
RESEARCH Open Access

Identification of genome-wide non-
canonical spliced regions and analysis of
biological functions for spliced sequences
using Read-Split-Fly
Yongsheng Bai1,2*, Jeff Kinne3, Lizhong Ding1, Ethan C. Rath1, Aaron Cox3 and Siva Dharman Naidu3

From The International Conference on Intelligent Biology and Medicine (ICIBM) 2016
Houston, TX, USA. 08-10 December 2016

Abstract

Background: It is generally thought that most canonical or non-canonical splicing events involving U2- and U12
spliceosomes occur within nuclear pre-mRNAs. However, the question of whether at least some U12-type splicing
occurs in the cytoplasm is still unclear. In recent years next-generation sequencing technologies have revolutionized
the field. The “Read-Split-Walk” (RSW) and “Read-Split-Run” (RSR) methods were developed to identify genome-wide
non-canonical spliced regions including special events occurring in cytoplasm. As the significant amount of genome/
transcriptome data such as, Encyclopedia of DNA Elements (ENCODE) project, have been generated, we have
advanced a newer more memory-efficient version of the algorithm, “Read-Split-Fly” (RSF), which can detect
non-canonical spliced regions with higher sensitivity and improved speed. The RSF algorithm also outputs the
spliced sequences for further downstream biological function analysis.

Results: We used open access ENCODE project RNA-Seq data to search spliced intron sequences against the
U12-type spliced intron sequence database to examine whether some events could occur as potential signatures
of U12-type splicing. The check was performed by searching spliced sequences against 5’ss and 3’ss sequences
from the well-known orthologous U12-type spliceosomal intron database U12DB. Preliminary results of searching
70 ENCODE samples indicated that the presence of 5’ss with U12-type signature is more frequent than U2-type
and prevalent in non-canonical junctions reported by RSF. The selected spliced sequences have also been further
studied using miRBase to elucidate their functionality. Preliminary results from 70 samples of ENCODE datasets
show that several miRNAs are prevalent in studied ENCODE samples. Two of these are associated with many diseases as
suggested in the literature. Specifically, hsa-miR-1273 and hsa-miR-548 are associated with many diseases and cancers.

Conclusions: Our RSF pipeline is able to detect many possible junctions (especially those with a high RPKM) with very
high overall accuracy and relative high accuracy for novel junctions. We have incorporated useful parameter features
into the pipeline such as, handling variable-length read data, and searching spliced sequences for splicing signatures
and miRNA events. We suggest RSF, a tool for identifying novel splicing events, is applicable to study a range of diseases
across biological systems under different experimental conditions.
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Background
Alternative splicing (AS) is an important posttranscrip-
tional process enabling a single gene to generate mul-
tiple different transcripts, also called isoforms [1, 2]. AS
can increase the proteome diversity as well as modu-
late the stability of mRNAs by means of downstream
RNA quality control (QC) mechanisms, which include
nonsense-mediated decay (NMD) of the transcripts
that possess premature termination codons and nu-
clear retention and elimination (NRE) of transcripts
that contain introns [3]. In eukaryotes, the AS process
removes introns from the nuclear pre-mRNAs with the
help of the spliceosome, which can recognize con-
served short consensus sequences within the introns
and at intron-exon boundaries. More specifically, con-
served dinucleotides located at the first two and the
last two positions of introns in the pre-mRNAs are
recognized by the spliceosome [4].
In higher eukaryotes, there are two types of identified

