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Abstract We investigate the basic principles of structural

knowledge. Structural knowledge underlies cognition, and it

organizes, selects and assignsmeaning to information. It is the

result of evolutionary, cultural and developmental processes.

Because of its own constraints, it needs to discover and exploit

regularities and thereby achieve a complexity reduction.

Keywords Knowledge � Information � Representation �
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Introduction

The question of knowledge has been one of the guiding

themes of the intellectual life of Olaf Breidbach. The

systematic questions are

1. What is knowledge?

2. What can we know?

3. Where does knowledge come from?

He approaches these questions from many different, but

interwoven perspectives:

• Epistemology/philosophy

• Theory of science

• Evolution

• Neurobiology

• Simulations in artificial neural networks

• History of science

• History of culture and art

• Media theory, analysis and conception of collections

and exhibitions.

He devotes many publications and several monographs to

this topic, such as Breidbach (2001, 2005, 2008), Breid-

bach and Vercellone (2011) and in particular Breidbach

(2011), with his striking thesis that self-reassurance,

becoming certain of one’s position, is only possible

through the insight that one is the result of a contingent,

autonomously evolving, historical process. In order to

ground your knowledge, you need to realize not only that it

depends on a contingent historical path, but also understand

how such a process can create knowledge. This is the only

way out of the inner perspective to which both a cultural

tradition or the brain of a beetle are confined.

Of course, we should first clarify what we mean by

knowledge. We are not concerned here with factual

knowledge, with knowledge about the truth of propositions.

That is a classical philosophical topic; a recent contribution

to the old debate is, for instance, Williamson (2000) where

many of the classical arguments are discussed and often

refuted. The issue is whether knowledge can be defined as

something like justified true belief, in which case the

notion of belief would be prior to that of knowledge. But

this is not our concern. We are not interested in direct

knowledge about isolated facts; in fact, it is not even clear

whether the concept of an isolated fact is even meaningful,

and for instance, Quine (1953) has argued that the empir-

ical content of an individual statement is not a meaningful

concept. In this essay, we shall reach similar conclusions,

from a different perspective and combining tools from the
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formal sciences with insights gained from neurobiology

and cognitive psychology, and therefore perhaps better

supported than a merely philosophical approach.

Instead of factual, declarative knowledge, we are rather

interested in structural knowledge, that is, in schemes for

the organization of clusters of data that can guide inter-

actions with the outside world. For instance, when we ask

what the beetle’s brain knows about the world, a first

answer might be that it ‘‘knows’’ how to behave in specific

situations. But even this answer cannot really be correct.

Insects have evolved as couplings of very general effectors

with rather specific actuators. This means that one and the

same general control mechanism can trigger a wide range

of specific actions, according to body segment, insect

species, developmental stage, or caste in social insects (see

for instance Breidbach and Kutsch 1990). Of course, this is

very different from human procedural knowledge, or from

the cultural traditions of a society. Nevertheless, we can

ask whether there are any general principles underlying or

governing these diverse manifestations of knowledge.

This essay is an expanded and adapted version of the

English translation of a text that I had written many years ago

to be published in a volumeonknowledge thatOlafBreidbach

had planned to edit. It is the result of an intellectual exchange

spanning several decades. It draws upon such fields as the

theory of information, statistics and learning theory, or the

mathematical theory of dynamical systems, which are com-

plementary to the fields mentioned above, but it reaches

conclusions that are quite compatible with what Olaf Breid-

bach had found from his perspectives. It seems therefore most

appropriate to dedicate this essay to his memory.

Knowledge as representation

What can we know? This question is very naive, and we

shall expose its naiveté. Nevertheless, it is instructive to

turn to it in detail, starting in a negative manner by

determining what we cannot know. There is a lot that we

cannot know: we cannot predict the lottery numbers for

next week, and often not even the weather. There exists a

standard explanation: such phenomena are based on so-

called chaotic dynamics, i.e., those in which small differ-

ences in the initial conditions grow exponentially over

time. So according to this explanation, the problem is that

we cannot determine the initial states with absolute preci-

sion. But why not? If we could go down to the molecular

level, or the nuclear, perhaps even the subatomic one, we

should be able to gain the required precision. However,

then the required effort will become immense, and this can,

in fact, be captured in a more principled and basic way.

But let us proceed with our example for a while. We can

know the weather of the last week, because we may

remember it or because someone has recorded it. But how

is it with the weather in Leipzig, or more precisely in the

swamps in the lowlands of Elster and Pleiße on 10/08/

1016? (Where we suppress the fact that there has a calendar

reform between now and then, and so, the correspondence

between the dates is more complicated.) There exist no

sufficiently precise documents, and the backward compu-

tation faces similar problems as the forecast of the future.

But why then do physicists believe that they can recon-

struct the first 3 min1 of the universe, that is, the situation

immediately after the Big Bang more than 10 billion years

ago? And if we already have great difficulty with the

weather next week, why then are the predictions of climate

scientists for global warming over the next decades at all

credible?

In order to analyze the problem in a more fundamental

manner, we look at a different type of example, the cellular

automata introduced by John von Neumann and Stanislas

Ulam, see Von Neumann and Burks (1967).2 In the sim-

plest variant, one has a chain of elements which for each

discrete point in time, n ¼ 0; 1; 2; 3; . . ., can assume one of

two possible values, 0 or 1, off or on, black or white—the

semantics is arbitrary. Which of these two values an ele-

ment takes at time n is calculated according to a fixed rule

from its own value and those of its neighbors at time n� 1.

One specifies some initial values at time 0 and then lets the

dynamics run on its own as described. The dynamical rule

is completely deterministic, and we can therefore ask

whether from the knowledge of the initial values, we can

know the state of the elements at a given later time, for

example, n ¼ 1000. Of course, we can simply let the sys-

tem run and then observe what happened after 1000 steps.

But the question is whether this is really necessary, or

whether we can compute the answer directly from the

initial values and the deterministic iteration rule. For some

rules, this is trivially possible, for example, when the rule

simply always assigns the value 0. It is much more inter-

esting, however, that there are rules for cellular automata,

in which there is no shorter or easier way to obtain the

result after 1000 steps, than to let the dynamics operate

itself for 1000 steps. The complexity of the system is thus

not reducible. In our weather example, this would mean

that there is no easier way to determine the weather for the

next week than to watch the weather for 1 week. We

cannot know the future in advance. Laplace was just sim-

ply too naive.

The situation seems to be even worse: if in quantum

chemistry or molecular biology, one wants to compute the

1 So the title of a popular science book of physicist Weinberg (1993).
2 For details, see for instance Jost (2005), 8.1, and the references

given there. Instructive computer simulations of cellular automata can

be found at http://www.ddlab.com.
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three-dimensional shape of some molecule, such as a large

protein, one often has to run a huge supercomputer for

hours or even days, and sometimes still this does not even

deliver the correct result. The underlying equations are so

complicated or have so many degrees of freedom that such

an enormous computational effort cannot be avoided. The

computation of the system, in this case of a simple mole-

cule, is many orders of magnitude more complex than the

simple observation. Why is that? Among other things,

despite all the impressive miniaturization achievements of

semiconductor technology, the computer is still operating

on a much coarser scale than the molecular or atomic one,

which is that of the object in question. By now there are at

least theoretical designs for quantum computers, operating

at a scale that is even smaller than that of the molecule.

And modern physics believes, according to superstring

theory, to have identified the fundamental, no longer

resolvable constituents of matter, which are many orders of

magnitude smaller than the known elementary particles

such as protons or electrons. If one were able to also

compute at this most fundamental level, the computation

would have overtaken the reality again. But then we would

have still the problem that the computation would not be

easier than the reality. Why would it be worth then to

compute at all? The answer lies in a different direction.

With the supercomputer, we do not compute or simulate a

protein because we are interested in this specific protein as

an individual object, but because all proteins with the same

building blocks behave also similarly. There are physical

laws and therefore regularities. So we only once have to

compute and then know the result for all such proteins.

That is the basis of our knowledge. Knowledge is based on

the knowledge of laws and regularities, and thus it requires

a regular world. This was known3 already to Leibniz and

Kant, but it is reassuring that this insight has not been

overturned by modern physics.

The Heisenberg uncertainty principle of quantum phy-

sics teaches us that an accurate prediction of all details of

atomic processes is fundamentally impossible. But the

Schrödinger equation incorporates a deterministic behavior

of probability amplitudes. So while the classical behavioral

of the quantum mechanical variables is not deterministic,

but stochastic, conversely stochastic variables evolve

according to deterministic rules.

