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Atherosclerosis is often termed a ‘‘silent killer”. Atheromatous
plaques build up over decades and rarely cause symptoms until
vessel occlusion reaches a critical stage, or, most devastatingly,
the fibrous cap of the lesion ruptures to precipitate a myocardial
infarction or ischemic stroke. Understanding of why certain pla-
ques are more vulnerable to rupture than others has increased
vastly over the past decades. Ruptured plaques are characterised
by specific morphological features such as large lipid cores overlaid
with thinner fibrous caps, by a more inflammatory cell composi-
tion that favors cap fragility, and by discrete calcification patterns
[1,2].

This latter feature is emerging as a critical determinant of pla-
que homeostasis [3,4]. Calcium deposition is commonly found in
atherosclerotic lesions, and gross accumulation was considered
for a long time to be a passive phenomenon of aging. This view
has shifted, with lesion mineralisation now seen as an active pro-
cess encompassing complex signaling, a bone-related gene pro-
gram, and a bimodal impact on plaque stability. Of primary
clinical importance in this context is the quality, rather than the
quantity, of the calcium deposition. The current view is that dense
macro-calcification confers stability to advanced atherosclerotic
plaques, while micro-calcification, defined as discrete deposition
hot-spots especially in the fibrous cap, renders plaques more frag-
ile by reducing compliance and elasticity, and increasing local tis-
sue stress beyond a certain cap-rupture threshold. An
inflammatory microenvironment around the calcified region may
further influence plaque vulnerability [5,6]. Calcium deposits in
the form of hydroxyapatite tend to be associated with rupture-
prone plaques, conversely, calcium oxalate deposition promotes a
more stable lesion [7]; moreover, recent studies elegantly combin-
ing clinical and simulation data have demonstrated that even the
shape and angle of the calcification can critically increase the
destabilising stress on the cap [8,9].

Taken together, the constellation of calcification composition,
location, size, shape and orientation may be a novel predictive fea-
ture of plaque vulnerability. Translation of this concept of plaque-
based risk evaluation to the clinic requires sophisticated imaging
modalities and pre-clinical models suited to assess the feasibility
and effectiveness of candidate interventions and their time-points.

The classic experimental model of atherosclerotic plaque
development is the ApoE-deficient mouse fed a pro-atherogenic
high fat diet. While this model does not reproduce plaque rupture,
it does provide a valuable tool to assess factors that determine pla-
que fate and the success of therapeutic approaches. In this Journal,
MacAskill and colleagues [10] now provide an innovative study
design to quantify and temporally characterise atherosclerotic pla-
que micro-calcification in ApoE-/- mice by non-invasive [18F]NaF
PET/CT imaging. [18F]NaF is a gold-standard tracer to monitor vas-
cular osteogenesis, with the advantage of intraperitoneal applica-
tion, which allows for repeated measures and treatment
interventions. This may not be possible with tracers applied intra-
venously. The authors could detect progressive micro-calcification
over 12 weeks in all animals, mainly confined to the ascending aor-
tic arch, with signal hot-spots doubling between the 6 and 12 week
time-points. The findings were validated by traditional ex vivo PET/
CT, which also documented macro-calcification in half of the ani-
mals studied at 12 weeks. The study design advances the state-
of-the-art beyond traditional ex vivo and invasive assessment of
intra-plaque calcification, and provides a quantitative tool for tem-
poral characterisation of atherosclerosis-related micro-calcifica-
tion, a predictive marker of plaque vulnerability. Conceivably, if
translated to the clinic, the approach may provide the opportunity
for timely detection of lesions at risk of rupture and effective inter-
vention. This could be particularly useful in patients who under-
went stent replacement, to monitor for rapid neo-atherosclerosis
and vulnerable plaque development. In a just-published study,
[18F]NaF PET/CT imaging was applied to assess arterial micro-calci-
fication and its relations to cardiovascular events in 80 healthy
controls and 44 patients [11].

A recent integrated network analysis of the vascular ‘‘calcifica-
some” identified significant overlaps with endophenotype modules
governing inflammation, thrombosis, and fibrosis [12]. Calcifica-
tion in atherosclerotic aortae of ApoE-/- mice is closely linked to
inflammatory macrophages, which drive osteogenic activity in
early-stage atherosclerosis and precipitate pre-clinical micro-calci-
fications [13]. This phenomenon appears to be determined by the
region-specific distribution of macrophage subpopulations in the
atherosclerotic plaque. Both type-1 (MU1) and type-2 (MU2)
macrophages are present in human plaques, but MU2 macro-
phages are localized predominantly to more stable locations
within the lesion, while MU1 markers are highly expressed in vul-
nerable plaques [14].

The inflammatory state of an atherosclerotic plaque is thus also
a key determinant of plaque vulnerability. Perhaps tandem imag-
ing of the intra-plaque ‘‘inflammo-calcific axis” could further
fine-tune risk plaque-dependent risk stratification? The estab-
lished modality to monitor vascular inflammation in vivo is 18-flu-
orodeoxyglucose (FDG)-PET, a measure of glucose metabolism that
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is proportional to macrophage density in atherosclerotic lesions
[15]. The combination of [18F]NAF and [18F]FDG PET/CT imaging
has been applied in both atherosclerotic mice [16] and myeloma
patients [17], and could provide a valuable non-invasive tool to
identify vulnerable atherosclerotic plaques and their response to
therapeutic intervention. Other novel complementary or alterna-
tive approaches for refined plaque risk assessment are in the pipe-
line, including bioengineered endogenous human ferritin
nanocages [18], and fluorescently-labeled peptide amphiphile
micelles [19], as well as innovative and optimised computing
applications [20].

In summary, the present study by MacAskill and colleagues [10]
provides a pre-clinical platform for temporal assessment of plaque
micro-calcification. The approach has translational potential for
plaque-based risk prediction, particularly if combined with imag-
ing of inflammatory vascular burden.
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