spliceosome complex that catalyze the pre-mRNA
splicing [5]. The majority of pre-mRNA introns (U2-type
introns) are excised by the U2-dependent, major spliceo-
some that is found in all eukaryotes, whereas approxi-
mately 0.35% of human introns (U12-type introns) were
removed by the U12-dependent, minor spliceosome that
is found in only a subset of organisms [6–8]. Approxi-
mately 700 to 800 genes containing U12-type introns
were identified in the human genome [9]. Unlike U2-
type introns, the U12-type introns lack a polypyrimidine
tract that is located upstream of the 3′ splice site (ss)
however, the U12-type introns have highly conserved se-
quences located at their 5′ ss as well as branch sites [6].
It was found that, within the same gene, the U12-type
introns co-occur with the U2-type introns, but the U12-
type introns are spliced more slowly, suggesting the role
of U12-type splicing in a rate-limiting step in gene ex-
pression [10]. The U12-dependent spliceosome is com-
posed of the U11, U12, U4atac, and U6atac snRNPs,
which are the functional homologs of the U1, U2, U4,
and U6 in the U2-dependent spliceosome, respectively.
Both U2-type and U12-type spliceosomes have the U5
snRNP [5, 8]. Although U2-type and U12-type spliceo-
somes have most of their protein components shared,
seven protein components are unique and associated
with the U11/U12 di-snRNP so that the U11/U12 di-
snRNP can recognize the branch point sequences and
the 5′ splice sites of the U12-type introns [8].
Mutations in the U12-type spliceosome, either in

specific snRNA or in protein components, can cause
diseases of very narrow tissue-specific consequences
[11, 12]. Three patients possess severe isolated growth
hormone deficiency (IGHD) and pituitary hypoplasia
that arise from the biallelic mutations in the RNPC3
gene that encodes the 65 kDa protein component of

the U12-type spliceosome [12]. Mutations in specific
regions in the U4atac snRNA cause microcephalic
osteodysplastic primordial dwarfism type I (MOPD I),
also called Taybi-Linder syndrome (TALS). The muta-
tions most probably result in distortion of the phylo-
genetically conserved stem-loop (SL) structure formed
by U4atac snRNA. The distortion prevents the normal
binding of a 15.5 K protein component of the spliceo-
some to the SL structure, thereby causing a series of
downstream consequences, and eventually accumulat-
ing the immature pre-mRNAs that carry unspliced
U12-type introns [13].
MicroRNA (miRNA) are small, non-coding RNA that

serve as genetic regulatory elements in animals by silen-
cing, and in rare cases enhancing, other mRNA tran-
scripts. These single-stranded RNA are approximately
22 nucleotides in length and are involved in many pro-
cesses throughout the body [14, 15]. These small mature
miRNA are processed from longer pre-miRNA. Pre-
miRNA forms a stem and loop structure that is proc-
essed by two RNase III enzymes: Drosha and Dicer [16].
Regulation mediated by miRNA targets mature mRNA
in the cytoplasm, the miRNA will bind to the 3’UTR of
the target mRNA. This binding can help to stabilize the
targeted transcript but is usually followed by the inter-
action with RISC complex which leads to degradation of
the mRNA, by this process miRNA is able to effectively
silence the translation of its target [17]. Beyond degrad-
ation, miRNA also physically impairs the binding of the
mRNA to the ribosome [14, 15]. It is estimated that
more than 60% of all protein coding genes are regulated
by miRNAs by these methods [18]. As such, miRNA has
been implicated in many different complex diseases.
These diseases include many cancers, neurological

diseases, cardiovascular disease, and other inheritable
diseases. In cancer miRNA expression profiles have
been well documented with many differences in ex-
pression between normal and tumor tissue. Typically
this is shown by an overall downregulation of miRNA
in tumor tissues [19]. miRNAs are able to act as either
tumor suppressor genes or oncogenes depending on
the targets of the specific miRNA [20–23]. The devel-
opment of neurons is highly influenced by the pres-
ence of miRNA [24]. As such, the misregulation of
miRNA has been implicated in Parkinson’s disease,
Alzheimer’s disease, Down’s syndrome, and many other
diseases [25–33]. The involvement of miRNA in car-
diovascular diseases is similar to their involvement in
neurological diseases - changes in miRNA expression
can lead to arrhythmias, vascular abnormalities, unre-
stricted muscular growth, hypertension, and can lead
to death if completely removed [34–42]. Other diseases
that have been associated with miRNA include 5q
syndrome, ICF syndrome, Rett’s syndrome, Crohn’s
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disease, and even deafness [43–48]. With the implica-
tions of miRNA in a multitude of complex diseases
they have become important for targeted therapies and
potential indicators of these diseases making them an
important target for further study.
Given that such types of non-canonical splicing events