But it gets even better: in most physical processes, or

abstractly, in most dynamical systems there are only few

relevant degrees of freedom, while all other degrees of

freedom exponentially approach a state of equilibrium or

average out, and then no longer influence the dynamical

evolution. It can be shown mathematically that this

behavior is typical of dynamical systems,4 see for instance

Jost (2005). So we need to know even less than all the

details of the initial conditions in order to predict the global

behavior of the system. Where the cannonball strikes,

depends only on few macroscopic variables, and we do not

need to know the exact details of the internal molecular

configuration or even the subatomic particles inside the

ball. Apart from certain relativistic corrections, the trajec-

tories of the planets around the sun follow the laws dis-

covered by Kepler and the rules of Newtonian point

mechanics. Thus, objects that are internally as complex

structured as the planets can be treated as extensionless

mass points for their celestial motion. Although the

weather apparently behaves really chaotically, the under-

lying chaotic attractor has a particular dimension, which is

substantially lower than the number of available degrees of

freedom. While this does not allow for a concrete accurate

prediction of all the details, it nevertheless constrains the

possible dynamical evolution. In addition, on a larger time

scale random fluctuations and chaotic perturbations aver-

age out, and this may perhaps allow for long-term climate

predictions. This averaging of random fluctuations is

incidentally also crucial for the transition from the

stochastic behavior of the atomic quantum world to the

deterministic dynamics of macroscopic processes. An even

more significant confinement of the details of a finer scale

takes place in the constitution of the atomic world from its

elementary building blocks, and the latter can be isolated,

if at all, only with enormous experimental effort in gigantic

particle accelerators and colliders.

We have thus dealt with the physical and ontological

aspects. In this sense, knowledge is possible because the

world is regular and the dynamical behavior of macro-

scopic objects is typically determined by a few parameters.

We need to insert an important caveat here: such simple

regularities as the laws of Kepler of planetary motion are

the exception rather than the rule, as argued in Jost

(2015b). At both smaller and larger scales, the physics gets

much more complicated. And more generally, if the world

were so simple that we could completely understand it, it

would not be rich and complex enough to support our

existence as physically quite complex beings.

Nevertheless, for our present purposes, the fact that at

some scales, however rare and exceptional they may be,

such simple regularities hold, is what makes predictions

possible and therefore, as we are arguing here, can ground

knowledge.

Thus, the present conclusion is that knowledge can

represent the regularities of the outside world. But does the

representation of a regularity not already presuppose a

3 That knowledge about knowledge is possible will also guide some

of our subsequent considerations. 4 This is also the basis of Haken (1990).
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regular structure? Or, putting it another way, how is this

knowledge then represented in turn? That is our topic.

Information and knowledge

How do we gain knowledge? We interact with the outside

world and with our fellow human beings, receive signals,

inputs, messages. From this we need to build our knowl-

edge. To understand this, we must first investigate what

insights we can gain from a message and what internal

conditions are needed for this. This leads us to the subject

of this paper.

Shannon quantified the information of a message by its

novelty for the receiver, how much it contributes to the

reduction of the latter’s uncertainty Shannon and Weaver

(1949). The information contained in a message is the

greater, the more unexpected it is for the receiver. In this

way it could be quantified which amount of information

can be transmitted without interference by a given channel.

A prerequisite of this approach is that a code between

sender and receiver is arranged in which the message is

written. In this approach, the meaning of the message does

not need to be considered. In particular, in principle

everything can be reduced theoretically to the simplest

possible code, the binary one. A message is thus a sequence

of 0s and 1s, and the receiver expects different such strings

s with different probabilities p(s), and the average negative

logarithm of these probabilities, that is, the entropy of the

ensemble of possible messages, becomes the Shannon

measure of the information,

H ¼ �
X

s

pðsÞ log2 pðsÞ ð1Þ

(where the base 2 logarithm is taken, so that when one of

two equally probable alternatives, i.e., pðiÞ ¼ 1=2 for

i ¼ 1; 2, is observed, the information gain is 1 bit). This

proved to be an extremely fruitful approach to under-

standing and optimizing the transmission of information,

but the situation underlying Shannon’s theory is obviously

not without assumptions. How does the receiver know the

code of the sender? Had this code also been transmitted via

the shared channel, and which other code had then be used

for this transmission? This reduction obviously would not

work. And how does the receiver know the probability

distribution for the ensemble of possible messages? Prob-

ably from an empirical frequency distribution of already

received messages. But this would move the question only

into the past, instead of answering it.

Shannon’s theory is not concerned with the information

as such, but with its transmission in a not further ques-

tioned context. Therefore, it focuses on the channel.

However, our questions are aimed at the receiver and

therefore cannot be answered within this theory. Their

further analysis will lead us to the concept of knowledge.

Because for these questions, the channel is not essential,

the sender will also lose its specific role. The sender will

only come back into view when it comes to strategies of

influencing the receiver. But the latter, the receiver, has to

be constituted, that is, it must be ensured that this agent

will respond to the message at all, and this will in turn be

expected only when he/she attaches a meaning to this

message. So we ask what makes the information to an

information for the receiver. And why does this informa-

tion interest her/him? And is he/she interested at all in any

information received? Is not some sequence of 0s and 1s, or

some message written in some other code, not simply a

random string without any discernible significance for the

receiver, some noise that he/she no longer perceives, but

rather ignores?

These questions suggest that we have to proceed dif-

ferently for our purposes. If we want to understand the

receiver, we cannot separate information and meaning. We

have to start with the assumption that the system that we

want to consider as the receiver of a message can perceive

a certain difference. This means that its receptors or sen-

sors can distinguish at least two different states of its

external world. Such a perceived difference then becomes

relevant for the system when those possible states have

different consequences for the system, or, as Bateson

(1972) put it succinctly, ‘‘a difference that makes a dif-

ference’’. This can be expressed in a different response of

the system, but it is sufficient if different internal states of

the system arise. These states need not be visible to the

outside world. A (perceived) difference causes a difference

(in or for the system). Conversely, the difference is only

perceived because it has a consequence for the system.

Otherwise it would be ignored, disregarded. The specific

reaction must have an advantage for the system over the

indifference.

For this, while not unconditional, but simple situation,

there are now two major extensions. The first takes us to

the theory of signs (see for instance Keller 1995) and

semiotics (e.g., Eco 2002). The perceived difference need

not be directly relevant to the system, but can be a sign,

that is, represent a different distinction. Following Peirce’s

classification, the system can, instead of directly perceiving

the raindrops, interpret a dark cloud as a symptom of the

expected rain, a notched circular gray spot with parallel

slashes in the weather forecast as an icon5 or the verbal

communication ‘‘It will rain’’ as a linguistic symbol. It can

then anticipate the rain by a causal, associative or rule-

based inference according to the type of sign received.

5 The concept of an icon, however, is not without problems, see Eco

(2002) p. 200ff.
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The meaning of the sign consists then, as already stated,

in its effect on the receiver. In particular, this distinction

between the various types of signs and inference schemes

does not matter. We can thus also bring the sender back

into the picture if it just produces the signal for the purpose

of influencing the receiver. The difference caused by or

resulting from the perceived difference in, by or for the

receiver then needs to make a difference for the sender.

Extending Bateson’s slogan, we could speak of a difference

that makes a difference that makes a difference.

This is no longer so easy, and in particular not without

assumptions and preconditions. We turn therefore to the

second extension of the basic situation described. The

receiving system is no tabula rasa, not a primitive stimulus-

response mechanism, but it possesses an internal structure

and is shaped by the information already received in the

past. However, this aspect must be further refined. First, a

temporal factor comes into play. The received character

may perhaps only point to a relevant difference in the

future. The flowering shrub will bear fruit in a few weeks,

and it is useful to remember it then. This requires a

memory which can store information and make it currently

available. Thus, the system must be able to bridge a time

difference. This stored information is the simplest form of

knowledge. Although the information has novelty value for

the system, it does not lead directly to an external reaction,

but first creates a different internal state of the system. The

question of the storage medium will be postponed. In any

case, this represents only the simplest form of memory. In

the next stage, the memory can be used to compare a

current stimulus, a signal, a message to another one already

received in the past. Thus, the system builds its own

internal reference system. What is new can then be set in

relationship to what is already known. The system can thus

also detect differences between differences, i.e., notice that

a new stimulus differs from the previously received ones.

