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Abstract
Marker genotype data could suffer from a high rate of errors such as false alleles and allelic dropouts (null alleles)
in situations such as SNPs from low-coverage next-generation sequencing and microsatellites from noninvasive samples.
Use of such data without accounting for mistyping properly could lead to inaccurate or incorrect inferences of family
relationships such as parentage and sibship. This study shows that markers with a high error rate are still informative. Simply
discarding them could cause a substantial loss of precious information, and is impractical in situations where virtually all
markers (e.g. SNPs from low-coverage next-generation sequencing, microsatellites from noninvasive samples) suffer from a
similarly high error rate. This study also shows that some previous error models are valid for markers of low error rates, but
fail for markers of high error rates. It proposes an improved error model and demonstrates, using simulated and empirical
data of a high error rate (say, >0.5), that it leads to more accurate sibship and parentage inferences than previous models. It
suggests that, in reality, markers of high error rates should be used rather than discarded in pedigree reconstruction, so long
as the error rates can be estimated and used properly in the analyses.

Introduction

Molecular marker data are widely used to reconstruct ped-
igrees of wild populations in which behaviour data are
difficult to obtain (Pemberton 2008). The complete, or most
often partial, pedigrees recovered from marker data could
then be used to make evolutionary and conservation studies
of populations in their natural habitats. Such studies include
investigating, for example, the mating system and repro-
ductive success, inbreeding and inbreeding depression, the
inheritance of qualitative (e.g. some genetic diseases or
abnormalities) and quantitative (e.g. heritability of body
weight) traits, and the conservation management of endan-
gered species (e.g. for minimizing loss of genetic diversity).
Indeed, molecular pedigrees have contributed tremendously
to our understanding and the management of wild species.
For example, many socially monogamous bird species are
found to have extra-pair paternity (EPP) from genetic
marker-based parentage analyses, and the EPP rates range

up to 55% across species and between populations within
species (Griffith et al. 2002).

Like other types of data, however, molecular marker data
are not perfect. In various situations, marker data quality
can be rather poor, due to many factors such as genotyping
errors (e.g. allelic dropouts), mutations, imperfect markers
or genotyping technology (e.g. null or recessive alleles
which have no phenotypes) and missing data (Bonin et al.
2004; Pompanon et al. 2005). It has long been recognized
that such quality problems have large impacts on genealo-
gical relationship inferences (e.g. Sobel et al. 2002; Douglas
et al. 2002), and, if ignored, could cause grossly erroneous
inferences. Parentage assignments are particularly vulner-
able to genotyping problems, as a parent−offspring pair
must share at least one allele identical in state at each locus.
A single genotyping error in the pair could cause a genotype
mismatch and thus a false parentage exclusion, no matter
how many other loci are correctly genotyped and are thus in
support of the relationship. Recognizing these, various
genotyping error models (e.g. Ott 1993; Ehm et al. 1996;
Sobel et al. 2002; Marshall et al. 1998; Wang 2004; Had-
field et al. 2006) have been proposed and integrated into
likelihood methods for robust relationship inference. Wang
(2004) showed that, with an increasing number of markers
suffering from genotyping errors at a low rate, sibship
inference quality declines rapidly if the errors are ignored
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but improves rapidly if they are integrated into the like-
lihood inference framework, respectively.

Previous work focussed on modelling and evaluating the
impacts of genotyping errors occurring at a relatively small
rate (say, <5%). Such “high” quality data can be obtained
from microsatellites genotyped by optimized PCR (poly-
merase chain reaction) using DNA templates of sufficiently
high quality and quantity (e.g. extracted from fresh tissue or
blood samples), or from SNPs genotyped by microarrays or
from high-coverage next-generation sequencing (NGS)
technologies. However, much dirtier data with a high gen-
otyping error rate are now widely generated and used in
molecular ecology, evolution, and conservation studies.
First, SNPs from low-coverage NGS are now regularly
generated for many species. Such data can have an extre-
mely high frequency of false homozygotes produced by
random sampling of the two alleles in a heterozygote
(Nielsen et al. 2011). A heterozygote (say, cg) would be
determined to be a homozygote (cc or gg) with probabilities
75, 54, 36 and 24% when NGS has an average sequencing
coverage of 1, 2, 3, and 4 respectively (see below). Second,
microsatellites genotyped by PCR from noninvasive sam-
ples (e.g. faeces, hair) can also show a high frequency of
erroneous genotypes because of multiple causes such as low
quantity and quality of DNA, pollution, and the presence of
PCR inhibitors (Pompanon et al. 2005). Genotyping errors
occurring at a high rate of 37% per locus has been reported
(Gagneux et al. 1997) for microsatellites genotyped from
single shed hair in wild chimpanzees.

There are several outstanding questions to be asked and
answered about pedigree reconstruction from marker data
with high genotyping error rates. First, are current error
models valid in handling data with high error rates? Second,
what is the highest error rate that current pedigree recon-
struction methods can tolerate and thus a marker with such a
high error rate is still informative and useful? Cautious
researchers usually discard markers with a moderate error
rate (say >7%, Hauser et al. 2011) in pedigree analyses.
However, these threshold error rates are more or less arbi-
trary and could be either too low, wasting valuable marker
information, or too high, potentially derailing a pedigree
analysis.