of short mRNA regions and U12-type intron are import-
ant across biological systems and diseases, there is an ur-
gent need to develop methodologies for identifying all
possible non-canonical short splicing regions in cytoplasm
and also looking for U12-type spliced isoforms. Most
existing tools for detecting next-generation sequencing-
based splicing events focus on generic splicing events.
Consequently, non-canonical splicing events of short
mRNA regions occurring within the cytosol and U12-type
events have not yet been thoroughly investigated using
bioinformatics approaches in conjunction with next-
generation technologies at a genome-wide level.
We have developed a novel bioinformatics pipeline

method named the Read-Split-Walk (RSW) [49] and
Read-Split-Run (RSR) [50] for detecting non-canonical,
short, splicing regions using RNA-Seq data. In this
study, we have advanced the algorithm with an im-
proved running speed and memory usage. We have ap-
plied RSF on human ENCODE data to characterize
U12 splicing and study miRNA signatures in spliced
sequences.

Results
RSF pipeline
The presence of novel isoforms by splicing independ-
ent of normal mRNA processing has previously been
identified by the Read-Split-Walk (RSW) pipeline de-
veloped in 2014 [49] and Read-Split-Run (RSR) [50].
Here we developed an updated version of RSF: Read-
Split-Fly. This enhanced RSF has a newly developed
pipeline with improved performance, sensitivity, and
flexible parameter features. This pipeline has achieved
a reasonable specificity (>60%) of novel junctions for
the half of tested ENCODE samples and high specifi-
city for detection of both known and novel junctions
for ¾ of tested ENCODE samples, with some samples
having as high as 98% specificity (Fig. 1). The lower
bound of the sensitivity of RSF was calculated using
the UCSC refFlat file, this resulted in a total of sensi-
tivity across all samples tested (39%) with a maximum
sensitivity of 90% (Fig. 2a). Calculating the sensitivity
only for genes with a single isoform and detected by
RSF resulted in a slightly higher sensitivity calculation
overall (Fig. 2b). An analysis was also performed for
genes grouped by RPKM. As expected, RSF has a much
higher sensitivity in detecting high RPKM genes than
those with a low RPKM (Fig. 2a-c).

Comparison of detected spliced regions between RSR and RSF
RSR and RSF were both run on the same 70 samples
from the ENCODE dataset in order to compare their
performance and sensitivity. The efficiency of RSF over
RSR is evident in the amount of memory and CPU time
that each sample requires to complete its run. RSF
showed an average of four-fold decrease in needed CPU
time and a threefold decrease in the required memory
(Fig. 3 and Additional file 1). Along with improvements
in the efficiency of the program, RSF is able to detect
more spliced regions than RSR. RSF can detect 6% more
spliced regions than RSR reports as well as more unique
junctions (Table 1).

The spliced regions detected by the RSF pipeline for
human ENCODE data
The RSF pipeline was used to identify spliced regions
that exhibit different signature in cancer versus normal
samples from the ENCODE dataset. The analysis was
performed using 28 cancer samples and 42 normal
samples from ENCODE (Additional file 1). Two hun-
dred ninety-seven spliced regions were found to occur
in a higher percentage (greater than 50% difference) of
cancer samples than normal samples; of these, 26 were
detected within at least 55% of the cancer tissue sam-
ples, with the greatest occurrence being 86%. These
were further classified by their specific tissue type.
Specifically, all of them were found in samples associ-
ated with the adenocarcinoma and breast cancer, and
some subset of the same 297 junctions were found in
the other types of cancer (Table 2). Six hundred eleven
unique splice junctions were found that occurred in a
much higher percentage (greater than 50% difference)
of normal samples than cancer samples; of these, 168
were detected within at least 55% of the normal tissue
samples (Additional file 2). These results are based on
the normalized comparison. These shared splice junc-
tions show great potential for further analysis of their
importance in the development of these specific
cancers and in general tumor formation.