So the system is gaining not only the information from the

current stimulus, but also information about the statistical

distribution of stimuli. So one of the issues raised seems to

be easily solvable. It is important that now a stimulus

contains information on various levels, first about what can

be extracted from it via causal, associative or rule-based

inference, secondly, on a longer time scale about an

ensemble of stimuli. This can of course be iterated to gain

more, higher levels. One aspect of this is that this current

stimulus needs to be recognized as a member of an

ensemble. Thus, it has to confirm expectations of the sys-

tem at a higher level. At the same time, on a more ele-

mentary level it has to have some novelty value and

therefore must carry information, and so should not be fully

expected, but should have an element of surprise. Of

course, this balance between expectation confirmation and

surprise shifts in the course of system development. This

occurs on one hand through the fact that the new stimulus

may affect and modify the distribution of the stimulus

ensemble, and on the other hand by the described devel-

opment of higher levels of organization. Knowledge is not

only produced, but also structured. We therefore consider

knowledge as stored and structured and thus available

information.

The information is received and ‘‘evaluated’’, thus loses

its value, which consisted precisely in its novelty. In con-

trast, the knowledge gains value by the potential contained

in it for a future application and as a reference for new

information that can only acquire their value by the very

fact that the structure of knowledge gives them internal

meaning.

Generation of knowledge

Now two aspects have been mixed, which have to be

separated again. This becomes clear if we undertake it to

assess or evaluate that knowledge, as we did with the

information by its novelty value.6 Knowledge was intro-

duced as stored information about the outside world and in

that capacity, it was also assessable as information. We

thus measure to what extent uncertainty about the state of

the outside world is reduced by that knowledge. This also

leads to a problem that is, however, only indicated here.

The quantification of information or knowledge by an

entropy says nothing about the value of knowledge for the

respective system.7 In any event, knowledge as a collection

of data about the outside world constitutes a complexity

gain for the system. This gain consists in the fact that for

the system, the complexity of the outside world is reduced

by enabling it to make certain aspects of the outside world

reproducible as regular (see Jost 2004 for a systematic

analysis).

It is more important for our purposes, however, that the

production of knowledge is not a passive storage process,

but an active structuring process. The efficiency of the

6 For a more detailed treatment of some aspects of the sequel, see Jost

(2004).
7 This is somewhat analogous to a discussion in economic theory, the

concept of the price as labor value vs. market balance between supply

and demand. In the economic context, the value of information can be

measured by the price that the receiver is willing to pay for the receipt

of this information Arrow (1971). The value of the information thus

does not lie in the difficulty of obtaining it or in its content expressible

in bits, but in benefits for the receiver as reflected in the price that can

be obtained. The monetary code in this respect is better adaptable than

the information-theoretic bit code to the total internal state of the

receiver; the latter takes into account only the current state of

knowledge of the receiver and measures its increase through the

information. For a systematic treatment in the context of game theory,

see Bertschinger et al. (2015).
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patterning is then expressed at a given data collection by a

complexity reduction. Conversely, such complexity

reduction through increased efficiency of structuring data

then in turn sets capacity free for an extension of the

amount of data, that is, an increase in complexity. This

interplay can be expressed only when we distinguish

between external and internal complexity, as in Jost (2004).

We will now analyze this active structuring process in

more detail, particularly in the context of human cognition.

This is about discovering and exploiting regularities in the

data obtained. Before we examine this more closely,

however, it must be pointed out that this in no way rep-

resents a first-principles situation. What an (e.g., sensory)

datum is, will only be determined by the internal structure

of the system, in the context of which it can get assigned

meaning, usually on the basis of specific observations

selected by internal hypotheses (see Jost 2004).

This aspect of the feedback, that the internal structures

and hypotheses determine what is singled out and per-

ceived from the abundance of sensory stimuli and how this

develops into percepts, is probably the most important one

for the understanding of cognition. Nevertheless, we want

to first investigate the supposedly simpler direction, namely

the creation and adaptation of internal models from

observations. After the failure of most rule-based models

from AI, artificial intelligence, for orientation in situations

that are not precisely circumscribed and detectable, the

theoretical approach has shifted (among many references,

see for instance Pfeifer and Scheier 1999; Ay et al. 2012 or

the collection of essays in Engel et al. 2015).8 The diffi-

culty that the AI research could not overcome was to for-

malize the respective required context or background

information and to incorporate it into logical chains. Even

in situations where this contextual knowledge simply

consists of a fixed set of simple rules, high performance

could be achieved only through the use of extremely high

computing capacity, as in chess, without being able to

reproduce the intuitive position sense of human players. In

Go, the problem was that purely rule-based circuit chains

apparently are not able to develop global long-term

strategies within which local positions can be evaluated.

Therefore, the computer programs remained hopelessly

inferior to good human players, until recently a deep neural

architecture that gained expertise by playing against itself

could beat the world champion (Silver et al. 2016). Formal

rule-based methods are completely overwhelmed in real

environments, whose context is too complex in principle

for being completely representable within the system. This

becomes already clear from basic system theoretical

considerations, see Jost (2004). More recent approaches

therefore are no longer rule-based models expressed in

terms of formal logic, but rather explore different types of

statistical learning and inference or try to replace the

deductive sequential reasoning by recurrent association

dynamics. We lose the certainty that arises from the formal

correctness of a chain of logical conclusions, but will gain

the chance to get a usable and generalizable model. But this

paradigm shift does not simply consist in replacing one

class of strategies for solving a given problem by another,

but the problem as such is also shifted fundamentally.

Although we have already indicated and will come back to

the fact that this does not yet yield a really adequate for-

mulation of the problem of cognition, we shall briefly

discuss those approaches because they provide some useful

insights for understanding the origin of knowledge.

The starting point is that precisely what is assumed

without question in the Shannon information theory,

namely, the statistical distribution p of possible input sig-

nals, has to be reconstructed, or at least estimated, from a

limited, and therefore incomplete, and possibly noisy or

otherwise perturbed collection of already received signals.

Thus, because the data set is incomplete and the capacity of

the system is limited and the internal structure of the sys-

tem is not arbitrarily flexible and adaptable, the system can

only achieve some estimate q of this distribution. When the

system receives now another signal i, it contains the sub-

jective information

� log qðiÞ; ð2Þ

while the information with regard to the distribution p is

� log pðiÞ: ð3Þ

But since the signals are not yet known before they are

received, the expected information gain resulting from the

observation of a new signal is obtained by averaging these

expressions over the probabilities of the individual signals.

Although a rarer signal yields a larger gain of information,

such a signal is observed less often. Therefore before one

receives the signal, nevertheless one may still not expect a

large gain in information, because with higher probability

one has to expect that some more frequent signal occurs

which then provides less new information. The expected

subjective information gain then is

�
X

pðiÞ log qðiÞ; ð4Þ

while the actual expected information gain from the dis-

tribution p is the Shannon information (1)

�
X

pðiÞ log pðiÞ: ð5Þ

When p and q are different, that is, when the subjective

estimate is different from the actual distribution, the latter is

8 Important lessons can be learned here from the insight of Von

Uexküll (2014); for a formal approach in this direction, see for

instance Ay and Löhr (2015).
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smaller than the former. Rather than being happy about the

supposedly higher information gain due to the subjective

hypothesis, the receiver should rather use the received sig-

nals to adapt its subjective distribution q and perhaps reduce

the difference to the actual distribution p. In other situations,

the receiver might want to obtain the best possible estimate

q for the unknown p from a certain class of distributions. In

general, the receiving system will not be able to model an

arbitrary distribution, but its internal structure will restrict a

priori the possible models. If the available class of models is

fixed and the only issue is to determine the free parameters in

this class so that the best possible q results, we are in the area

of parametric statistics, an established and well studied

mathematical theory.9 If the selection of themodel class is an

issue, e.g., to avoid overfitting, an over-adaptation to the

signals previously received and their contingencies, one is

lead to the field of statistical learning theory (Vapnik

1995, 1998). A fundamental result of this theory is that in

order to obtain reliable error estimates, the number of

received signals must be asymptotically larger than the

number of degrees of freedom in the model.10 However, of

course the number of degrees of freedom should not be too

small either, in order to have a sufficiently large number of

models available to capture the data fairly accurately. In the

context of cognition, these principles are explored in Jost

(2016). It may also happen that the received signals do not

accurately follow the distribution p that one is searching for,

but that they are perturbed or distorted by noise or other

undesired effects. This too can be treated, in principle, within

the framework of mathematical theories, but will not be

pursued here.

