWS, including auxiliary methods such as
bootstrapping. We intend to continue expanding the package
and welcome contributions from other Python users.
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