The downstream analysis for spliced sequences of RSF
algorithm
Using various splicing categories of downloaded U12
and U2-type intron queries against the junctions as
queries, we blasted the queries against the splice junc-
tion sequences reported by RSF from 70 ENCODE sam-
ples. We found that U2-type intron hits are much more
than the U12-type hits, consistent with the major pro-
portion of U2-type introns and minor proportion of the
U12-type introns. The 5p_full queries got less hits than
the 3p_full queries in both U12 and U2 type introns.
Interestingly, both U12-type and U2-type intron 5p_full
queries hits more novel splicing junctions relative to the
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known splice junctions, whereas both U12-type and U2-
type 3p_full queries hits less novel splicing junctions
relative to the known splice junctions. We also observed
that there are more U12-type than U2-type for 5p_full
category (Table 3). We didn’t have branch queries for
U2, which were not listed in the U12DB website [51].
For the spliced junctions found by RSF in 70 human

ENCODE samples, the spliced sequences were exported
for further analysis. Homo sapiens miRNA sequences
were downloaded, and a custom shell script was written
to run BLAST to report the number of hits of each
miRNA sequence within each ENCODE spliced
sequence. The total number of hits of each miRNA
sequence over spliced sequences from all 70 ENCODE
samples is reported in Fig. 4 and Additional file 3. Two
hundred twenty-one miRNAs have at least 1 hit among
the spliced sequences from 70 ENCODE samples. Seven
miRNAs hits were seen within the spliced sequences of
at least 30 out of 70 ENCODE samples. Of these seven,
hsa-miR-1273d, hsa-miR-548aa, hsa-miR-548 t-3p, and
hsa-miR-1273 g-3p have known associations with differ-
ent cancer types. The cancer association results are
summarized in Table 4.

Discussion
Parameter consideration in RSF pipeline
Several parameters allow the user to customize RSF out-
put, but have little effect on the time or resources
needed to execute the pipeline. These include MODE

and SUPP. MODE must be “analytic” or “comparison”.
Single datasets are run in analytic mode. Comparison
provides a side-by-side comparison of common and
unique splice junctions in addition to the standard out-
put for each dataset. Any potential splice junction site
must carry a minimum of SUPP supporting reads to be
reported.
The MIN_D and MAX_D parameters control the

minimum and maximum distance for which split reads
are reported by RSF. In general, larger values may in-
crease both sensitivity and the running time of the pipe-
line. MAX_ALIGNMENTS determines the number of
alignments before a read or partial read is ignored due
to having too many alignments. A higher value may in-
crease sensitivity and running time. MIN_SPLIT_SIZE
determines the smallest length that a read is split into
for mapping to the reference genome. A lower value in-
creases sensitivity and running time. Running time can
be made quite small for test runs by setting both
MAX_D and MAX_ALIGNMENTS very low and MIN_-
SPLIT_SIZE very high (e.g., 10,000, 2, and just under
half of the original read length, respectively).

Disk utilization of our RSF algorithm
For each RNA-Seq read that originally fails to align to the
reference genome, there is a quadratic increase in storage
requirements which scales relative to the minimum split
size selected. With a minimum split size of 11 nt selected,
a relatively small FASTQ file containing 7.8 million

Fig. 1 Specificity measured for all detected junctions (red) and for just novel junctions (blue) across 70 ENCODE samples
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unmapped reads measuring 50 nt each would become a
file with 453.4 million reads measuring between 11 and
39 nt. In terms of disk space usage, this particular file ex-
pands from 1.2 to 53.2GB. Since these files can rapidly fill
up even large hard drives, it is important to delete files as

they become unnecessary. Our pipeline has been devel-
oped to automatically delete alignment output files gener-
ated from two steps of bowtie. This use of inexpensive
disk space to handle intermediate data lends itself to a
more memory-efficient program.