Instead, we need to start a little deeper and face the fact

that what we have taken as externally given data or signals,

in essential respects are the results of constructions by the

receiving system—which, incidentally, also makes the

expression ‘‘receive’’ itself somewhat questionable.11 For a

system, there are no information as such, no raw data, no

input, but these result only from the insertion into an

internally developed system of category structure. Cate-

gories allow the system specific and targeted observations.

In this sense, information is generated as something

important or relevant only by the receiving system. What

does not fit into the category structure is not perceived by

the system. What is without structure for the system, is

random, is noise, and therefore automatically ignored. Only

the categories allow the system to make distinctions.

Thereby, a received signal becomes a carrier of informa-

tion by reducing the uncertainty concerning specific mea-

surements dictated by some category. However, the

expected information depends not only on the category, but

on the distribution p of the signals with respect to the

categories. This distribution is not fully known to the

system, but, as explained, the system can model it on the

basis of the received signals by a hypothesis q and adjust

this hypothesis continuously on the basis of the newly

acquired signals. However, not only q but also the category

system can be adapted and changed. An important differ-

ence from what we have said previously is, incidentally,

that the probability distribution p is no longer independent

of the receiving and observing system datum, but also

depends on the category structure of the system (for a

simple example, see Jost et al. 1997; this will be further

analyzed in Jost 2017b).

The modeling by probability distributions p still falls

short even despite this point, because the signals typically

do not follow an independent distribution but have certain

correlations, transition probabilities. Therefore, instead of a

distribution p of signals, we should rather consider a

stochastic process X.

The extraction of information means reducing uncer-

tainty for the system. This uncertainty, however, can be

reduced not only by observing the signal process X, but

also by the identification of regularities in the process.

Such regularities on one hand allow a compression of the

data already collected for the purpose of efficient storage,

and on the other hand they also provide a basis for pre-

dictions about future signals, i.e., a reduction of uncer-

tainty, without these signals having to be actually received.

Here, of course, it is assumed that the process X is sta-

tionary, that is, its statistical characteristics do not change

over time.

Now comes an important point: regularities can only be

found if a need for compression exists, as otherwise the

received data can be reproduced in a completely faithful

manner. A rule consists precisely in the best possible rep-

resentation of the data under fixed constraints, i.e., internal

restrictions. For such a selection to be made among the

available options for the internal representation, the num-

ber of degrees of freedom has to be bounded, or, more

9 The competing Bayesian approach to statistics is based on prior

probabilities for each model and adjusts them based on the

probabilities with which the models postulate the received signals.

The conceptual and decisive problem that decides about the success in

a concrete situation is whether or in a specific situation how well one

can construct those prior probabilities. The current trend in many

disciplines favors the Bayesian over the parametric approach. The

Bayesian scheme is computationally more expensive than parametric

statistics, because entire probability distributions have to be computed

instead of single parameters, but the ever increasing available

computer power makes this less relevant.
10 As measured by the Vapnik–Chervonenkis dimension.
11 This also has quite problematic aspects. If knowledge is no longer

‘‘objective’’, but a subjective adjustment placing data in an internal

dynamic process, that is, when knowledge is only constructed by the

interpretative performance of the subject, the objectivity of observer

testimonies or historical and other sources becomes questionable. See

Fried (2012) for an analysis of this issue, and for an instructive case

study, see Fried (2003).
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precisely, there have to be fewer degrees of freedom than

observations. Otherwise the need for compression is

eliminated, and also what is contingent and follows no rule

is shown in the data, if the data should be recorded as

faithfully as possible. We are thus lead back under a new

aspect to the central point of the statistical learning theory

of Vapnik–Chervonenkis. In abstract terms, the finiteness

and limitations of the cognitive system are a prerequisite

for being able to make predictions with nontrivial content.

(However, no system can fully grasp its environment by its

own rules, since the latter as the more comprehensive

system is necessarily more complex in terms of statistical

physics. Because the system itself is part of its environ-

ment, in any case, we have to face the mathematical and

philosophical problem of re-integration, self-reference.)

But the foregoing still underestimates the active com-

ponent in the development of knowledge. To get this better

into our view, we notice that the category of which we have

spoken as a classification scheme for input signals is still a

rather arbitrary formal principle. According to what criteria

are categories formed, what determines the assignment of

an input pattern to a category? Are categories rigid struc-

tures like drawers, into which inputs are sorted, or do they

develop only through concrete experiences? In what sense

there are general categories, are they not just collective

labels for groups of exemplars? Or should we rather

replace the diffuse and possibly abstract concept of a cat-

egory with the more contentful one of the prototype? We

are asking here for the organizational principles of

knowledge, and we want, in particular, also cover the

dynamical aspect inherent in this issue. In order to gain

insight here, we analyze the concept of a gestalt. This term

was introduced by von Ehrenfels (1980) as a psychological

concept. With this term, he tried to explain the holistic

identification of higher units, and important criteria for a

gestalt were that it is more than the sum of its parts and that

it is not altered by transpositions. Von Ehrenfels invoked

here the example of a melody. We shall not discuss further

the development of this concept as an organizing principle

for perceptions, as a functional whole in the history of

psychology. From the viewpoint of formal logic, a gestalt

was conceived as an invariant under transpositions of a

complex, or complementarily but equivalently, as an

equivalence class under correspondences.12 This now

clarifies the term formally and specifically reduces a gestalt

to internal relations, but it still leaves open how the

respective transpositions, correspondences, equivalences

emerge and are selected. If there are no rules for this, a

gestalt still remains a rather arbitrary ordering principle.

This problem was solved in a joint work with Breidbach

and Jost (2006). We took the transformation rules as a

mathematical structure which the receiving system, which

now becomes a perceiving subject, actively applies to its

received input patterns. A gestalt consists therefore in the

common characteristics of a set of patterns that can be

mutually converted by transformations of a given type into

one another, or in mathematical terms, as an equivalence

class of the operation of a group of transformations, the

invariance group of the gestalt. The new and crucial

ingredient here is the formal structure of a group. A group

is in this case within the meaning of mathematics under-

stood as strictly here is a mathematically defined term; the

main properties are that the elements of a group can be

composed with one another and also be inverted, reversed,

and that this operation is associative, that is,

AðBCÞ ¼ ðABÞC, i.e., it does not matter whether we com-

pose A with the result of the combination of B and C, or the

combination of A and B with C. The order of the compo-

sition, however, in general makes a difference, i.e., AB may

be different from BA. An illustrative example is the gestalt

of a circle, which is independent of the location and size of

a particular circle, so for the purposes of group theory, it is

invariant under shifts and scalings. It is important that the

groups that typically occur are finitely generated and pre-

sented, that is, they are already fully determined by the

specification of finitely many elements and composition

rules. Thus, we have a universal structure whose concrete

realization is already determined by a finite number of

parameters. We have thus obtained a general formal prin-

ciple, with which a system can structure the input data of

any kind for itself. In abstract terms, the set of transfor-

mation rules in turn follows general internal rules. These

rules allow the system to reconstruct all the transformations

that determine the gestalt from a few transformations

between concrete available samples or prototypes. Of

course, this can also be generalized by employing other

algebraic structures. This is for instance important for the

formal transformation grammar in linguistics. In any case,

this approach will allow us—or the system we are con-

sidering—to generate a gestalt from a set of patterns that

have certain similarities by a transformation group gener-

ated from those similarities. We only need to find trans-

formations which convert the patterns into one another, and

take those as the generating elements of a transformation

group. The resulting gestalt will then contain even more,

new pattern, namely all those that arise from the applica-

tion by the group elements on the initial patterns. The

gestalt of a circle can therefore be generated by specifying

2 or 3 circles of different size and location. A gestalt is thus

determined by the specification of a few representatives

and the associated transformation group. Larger groups

correspond to more general gestalts, and inclusion relations

between groups can be translated into a gestalt hierarchy.

12 See Grelling and Oppenheim (1988); I am grateful to B. Smith for

this reference.
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The larger the group, the less properties are left invariant

by all group elements. To quantify differences between

patterns or representatives belonging to a gestalt, we have

to introduce an additional structure, that of a norm13 of a

transformation, which measures the size of a transforma-

tion that is required to convert one pattern into another.

Because in general there are several ways to transform a

pattern to another, in a specific situation, we encounter the

optimization problem of finding a minimum norm trans-

formation between two given representatives of a gestalt.

An example from psychology of perception is the reaction

time required to identify a rotated pattern with a prototype.

It turns out that this reaction time is proportional to the

angle of rotation, the obvious norm of a rotation.

If such norms, that is, measures of the magnitude, or in

another interpretation perhaps also the cost of executing a

transformation, are given or obtained, we can also con-

struct a prototype for a gestalt, as a member of the gestalt

with the smallest average distance from the other members.