a

b

c

Fig. 2 Measure of sensitivity of RSF across 70 samples. (a) Sensitivity measured for all known junction across 70 different samples separated by RPKM of
supporting reads. All detected and possible junctions (blue), Bin 1 (red) RPKM <5, Bin 2 (green) RPKM 5–10, Bin 3 (purple) RPKM 10–50, Bin 4 (light blue)
RPKM 50–100, and Bin 5 (orange) RPKM >100. (b) Sensitivity for the genes detected by RSF with a single isoform, bins same as above. (c) Total sensitivity
of all genes across all samples in each bin (explained above) for all genes detected (blue) and only single isoform genes detected (red)
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RSF running speed, sensitivity, and specificity
With these improvements RSF produces results for
larger datasets in much less time allowing for more data
to be processed and a better and more thorough under-
standing of potential novel splice junctions. RSF also can
process RNA-Seq files containing variable-length reads,
which makes our software be more flexible in handling
data generated from Ion Torrent sequencer. The low
sensitivity of certain files was directly correlated with the
number of junctions that were reported by RSF as well
as the RPKM. Genes with a low RPKM had much lower
sensitivity (31%), while those with a high RPKM showed
a much higher total sensitivity (82%) (Fig. 2c). Sensitivity
calculations can be artificially low for genes with many

isoforms that are not expressed. For genes with only a
single isoform in the UCSC ref.-flat file, the sensitivity of
RSF ranged from 39% for low RPKM genes to 93% for
genes with high RPKM (Fig. 2b-c). Conversely, the speci-
ficity for RSF to accurately detect all junctions and novel
junctions are relatively high. Overall, RSF is able to de-
tect many possible junctions (especially those with a
high RPKM) with very high overall accuracy and rather
high accuracy for novel junctions.

Applying RSF on human ENCODE RNA-Seq data
The splicing events identified by RSF on the 70 human
ENCODE samples used for this project, yielded many
potential avenues for further research. The novel splice
junctions (Additional file 2) are especially of great inter-
est. These splicing events were present in cancerous tis-
sues making the transcripts and their potential protein
products good candidates for the study of cancer devel-
opment. Because of their novel nature, the impact of
these splicing events cannot be ascertained at this mo-
ment, but we are hopeful in the impact of the discovery
of these and many more using RSF. The previously
known splicing events are also an interesting avenue of
research as they are still expressed differently between
cancerous and normal tissue. It is also interesting to
note the distribution of shared splicing events, the nor-
mal tissue has the most shared splicing events around a
quarter of all samples and quickly tapers off from there
(Fig. 5). The cancerous samples however, have two not-
able maxima, one at 0.3 and another at 0.55, making the
curve taper at a much steadier rate. From this we can
reasonably conclude that the cancerous tissue seems to
have a greater number of shared sequences for a higher
percentage of its samples (Fig. 5).

Conclusions
We have developed an improved RSF pipeline that can
detect novel splicing events with better performance and
accuracy when compared to previous RSW and RSR
methods. Our RSF allows flexible parameters and can
process large number of samples in a memory efficient
manner.

a

b

Fig. 3 Comparison of average memory usage (a) and average
running time (b) between RSR (blue) and RSF (red) for 66 ENCODE
samples. Error bars show a single standard deviation

Table 1 Comparison of junctions detected by RSR and RSF

RSR RSF

Entries 146,769 155,021

Unique Splices 15,762 24,014

Splice junctions in common 131,007

Table 2 Number of unique splice junctions with at least 50%
greater frequency in Cancer samples than Normal samples,
and vice versa

Total unique junctions (Cancer) 297

Adenocarcinoma 297

Neuroblastoma 1

Cervical Cancer 2

Breast Cancer 297

Leukemia 294

Total unique junctions (Normal) 611
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Methods
The reference genome for Read-Split-Fly
The RSF program uses the Homo sapiens GRCh37/hg19
genome as its reference for all bowtie related alignment
and splice junction detection. This genome is freely
available for download from the University of California
Santa Cruz Genome browser [52].

Read-Split-Fly Algorithm
RSF shares the same basic framework that was devel-
oped in earlier work [49, 50]. In brief, (i) short reads of
RNA-Seq data are mapped to a reference genome with
the bowtie aligner, (ii) unmapped reads are split at vari-
ous points, (iii) the read parts are mapped to the refer-
ence genome, (iv) mapped parts that are from the same
original read and map within the same gene are called a
matched pair, and (v) all matched pairs are compared to
determine which support each other and which splice
junctions have a high amount of support. See [50] for
more details on the basic framework.
RSF has a number of key improvements over the

earlier RSR and RSW pipelines – allowing files with vari-
able length reads, improved speed and memory effi-
ciency, increased sensitivity, and incorporation of
downstream analysis. The entire pipeline is updated so
input files can contain reads of variable length; this is

done by modifying each part of the code to take the read
length into account (previously the read length was a
parameter fixed during the processing of a given input
file). The calculation of supporting reads is performed in
a faster and more memory-efficient manner. Speed and
memory usage are improved by sorting candidate splices
by both ends of the splice and processing all matched
pairs in a given region of the genome at once.
Sensitivity is improved in the pipeline by taking into

account sub-sequences of unmapped reads that do not
result in any matched pair. Unmapped reads are split
into two parts (a left and right side) and aligned to the
reference genome. In some circumstances, one part
aligns to many locations; for example this occurs if one
side is very short (e.g., if the read is split into left side of
length 8 and right side the remaining nucleotides). In
these situations, both RSR and RSF ignore the part that
aligns to many locations for reasons of efficiency. RSF
rescues these reads by including the remaining longer
side of the read when computing supporting reads of
matched pairs – alignments of the long side of reads
that have no matched pairs are compared against candi-
date splices, and are counted as supporting a matched
pair if the longer side aligns with one end of the splice.
The RSF pipeline includes the option of including down-

stream analysis by searching databases of U12 and U2-

Table 3 Number of junctions reported by RSF for various splicing categories of U12 and U2-type

U12 U2 Grand Total

Query Known
Sequences

Novel
Sequences

U12
Total

Known
Sequences

Novel
Sequences

U2
Total

3p_Full 6583 742 7325 823 155 978 8303

5p_Full 204 272 476 14 47 61 537

branch 2357 386 2743 0 0 0 2743

Grand Total 9144 1400 10,544 837 202 1039 11,583

Fig. 4 The miRBase miRNA hits for 70 ENCODE samples (Only miRNAs that have > = 30 hits are labeled)
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type splice sequences and miRNA sequences within the
splices found by the pipeline, as described further below.

Methods of running Read-Split-Fly on human ENCODE
dataset
Using RSF over 150,000 unique splice junctions were de-
tected within the ENCODE data sets downloaded from
the encode website [53] (https://www.encodeproject.org/).
Most of these junctions were shared by another, or by
many other, samples within the 70 samples studied for this
project. Within this data set 42 samples were collected
from normal tissue and 28 samples were from cancerous
tissue. Of these tissues 4 were from neuroblastoma, 3
from cervical cancer, 3 from breast cancer, 8 from adeno-
carcinoma, and 9 from leukemia samples. The final
sample of the cancer set was from a liver tumor but was
left out of analysis as it lacked any replicates. In order to
better classify the splicing events with the most potential
for further analysis we further classified splicing events
by the difference in the frequency with which they
appear in the normal versus cancer samples, allowing
for a pseudo-differential expression analysis of these
splicing events. For our study we focused on the

samples that had over 50% difference occurrence for
cancer versus normal samples.
RSF initially aligned the RNA-Seq reads to the hg19 ref-

erence genome using the bowtie sequence aligner, version
1.0.1 [54], with the arguments “-p 7 -n 3 -e 112 –un”.
These parameters specify the use of 7 threads (−p 7), allow
3 mismatches in the first 28 bases on the high quality end
of the read (−n 3), and stipulate that the sum of the Phred
quality values across all mismatched positions in the read
must not exceed 112 (−e 112). In this step we are inter-
ested in reads that do not initially match (−-un).
The RNA-Seq reads in the ENCODE samples we have

processed with Read-Split-Fly at this time vary in length
from 34 to 101 nt. We selected the minimum split
length for each experiment based on the length of the
original read (15 nt if <75, 30 nt if ≥75).
These lengths were chosen to balance the resources

needed to execute the pipeline with the sensitivity of
support for potential splice junction sites.
RSF then aligned these reads with bowtie using param-

eters “-p 7 –best -m 2 -k 2 -v 0”. We allowed no
mismatches (−v 0) and suppressed all alignments if more
than 2 alignments are reported (−m 2). With the -v 0
mode, the –best argument instructs bowtie to attempt
800 backtracks instead of the default 125.
RSF next calculated the number of supporting reads at

each splice junction site. Potential junction sites are only
reported if the splice is between 2 and 50,000 nt long and
has at least 2 supporting split reads. For these experi-
ments, we configured RSF to allow for two split reads to
support each other if the corresponding left and right ends
align within 5 nt of each other. This allows reporting
splice junction sites even when there exists reference
genome ambiguity due to repeated nucleotide sequences.