Again, the prototype need not occur as a specific pattern in

the available input, but it is a construction of the system on

the basis of general transformation rules utilized by it.

Even such a prototype need not be explicitly represented in

the system, but it is enough to have the implicit possibility

of making distance comparisons between members of a

gestalt. If now conversely the system is provided with a

specific input pattern, it can determine whether it belongs

to one of the gestalts constructed by it. For this, in prin-

ciple, there are two possibilities:

1. Transformation of the pattern by an element of the

group defining the pattern into a prototype that has

been constructed as described above. Here, the system

will try again to achieve this via a transformation of

smallest possible norm, in order to have at the same

time a criterion for how well the pattern matches to the

gestalt, in particular whether it is central or rather

marginal. It will be helpful to first submit the pattern to

a certain normalization to reduce the transformation

possibilities that need to be checked. Geometric

figures can for example be rescaled to a standard size,

they can be moved so that their center of gravity is in a

fixed position, etc.

2. Evaluation of the invariants characterizing the gestalt.

These are typically internal relations, such as pitch

differences between successive notes in a melody,

rhythmic relationships, relative position of the points

of a geometric figure to each other, or more abstract

quantities such as eigenvalues, etc. These invariants

could be obtained implicitly also by a kind of statistical

inference when the system learns similarity relations.

In practice, probably hybrids of these methods will be most

effective. Some results in this direction are known from

perceptual psychology experiments. For instance, Smith

and Minda (2002), subjects decide on the membership of a

visually presented pattern to a gestalt based on the simi-

larity to the prototype—which is only constructed within or

from the gestalt itself—rather than by comparison with the

concrete sample copies provided to the subjects. It would

be insightful to have further studies to determine to what

extent the investigation and evaluation of invariants is used

in perception as a criterion for gestalt membership.

By means of active transformation rules from (for

example, sensory) input patterns a gestalt is thus generated

that captures what is common to these patterns, what is

invariant. These rules are general and in particular inter-

subjectively valid; the individual generates them from the

interaction of genetic predispositions, cultural socialization

mechanisms, internal self-organization processes set in

motion by external impulses and individual learning pro-

cesses building upon that. The individuals obtain their

knowledge and thereby constitute themselves in the inter-

play between its endowments and its morphogenetic prin-

ciples on the one hand and the active sensorimotor

exchange with its environment and interactions with other

individuals that may get intensified by resonances on the

other hand.

This is particularly evident in learning the mother ton-

gue. The Chomskyan reference to the stimulus poverty,

that is, the underdetermination of linguistic structures by

the speech examples available during the child’s learning

process, has exposed a fundamental error of behaviorism,

which tried to explain the child’s learning of the mother

tongue by simple stimulus-response schemes. Chomsky

(1959) has probably eliminated behaviorism as a serious

theoretical approach. For learning language, one needs an

internal structure of the type of transformation rules of the

universal grammar of Chomsky (see Chomsky

1965, 1981, 1995 for the various stages of the development

of Chomsky’s theory) or something similar. Such a struc-

ture, however, could also, in combination with the other

components mentioned above, emerge in a self-organiza-

tion process and would only have to be implicitly repre-

sented in the system, as postulated by connectionism,

rather than being genetically fixed and (more or less)

explicitly (but not necessarily consciously) given, as

Chomsky thinks. But this is not yet decided, and perhaps

we need a conceptually deeper approach. We should not

13 ‘‘Norm’’, like ‘‘group’’, is understood here as a strictly defined

mathematical concept; therefore colloquial connotations lead the

understanding only astray. The norm of a transformation is a measure

of the difference from the so-called neutral or trivial transformation

that changes nothing, but leaves everything as it is. For a rigid

translation, the norm is given by the distance between the original

position and that caused by the translation. The norm of a rotation can

be measured by the rotation angle.
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forget that in expressions of everyday language, the

grammatical transformations are apparently so tightly

interwoven with semantic relationships and implicit refer-

ences to the context, which are understood by the listener

that automatic language interpretation and translation

programs for the present state of theoretical linguistics are

still out of reach,14 and also the connectionist models

quickly reach their limits. In particular, the linguistic

knowledge incorporates and integrates grammatical,

semantic and contextual components in a complex manner.

In Tomasello (2003), Tomasello argues against Chomsky’s

paradigm for a usage-based approach, emphasizing that

human children have more powerful learning mechanism at

their disposal than simple association and induction. They

can infer the intentions of other humans, and they possess

sophisticated skills of pattern finding. The ability of pattern

finding is, of course, one of the central themes of the

present essay.

Knowledge and cognition

So far, we have analyzed how knowledge is created and

comes about, and we have found that this process is not just

a passive data storage process but requires active use of

internally given structuring rules. The generality and uni-

versality of these rules then makes intersubjective com-

patibility of acquired and generated knowledge possible.

This knowledge then allows the subject to deal with new

experiences, by relating them to previous ones and thus

making them potentially meaningful. Knowledge as

memory allows us to compare the new with the already

known. Conversely, knowledge makes past experiences

currently available by capturing them in an internal

schema. In its knowledge, the subject knows statistical and

other regularities of the input world and in particular the

code that decodes or decyphers the information contained

in specific inputs.

Now there are different kinds of knowledge, and a more

detailed analysis provides insights into the process of cre-

ation and the structure of knowledge. Because, as argued,

knowledge is not just an unstructured storage of data, of so-

called ‘‘facts’’, but also in particular represents an organi-

zational principle, there follows directly a distinction

between factual knowledge or expertise on the one hand

and structural, storage or organizational knowledge on the

other. The internal structure rearranges the data and by its

internal classification leads to a higher efficiency and lower

storage costs, but then also requires knowledge of this

internal organizational structure itself. One no longer

remembers the data themselves, but where and how to find

them. In the knowledge organization we thus find the

transition from content to form. This is also related to the

transfer of the complexity from the direct relationship with

the outside world to the internal organizational structure

(see Jost 2004). This then leads to the formal consideration

of the question of the optimal knowledge representation.

If at this point already a short leap is permitted from

individual knowledge to cultural and social knowledge, we

see whole knowledge or scientific fields that focus for the

most part only on such structural knowledge, such as

jurisprudence or computer science. One does not learn the

civil law by heart, but rather the method to find the relevant

laws and legal judgments in a specific case. Similarly,

computer science is concerned with the general principles

of data organization and storage. For an analysis of how

every action, every concept and even every experience of

the individuals in a society depends on how the culture of

that society understands and structures knowledge, we refer

to Neuser (2013).

Another distinction that is important for cognition,

which is transverse to the above distinction, is that between

declarative and procedural knowledge, that is, the distinc-

tion between content and process knowledge, between the

‘‘what’’ and the ‘‘how’’. This is also the distinction between

explicit and implicit, tacit knowledge, between knowledge

which can be explicitly formulated and recalled in isola-

tion, and knowledge which is only implicit and is utilized

only in the flow of a process. In particular, knowledge is

not necessarily aware of itself.

Self-reassurance of knowledge

However, more is at stake. The process of knowledge

creation consists not only in the inclusion of inputs into an

organizational structure and the adaptation of this structure

to structures to be detected in the inputs—and the double

occurrence of the word ‘‘structure’’ already hints at a dif-

ficulty—but also in the revision of this structure according

to the experience of the outside world through the system.

Knowledge has no independent authority in itself by which

it can control itself, it need not even necessarily know

about itself, and it can gauge itself solely by its source,

which in the end is the outside world. On the basis of its

knowledge, the system can act purposefully, but this action

carries no guarantee of success in itself, but may fail.

Incorrect knowledge of the chairs in the room, the knee hit

in the dark. Plausible, but unfortunately too simplistic.

The system knows nothing of the outside world than just

its knowledge. Only through the artifice or sleight of hand

14 I had tried to use Google translate for translating my original

German text into English, but many sentences and phrases came out

completely garbled. In particular, such automatic translation schemes

which are based on n-grams, with n ¼ 5 typically, are not capable of

detecting long-range connections, as in German split verbs.
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that we postulate us as external observers of the system in

its environment, we can gain a concept of an independent

reality at all, but this is unavailable to the system itself. We

seem to fall, therefore, into a dilemma. From this per-

spective, the system has neither in itself nor outside of it a

controlling instance. The difficulties dissolve only when we

make a temporal differentiation and conceive at the same

time knowledge creation as a double feedback process.