BLAST the U12DB introns and miRNABase miRNAs against
the splice junction sequences found by RSF
The miRNA sequences were downloaded from the
miRBase websites [55–60] (http://www.mirbase.org/)
Release 21. U12-type and U2-type introns were down-
loaded from the U12DB website [51] (http://geno-
me.crg.es/cgi-bin/u12db/u12db.cgi), and listed in
Additional file 4. The downloaded U12-type and U2-
type intron sequences were processed and classified
into different categories as queries in the next BLAST
step. The customized SQL script was written to retrieve
U12-type and U2-type sequences. The categorized
query files are delineated in Table 5 and Fig. 6. The
logos of the Fig. 6 are adapted from Padgett [61].
A custom C program was written to process the cate-

gorized U12-type and U2-type introns and miRNA
sequences into FASTA format files. We used BLAST
[62] to identify the regions of similarity, using the fore-
going categorized U12-type introns, U2-type introns, or

Table 4 Top hits for disease associated miRNAs

miRNA name Hits Associated diseases

hsa-miR-1273d 64 Disease Progression Lymphoma, Large B-Cell,
Diffuse 0Melanoma Neoplasm Metastasis
Neoplasms Skin Neoplasms Uterine
Cervical Neoplasms

hsa-miR-548a 46 Acute Disease Carcinoma, Hepatocellular
Cell Transformation, Neoplastic Chromosome
Deletion Colorectal Neoplasms Cri-du-Chat
Syndrome Disease Progression Glioblastoma
Hematologic Neoplasms Liver Neoplasms
Lymphoma, Large B-Cell, Diffuse Melanoma
Microsatellite Instability Multiple Sclerosis
Neoplasm Metastasis Neoplasms Neoplasms,
Glandular and Epithelial Ovarian Neoplasms
Prostatic Neoplasms Pulmonary Embolism
Skin Neoplasms

hsa-miR-548 t-3p 46 Acute Disease Carcinoma, Hepatocellular Cell
Transformation, Neoplastic Chromosome
Deletion Colorectal Neoplasms Cri-du-Chat
Syndrome Disease Progression Glioblastoma
Hematologic Neoplasms Liver Neoplasms
Lymphoma, Large B-Cell, Diffuse Melanoma
Microsatellite Instability Multiple Sclerosis
Neoplasm Metastasis Neoplasms Neoplasms,
Glandular and Epithelial Ovarian Neoplasms
Prostatic Neoplasms Pulmonary Embolism
Skin Neoplasms

hsa-miR-619-5p 31 Not Available

hsa-miR-1273 g-3p 30 Disease Progression Lymphoma, Large B-Cell,
Diffuse Melanoma Neoplasm Metastasis
Neoplasms Skin Neoplasms Uterine
Cervical Neoplasms

hsa-miR-5096 30 Not Available

hsa-miR-5585-3p 30 Not Available
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miRNA sequences as queries and the spliced sequences
discovered by RSF from the 70 human ENCODE sam-
ples as subjects of a custom database. RSF ran BLAST
by assigning the following parameters - match reward
value: 1, mismatch penalty: 1, gap open: 2, gap extend: 2,
each expected values: 0.0001, 0.001, 0.01, 0.1, 1, 2, 3, 4,
5, 10, 100, and 1000. The miRNA BLAST reported zero
hits for two ENCODE samples, ENCSR000AEK and
ENCSR000AET, out of the 70 ENCODE samples. The e-
value cutoff of 0.001 is used to select significant miRNA
hits from the rest 68 samples.
A custom shell script was written to interpret the re-

sult files of the BLAST search. The script tabulates the
number of junctions reported by RSF for various spli-
cing categories of U12 and U2-type. The same script is
used in downstream analysis for miRBase miRNAs that
hit on the splice junction sequences from 70 human
ENCODE samples.