Knowledge is not there, but is formed, and in this forma-

tion process the overwhelmingly large, in principle avail-

able data set is not completely stored, but on the basis of

the internal structure significant aspects will be singled out

selectively and have their compatibility with this structure

checked. This is the inner feedback loop. The outer loop

generates new data through action which is specifically

directed by the already existing and developed structures.

The above is the system theoretical trick of resolution of

a structure in a process, the emphasis on the preliminary

and unfinished. While this is important, and we will come

back to it, it evades the question raised here. There are

other approaches:

1. The reflection of knowledge about itself. While this is

not entirely possible, since the reflection on the

reflection on the reflection ...results in the well-known

endless recursion, and must therefore always omit

aspects about itself, but formally of course, a part of a

system can separate itself as an though imperfect

observer of the rest of the system. This self-reflection

of knowledge as formulated in the Socratic proposition

‘‘I know that I know nothing’’ can therefore be

considered as the beginning of Western philosophy.

Now this sentence is formulated negatively, but from

this insight fundamental issues of the possibility of

knowledge can then be analyzed. This leads into the

history of philosophy, but should not be further

illuminated here from the perspective of the history

of philosophy.

2. The realization that there are other, similar knowledge

carriers whose knowledge one can acquire. You

therefore no longer need to always take the trouble

to acquire one’s knowledge by oneself—the difficulties

of internal structuring of inputs as a basis of knowledge

have been pointed out above—but you can get

knowledge as already structured condensed experience

of others. This is not automatically possible, of course,

but requires first the ability to consider other knowl-

edge carriers not only as parts of the external world,

but to recognize them as systems that are of the same

kind as oneself. For humans, the prerequisite for this is

the ability of empathy, to be able to empathize with

others, in order to exploit how they deal with problems

with which one will also be confronted oneself.

Likewise, one can mitigate the unpredictability of the

others by assuming that they are similarly constituted

as oneself, with similar feelings and desires, and

therefore can also be expected to behave similarly as

one would do oneself. This is certainly not wrongly

emphasized in modern anthropology, in particular in

the work of Tomasello (1999). If this capability is

available, also internally compiled knowledge struc-

tures can be transmitted through communication. The

importance of communication is then obvious and

therefore need not be further elaborated here. Knowl-

edge becomes the knowledge of a community by

individuals preserving individual aspects of knowledge

and making them available as needed and also taking

care of their preservation and tradition. See for

instance the analysis in Neuser (2013).

3. The external storage of knowledge. This requires a

symbolic representation of knowledge and leads from

the invention of writing to the modern databases. The

knowledge of the outside world is thus stored back in

the outside world. Thus, the boundaries between the

data and their representation get blurred. The book

does not need to remain a representation of something

else, but can become a separate object of knowledge,

namely a more highly structured one than the object

area to which it refers. By the fact that the outside

world can now include representations about itself, it

will become at the same time more regular and more

complex for the epistemic system and thereby in turn

grants the system a growth in complexity.

Representations of knowledge

So far we have treated knowledge implicitly as individual

knowledge, as the knowledge of an individual. But by

items (2) and (3) of the preceding section, there is also

cultural, social, technical, ...knowledge that is available to

all members of a community and that is preserved as a

common tradition or stored in books, databases, .... We can

now understand this common knowledge not only as an

extension of individual knowledge, but also highlight dif-

ferent ways of structuring. A comparison should therefore

be illuminating.

Here we can distinguish three systematic issues, namely

those about

1. Storage: where is the knowledge?

2. Code: how is the knowledge represented?

3. Access and organization: how and where to find

specific knowledge?
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These questions are obvious, and in many (but not all)

situations, the answers are just as obvious. The computer

science represents content traditionally in the code that is

simplest and therefore considered to be fundamental, the

binary one, and it stores data explicitly as a binary

sequences on the hard disk or other storage media and uses

concepts such as stack and queue for assembly and, for

example, hierarchical search trees for access. Some alter-

natives can be found in the various realizations of the

concept of the encyclopedia as an arrangement of all the

available knowledge and of a—more or less successful—

solution of the problem of specific search.15

• In Western antiquity, from the conception of Aristotle

of a systematic presentation of all available knowledge

in individual tracts a hierarchical organization emerges

as superimposing structuring principle which is devel-

oped in Hellenistic library catalogs.

• The ancient Chinese encyclopedias represent the most

extensive and most ambitious attempt ever undertaken

of systematic arrangements of the entire knowledge. It

involves a systematic organization of knowledge

available in one linear sequence immanently dictated

by the content, which, however, was partly based on

more extraneous combinatorial schemes rooted in

general cosmic ordering principles.16 Some of the

classification schemes in these encyclopedias appear

rather arbitrary and not necessarily appropriate for the

subject matter from the perspective of contemporary

science which is based on causal rather than systematic

principles. For example, the turtle is treated as a fish

because of its aquatic life.

• Incidentally, the Chinese encyclopedias do not contain

an index. Index and table of contents as a formal tool

for accessing specific knowledge from a source were

introduced by the schoolmen in Europe in the thirteenth

century.

• Associative knowledge networks: the related concepts

of Alsted, Kircher (see Kircher (1669)) and others

regain actuality, as emphasized by Breidbach (2005);

Breidbach (2007); Breidbach and Ghiselin (2006).

Here, too, of course, many details can be criticized as

in the Chinese encyclopedias. For example, the ideas of

Kircher for the deciphering of Egyptian hieroglyphics

nowadays seem abstruse, although they become under-

standable within his system. These knowledge

networks can also be seen in the tradition of mnemonic

systems (Yates 1966; Rossi 1983) which became

elaborate representations of an assumed structure of

the world. The Jesuit missionary Matteo Ricci was

inspired by such ideas to his ‘‘memory palace’’, a

method for memorizing the Chinese characters by

associatively linking them with visual imagery, by

positioning them in an imaginary spatial setting (for a

short description and other supplementary bibliographic

references see Spence 1984). Our memory cannot keep

unstructured data well, and the method of Ricci

represents an original approach to represent a largely

unstructured17 dataset by superimposing an internal

organizational principle that is extrinsic to the data.

• The internal logic of knowledge: deduction of knowl-

edge from a single principle: this is the approach of

Leibniz, which thus provides an explanation for the

coherence of the world and of knowledge. In particular,

this requires for Leibniz the replacement of associative

networks by a more rigorous formalism, which for him

is based on combinatorial rules.

• European encyclopedias as arrangement of knowledge

in individual articles in alphabetical sequence with a

system of cross-references. A systematic, associative or

logical arrangement is replaced by one based on a

convention (the Latin alphabet). As a search tree, the

latter allows to quickly find entries based on their

spelling; in a Chinese dictionary, this is much more

complicated and cumbersome. On this, the system of

cross-references is superposed that produces associative

links based on content relationships.

• Encyclopedias on CD-Roms: the actual ordering prin-

ciple is not disclosed to the user, who can acquire only

knowledge through cross-references (links). Anyway,

the electronic storage makes a hierarchical rather than a

linear organization of knowledge possible.

• Databases are limited to a fixed subject area and want

to develop the knowledge available for that field with

the help of interactive decentralized inputs. This results

in both the usual questions and problems of organiza-

tional structure (in particular fast access, efficient

storage, easy changeability of entries (updates)) and

automated data collection as well as those of the

15 These issues have been discussed in detail by Olaf Breidbach.
16 The systematic organizational structures of Chinese encyclopedias

have apparently not yet been systematically studied in the literature.

For an overview of the historical development see Schmidt-Glintzer

(1990), p. 308ff. The intellectual background of the encyclopedists is

represented in Needham (2017). For a satirical treatment, see Borges

et al. (1942).

17 I don’t intend to deny here that underlying the Chinese characters

there is a complex systematics that is based on both phonetic and

conceptual relations, which goes far beyond the pictorial element

which is usually naively considered as being the essential principle.

But this becomes evident only to the educated literates as the fruit of

long studies.
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internal coherence of the various items. More problems

arise when one wants to link databases together,

because the respective organizational principles are

usually not readily compatible. One must therefore

create metastructures, in which the individual structures

can find their places.

• Computer networks: upon entering a search entry,

search engines systematically search Internet sites

according to a sophisticated mathematical search

procedure that utilizes superficial word similarities

and links between websites. The intention is to make all

existing (on the Internet) knowledge about the chosen

keyword available to the user. By a simple Google

search, an answer can be obtained on any issue, but the

quality of the proposed answers cannot be guaranteed.

The user does not usually have the resources to check

the facts claimed on the websites identified by the

search engine. This entails the risk that the independent,

critical and creative aspect of knowledge acquisition,

selection and production is lost. This risk must be

addressed through the development of new methods of

source criticism. We are also led back to the problem of

finding certainty of knowledge, now, however, no

longer as a problem of internal consistency and

coherence and the external reference of individual

knowledge, but also as a social challenge of informa-

tion selection and evaluation. It may seem that thus

another old problem, namely the availability and

acquisition of information for individuals is converted

into its opposite as information overload. According to

our analysis, this is only apparently so, because the

importance of information is only revealed in an

internally structured context, and the task to condense

meaningful knowledge from a flood of data cannot

simply be solved by increasing that flood of data. Only

meaningful prestructuring of these data might provide

help (without relieving the individual of its own

independent critical evaluation), but precisely here lies

the difficulty.

All featured encyclopedic concepts show in one way or

another a predominance of the systematically ordering over

the logical or causally analyzing thinking, and they also

each reflect the intellectual trends of the eras that created

them, and perhaps in turn contributed to shaping those

trends.

But how does this compilation of different methods to

represent knowledge and make it available as systemati-

cally and completely as possible help us? All these meth-

ods have their shortcomings. The problem appears to lie in

the explicit form of storage. Our brain does not work like

an encyclopedia or a database nor like the Internet. So far,

the human head is smarter than all of its products. But how

then does it represent this knowledge? And to what extent

can we speak here of ‘‘representation’’?18

Certainly, to move forward, we need to turn away from

the idea of a simple facts memory. A genome contains

knowledge about the environment, but not as retrievable

facts, but as a guide for the production of proteins—and at

the same time as a guide for the manufacturing process

itself—that form cellular structures and processes, which in

turn constitute an organism that has a chance to compete in

its environment and replicate. The storage as such is indeed

explicit, as a chain of molecular building blocks, the

nucleotides, but there is no direct reference to any envi-

ronmental data, for example, the temperature of the habitat

or the possible food sources. The genome encodes only the

development scheme for an organism, a structure that can

carry out its metabolic processes in its habitat, or, in

another perspective, it contains those structuring rules that

can maintain an autopoietic process with the ingredients

available from the environment. The genome however

knows nothing about that. Neither does the organism (see

Jost 2017a for further discussion of this issue).

However, this leads us to an important aspect, namely

that of the complementarity of knowledge.

The organism does not need to know, for example, that a

certain plant contains important nutrients for it. It just

needs to feel the hunger to eat this plant, and to know

where to find such a plant. And if this plant grows

throughout its habitat, it does not even need to know that.

The organism therefore does not need to know the struc-

tural regularities of the environment, but only needs to

know how to exploit them, if knowledge is required at all

for that. It does not need to know the obvious, the auto-

matically given, and it cannot know what is accidental or

totally irregular (although from the standpoint of cognition,

causality is reversed here, because it is precisely what a

system does not know and does not understand which is

randomly and arbitrary for it). Its knowledge operates

between these extremes. Now we no longer have two

components, but three, namely environment, genome and

organism. From the perspective that has been implicitly

selected here, the environment does not know anything, but

has only certain imperfect regularities. These regularities

are a prerequisite for the existence of the genome. The

genome has just been selected because, on the basis of

these regularities and possibly also by favorable accidents

that have enabled it to exploit further regularities, it has

been able to spawn organisms that have been able to dis-

cover more regularities. The genome has thus learned these

regularities in the course of its evolution; for the organism,

they are then simply given, and it just needs to know how

to exploit them. Again, and this is an important point for

18 See the discussion in Ziemke and Breidbach (1996).
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our purposes, knowledge requires an internal structure,

which condenses experiences acquired on a different time

scale and makes them expectable as regularities. The latter

are nowhere represented, but their presence makes their

representation unnecessary. This is the complementarity of

knowledge.

So what is there between these two extreme poles, the

encyclopedia, in which all the knowledge available is

stored in a form that enables an explicit, direct access, and

the genome, in which only production rules are encoded for

the ingredients for building and maintaining an internal

process which then can achieve its own replication, i.e.,

between—at least in intention—a complete representation

and the absence of the need for any representation?

It may seem helpful at this point to return to the dis-

tinction between explicit and implicit knowledge. Instead,

we now want to blur this distinction. For that purpose, we

consider the so-called connectionist approach of cognition

research. Its basic model is the neural network, a dynamical

system whose internal attractors represent the response

capabilities of the system to external inputs. The input is in

this case the initial condition for a dynamical iteration,

which evolves over time from a transition phase into an

invariant stable inner activity sequence. ‘‘Invariant’’ means

here that this sequence is repeated periodically. In the

simplest case it is a fixed point, that is, the dynamics comes

completely to rest at a certain intrinsic value. Another

possibility is a periodic orbit, which is always traversed in

the same way. However, there may also exist chaotic

attractors, which while compressing the dynamics, still can

internally diverge. ‘‘Stable’’ means here that the system

returns to the same attractor after a not too large pertur-

bation. A dynamical system typically has many and dif-

ferent attractors, and which is realized depends on the

initial conditions. In this sense, therefore, the attractors

classify the initial conditions, that is, in the situation under

consideration the inputs.19 Each attractor has its own basin

of attraction, and when an input in falls into this range, the

dynamics will approach the corresponding attractor. In this

manner, an input classification is possible, in which similar

inputs typically lead to the same attractor, while more

distinct one can run towards different attractors. Now,

however, the attractors in a way are only virtual states,

because they will only be realized if the appropriate input

comes. They represent the dynamical possibilities of the

system. The system of attractors of a dynamical system is

determined by the system parameters, in particular through

the coupling strengths between its various elements or

parts. This coupling strengths or other system parameters

are usually concretely physically realized. In a neural

network, these are the strengths of synaptic connections

between individual neurons. A particular such parameters,

however, cannot be assigned to a single attractor, but exerts

an influence on the dynamical capabilities of the system as

a whole. This structure of possible dynamical time courses

can be influenced by varying those parameters. If one

wants to make a particular input to run into a given

attractor, one has to adjust the system parameters accord-

ingly. If this is done systematically, one speaks in this

context of learning.20 But then, learning is a global and

distributed process in the system, even if the correspon-

dence between inputs and attractors to be produced is local

and concrete. On the one hand, many parameters have to be

adjusted, if perhaps only slightly, and on the other hand,

the adjustment of each parameter has an impact on the

whole dynamics, and thus also on the dynamics set in

motion by other inputs. Thus, the system represents its

input classes on one hand virtually through its dynamical

capabilities, on the other hand in a distributed manner in

real physical parameters that simultaneously reflect the

influences of all input classes.

Neuronal and cultural knowledge

In the preceding section, we have also seen an interaction

between different structures that contain, represent, or

process knowledge. In his monograph (Breidbach 2013),

Olaf Breidbach has analyzed the interaction between the

brain and the culture, and he has coined the term of

‘‘neuronal aesthetics’’. Here, ‘‘aesthetics’’ does not refer to

the concept of beauty, but more generally to its origin in

the Greek word

to sense.

Both the neuronal and the cultural system constitute a

dynamic web of relations within which facts acquire their

meaning and relevance and for which external stimuli

come about as perturbations of their internal dynamics. In

either system, the external world does not enter as a direct

representation, but is only indirectly constructed from the

internal perspective that records and evaluates those per-

turbations. External stimuli have the effect of making the

internal dynamics more specific. They canalize the

dynamics so that it gets into a position to explore more

specific options, and it is precisely this what leads to the

evolution of such systems. As explained above, the inter-

play of external stimuli and internal structures and

dynamics can reduce complexity and thereby enable the

19 For the construction of the classification system see also the above

remarks on the gestalt concept.

20 This is dealt with in the already mentioned statistical learning

theory and the theory of neural networks, see e.g., Jost (2017b).
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system, be it a neuronal or a cultural one, to acquire new

forms of complexity. Here, as in biological evolution, each

system is constrained by its own structure, but in turn, this

structure can also canalize the system towards new evo-

lutionary possibilities (see the discussion in Jost 2017c).

The interaction of these systems offers evolutionary

potential in both directions. In one direction, cultural tra-

ditions obviously provide knowledge for individuals and

shape cognition their cognition and thereby offer a poten-

tial for accumulation that cannot be achieved by individ-

uals without communication. In the other direction, beyond

the trivial fact that culture emerges from interactions

between individuals, externalization of cognitive tech-

niques, as we saw in the preceding section, triggers cultural

dynamics. The interaction opens each system for new

evolutionary possibilities. Either type of system can benefit

from complexity gains of the other.