Calculation of sensitivity and specificity
Both specificity and sensitivity are calculated for the
junctions found by RSF for each of 70 ENCODE sam-
ples. Specificity and sensitivity are calculated for the de-
tected junctions following the metrics: 1) Specificity for
RSF detected novel junctions (number of RSF detected
novel junctions that are validated by EST/ number of
RSF detected novel junctions); 2) Specificity for RSF de-
tected junctions (number of RSF detected junctions that
are validated by EST/ number of RSF detected junc-
tions); 3) Sensitivity for RSF detected known junctions
(number of RSF detected known junctions/ number of
UCSC refFlat file possible junctions of genes present in
RSF detected known junctions).
The expression sequence tag (EST) is the standard to

determine whether detected junctions, novel and/or
known, are supported by experimental validation. The
EST data [63] is downloaded from the UCSC table
browser (http://genome.ucsc.edu) with the following
parameters: clade =Mammal, genome = human, assem-
bly = Feb.2009(GRCh37)/hg19, group = All Tracks,
track = human ESTs, table = all_est, region = genome,
output format = GTF – gene transfer format [52] A de-
tected junction is considered to be validated by EST if
its left boundary is overlapped with at least one EST
end within 5 bp size buffer to the left and the right, and
its right boundary is overlapped with at least one EST
start within 5 bp size buffer to the left and the right.
EST was calculated for each ENCODE sample proc-
essed by RSF (Fig. 1).
The sensitivity calculations were performed both for

all genes with junctions detected by RSF (Fig. 2a), and

Fig. 5 A display of the number of common junctions for cancer (red diamond) and normal samples (green squares) that are present in a given
percentage of samples for each class (cancer and normal). Number of samples in each category is normalized by dividing the number of samples
by the total amount of samples in that class (Green: Normal; Red: Tumor)

Table 5 The categorized U12-type and U2-type introns as
queries and their stretch of the sequence included

Categorized names Stretch of sequence included

u12db_3pFull_u12 40 bp of the 3′ acceptor site in the intron and
6 bp of the beginning of the right adjacent exon

u12db_3pFull_u2 40 bp of the 3′ acceptor site in the intron and
6 bp of the beginning of the right adjacent exon

u12db_5pFull_u12 15 bp of the 5′ donor site in the intron and 10 bp
of the end of the left adjacent exon

u12db_5pFull_u2 15 bp of the 5′ donor site in the intron and 10 bp
of the end of the left adjacent exon

u12db_branch_u12 from 10 bp to the left of the branch site to the
3′ donor site of the intron
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only taking into account genes with a single isoform
listed in the UCSC refFlat file (Fig. 2b). The sensitivity
calculations were further broken down based on the
Reads Per Kilobase Per Million Mapped Reads (RPKM)
of the gene. For each ENCODE sample genes were
grouped by those with RPKM lower than 5, those be-
tween 5 and 10, those between 10 and 50, those between
50 and 100, and those greater than 100. Sensitivity for
all genes in each grouping (bin) were calculated for each
ENCODE sample, and as a total for all ENCODE
samples processed (Fig. 2c).

Additional files

Additional file 1: Comparison of running time and memory usage
between RSR and RSF for 70 ENCODE samples. This file contains detailed
memory and running time comparison for 70 ENCODE samples. (XLSX 18 kb)

Additional file 2: Unique splices compared between tumor and normal
data for the ENCODE samples. This file contains unique splice junctions in
comparing cancer and normal samples. (XLSX 58 kb)

Additional file 3: Detected miRNA hits on spliced sequences in 70
ENCODE samples. This file contains the total number of hits for each miRNA
sequence over spliced sequences from all 70 ENCODE samples. (XLSX 59 kb)

Additional file 4: U12-type and U2-type intron sequences used in the
study. This file contains U12-type and U2-type 5′ and 3′ sequences and
their associated gene information. (XLSX 69 kb)
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