In order to understand knowledge, we therefore need to

analyze the interaction and the relations, or in mathemati-

cal terminology the morphisms (see Jost 2015a), between

these two webs of relations. They are not isomorphic, and

they have developed different schemes of codings, they

operate on different time scales, they are rigid or flexible in

different ways, but they can relate to each other and

interact. In fact, much of their structure and dynamics is

derived from and dependent upon their interaction. Olaf

Breidbach had hoped to develop a morpho-logic to capture

these morphisms between experience and physiology

without the pitfall of trying to reduce one to the other, in

order to gain deeper insight into both of them. This is his

program of a neuronal aesthetics.

Knowledge and process

In this last section, we summarize some of our insights in

an abstract manner and provide an outlook that links our

analysis to recent technological advances and prospects.

Knowledge is by its nature something static and thus

cannot be directly conceived as a process, but only as a

result or a condensate of a process. Conversely knowledge

structures cognitive processes. This interplay can be only

captured in the interaction of two different time scales, a

slow one, on which the knowledge is acquired, learned,

produced and arranged, and thereby changed, and a fast

one, on which it is used structurally to process, organize,

evaluate and also systematically generate incoming data

and signals. In this perspective, the Shannon information

theory operates on the fast, the statistical learning theory on

the slow time scale. Thus, we do not have here competing

theories, but ones that can complement and support each

other. To make this fruitful, an integration of the two time

scales is required. This then also resolves the confrontation,

an essentially static perspective, of structure and process,

and transforms it into a dynamic interaction. That some-

thing like that is required is already shown by the simple

consideration that on the fast time scale, the system

parameters that incorporate the knowledge of the system

are fixed and the input, for instance, the sensory signals,

changes while on the slow scale the system parameters are

adapted, hence changed, whereas the signal distributions,

or more generally, the regularities underlying the input, in

contrast are assumed to be fixed. In fact, these regularities

show up only on the slow scale because only by the

observation of many data, on the one hand random fluc-

tuations average out and on the other hand more complex

laws can be detected.

Thus, as shown in the above analysis, we have the

mutually coupled processes of knowledge acquisition and

knowledge structuring. In some situations, these processes

can be implemented and controlled on purpose, such as

when building a database. Deeper insights can be probably

obtained from processes in which the structure emerges

from a collective, distributed dynamics of mutually cou-

pled but still partially independent units, i.e., by a so-called

self-organization process. In particular, the artificial neural

networks already mentioned have been introduced to

implement this. The central idea of this theory is that

synaptic connections between the individual elements, the

(formal) neurons, get strengthened according to the corre-

lation between the activities of the two neurons involved.21

However, this leads to the problem that those synapses then

continue to strengthen, and one has to compensate for this

effect by a forgetting mechanism. A mechanism that is

theoretically elegant (Gerstner et al. 1996) and well sup-

ported in neurobiological experiments (Markram et al.

1997) is the so-called spike-time-dependent synaptic plas-

ticity that depends on the temporal relationships between

the dynamics of the neurons involved (this is also com-

patible with the original formulation of Hebb’s rule). Here

in analogy to brain cells, the formal neurons sum the

incoming excitations received by them via synapses from

other neurons, until a firing threshold is reached, and then

produce an excitation pulse that is propagated to other

neurons via synaptic connections again. These synapses are

directed, that is, let excitations through in one direction

only, and one can therefore distinguish the presynaptic and

postsynaptic neuron in each constellation. The mentioned

learning rule now increases the strength of the synapse

when the presynaptic neuron fires shortly before the post-

synaptic one, that is, when the incoming excitation

21 This is the Hebbian theory, named after Hebb (1949). Hebb

himself traced this rule, however, back to Sigmund Freud. But this is

still not the original source, since this rule had been formulated within

a conception of an associative network already by Simon Exner in

1894 (Exner (1999)), see Breidbach (2001).
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contributes to activating the postsynaptic neuron. On the

other hand, the synapse is weakened if the temporal order

is reversed (see Jost 2006 for a mathematical model).

By means of such learning rules associative networks

can be built that can associate an input to a stored pattern.

In the above-mentioned context of dynamical systems,

each input class can be translated into a specific dynamical

activity, which then just represents the stored pattern to

which the input belongs. By a stored pattern, one would

initially mean something imposed from the outside, but

more interesting are internally evolving and emerging

patterns. Now through the operation of the relevant learn-

ing rules, when exposed systematic inputs actually internal

attractors develop in the network, which then classify the

inputs and thus assign them to internally constructed rep-

resentations. However, the question is how far this

approach really carries, in particular, whether through such

a simple, purely local learning rules also higher structures,

such as the gestalts discussed above can emerge. Perhaps it

is more likely that such association rules can be useful only

within a process that is set in motion and maintained by

more general structural principles.

The application of neural networks has recently seen

dramatic advances, by creating so-called deep neural net-

works, that is, networks, that like the mammalian neocor-

tex, contain several layers. In fact, instead of only six

layers, as we possess them, these networks often derive

their performance from hundreds of layers. Perhaps the

need for so many layers indicates that those deep neural

networks capture one important aspect of how the mam-

malian, and in particular, the human brain functions, but

other key aspects probably still elude them. Better under-

standing those principles of brain function should be

expected to lead to further dramatic improvements of the

performance of artificial neural networks.

In machine learning, a somewhat different approach is

pursued. One starts with certain structural priors to handle

high dimensional data sets. For instance, in compressed

sensing (Candès et al. 2006; Donoho 2006), one assumes

that there only exist few sources that have produced those

high dimensional data. In manifold learning (Belkin and

Niyogi 2003), one assumes that the data sit on or near an

intrinsically low dimensional smooth manifold, which may

then possibly stretch in a complicated manner into the high

dimensional data space. Or one assumes that the data are

intrinsically sums, with only a few terms, of products of

low dimensional vectors (Hackbusch 2012). A question is

whether these approaches can be subsumed under more

general principles, in light of the preceding considerations.

This is further discussed in Jost (2016, 2015b).
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Ay N, Löhr W (2015) The Umwelt of an embodied agent—a

measure-theoretic definition. Theory Biosci 134:105–116

Bateson G (1972) Steps to an ecology of mind. In: Collected essays in

anthropology, psychiatry, evolution and epistemology. Chandler

Publishing Company

Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality

reduction and data representation. Neural Comput 15:1373–1396

Bertschinger N, Wolpert D, Olbrich E, Jost J (2015) Value of

information in noncooperative games. arXiv:1401.0001

Borges JL (1942) El idioma analı́tico de John Wilkins, La Nación,

Argentina. Reprinted in: Borges JL (1996) Obras completas,
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Breidbach O (2013) Neuronale Ästhetik. Zur Morpho-Logik des

Anschauens. Wilhelm Fink Verlag, München

Breidbach O, Ghiselin M (2006) Athanasius Kircher (1602–1680) on

Noahs Ark: Baroque ‘‘Intelligent Design’’ Theory. Proc Calif

Acad Sci 57:991–1002

Breidbach O, Jost J (2006) On the gestalt concept. Theory Biosci

125:19–36

16 Theory Biosci. (2017) 136:1–17

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1401.0001


Breidbach O, Kutsch W (1990) Structural homology of identified

motoneurons in larval and adult stages of hemi- and holometa-

bolous insects. J Comp Neurol 297:392–409

Breidbach O, Vercellone F (2011) Anschauung denken. Wilhelm Fink

Verlag, München

Candès E, Romberg J, Tao T (2006) Stable signal recovery from

incomplete and inaccurate measurements. Commun Pure Appl

Math 59:1207–1223

Chomsky N (1959) Review of verbal behavior by B.F.Skinner.

Language 35:26–58

Chomsky N (1965) Aspects of the theory of syntax. MIT Press,

Cambridge

Chomsky N (1981) Lectures on government and binding. Foris,

Dordrecht

Chomsky N (1995) The minimalist program. MIT Press, Cambridge

Donoho D (2006) Compressed sensing. IEEE Trans Inform Theory

52:1289–1306

Eco U (2002) Einfhrung in die Semiotik, 9th edn. Wilhelm Fink

Verlag, München

Engel A, Friston K, Kragic D (eds) (2015) The pragmatic turn.

Toward action-oriented views incognitive science. MIT Press,

Cambridge

Exner S (1999) Entwurf zu einer physiologischen Erklärung der

psychischen Erscheinungen, Frankfurt. Reprint of the original

1894 edition

Fried J (2003) Geschichte und Gehirn. Irritationen der Geschichtswis-
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