This study aims to address these questions. I will show
that current error models in marker-based pedigree recon-
struction can adequately handle markers with a small to
moderate genotyping error rate. However, these models fail
for markers with a high error rate and lead to erroneous
inferences. I will develop an improved error model that is
valid and powerful for markers with very high error rates
(say, >50%). The old and new models are then checked and
compared in inferring full sibship, half sibship and par-
entage from simulated SNPs of a high dropout rate
(mimicking low-coverage NGS) or a high false allele rate,

and from simulated microsatellites of a high false allele rate
(mimicking PCR of low-quality noninvasive samples).
Their performances are also demonstrated by analysing a
real dataset. In conclusion, the study advocates the wide
application of the new error model, and encourages using
rather than discarding markers of poor genotyping quality in
marker-based pedigree analysis and other analyses of indi-
vidual genotypes.

Methods

Throughout the paper, I will use uppercase letters to denote
genotypes or true genealogical relationships, and use low-
ercase letters to denote phenotypes or inferred genealogical
relationships.

Error models

Through different mechanisms, mutations, imperfection of
markers or genotyping technology (e.g. recessive or null
alleles), and genotyping errors could all cause an observed
genotype (phenotype) to differ from its underlying true
genotype. They have the same effect on data quality and
cause essentially the same consequence in inferences.
Therefore these problems are not distinguished and are
collectively called typing errors hereafter. The essence of an
error model is to consider the uncertainty of a phenotype by
calculating and using the probabilities of its different
underlying genotypes for a given mistyping rate. Following
previous studies on pedigree reconstruction (e.g. Wang
2004), I consider two error models detailed below.

Allelic dropouts

Wang (2004) proposed an error model to handle false
homozygotes generated by allelic dropouts of micro-
satellites during PCR. An allelic dropout occurs when PCR
fails to amplify one of an individual’s two homologous
genes at a locus, leading to a false homozygote phenotype
when the underlying genotype is a heterozygote. The model
can also handle false homozygotes due to other causes, such
as those produced by null alleles (Wang 2018) or by sam-
pling errors in SNP data from low-coverage NGS.

The error model assumes that each of the two homo-
logous genes in a diploid individual drops out during PCR
at the same rate ε1, and that double dropouts of both genes
do not occur (Wang 2004). For a heterozygote genotype G
= A1A2, the model leads to Prb(g|G)= 1− 2e1, e1 and e1
when the observed phenotype is g= A1A2, g= A1A1 and g
= A2A2, respectively, where e1= ε1/(1+ ε1). For a homo-
zygote genotype G= AiAi, the model leads to Prb(g|G)= 1
and 0 when G is observed to be g= AiAi and any other
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phenotypes, respectively. Null alleles can also be handled
by this error model and the parameter ε1 is equivalent to null
allele frequency (Wang 2018).

False alleles

In contrast to allelic dropouts that affect heterozygotes only
and cause an apparent homozygote excess, the false allele
model applies to any genotypes, homozygotes or hetero-
zygotes. It makes two assumptions. First, the two homo-
logous genes at a locus in a diploid individual are
independently and equally likely to be incorrectly observed,
with rate ε2. Second, when an allele is incorrectly observed,
it is observed to be any one of the other alleles at an equal
probability of e2= ε2/(k− 1), where k is the observed
number of alleles at a focal locus (Wang 2004, 2018). Thus
the probabilities that an allele X is observed as such (x) and
as one of the other alleles (y, y ≠ x) at the locus are Prb(x|X)
= 1− ε2 and Prb(y|X)= e2= ε2/(k− 1), respectively. These
probabilities sum to 1, Prb(x|X)+ (k− 1)Prb(y|X) ≡ 1, as
expected.

The above model proves to be powerful in accounting for
mistypings in marker data for sibship and parentage infer-
ences (Wang 2004; Wang and Santure 2009; Hadfield et al.
2006), and in inferring the mistyping rate ε2 at a locus given
a reconstructed pedigree (Wang 2018). However, this is true
only when ε2 is not very high (say, <0.3) and k is not small.
Otherwise, the model could lead to, counterintuitively, a
decreasing uncertainty of a phenotype with an increasing
value of ε2, and thus suboptimal or incorrect results. To
understand this, consider the case of k= 2. According to the
above error model, the probabilities that an allele X is
observed to be itself, x, and the alternative allele, y, are Prb
(x|X)= 1− ε2 and Prb(y|X)= ε2, respectively. With an
increasing value of ε2 > 0.5, Prb(x|X) becomes increasingly
smaller than Prb(y|X). In the extreme case of ε2= 1, Prb(x|
X)= 0 and Prb(y|X)= 1. This problem as exemplified
above yields two counterintuitive results. First, an obser-
vation becomes increasingly less uncertain when ε2 gets
closer to 1. Second, an observed allele is inferred to be more
likely to be any one of the other alleles than the observed
one, and this probability increases to 1 when ε2 increases to
1. Although this problem diminishes with an increasing k, it
does not disappear completely even when k is large. In the
literature, quite a few error models with subtle differences
were proposed (e.g. Sancristobal and Chevalet 1997;
Sieberts et al. 2001; Sobel et al. 2002), but all suffer from
this type of problems.

An improved model for false alleles is to change the
second assumption to that, when an allele mutates or is
mistyped, it is observed to be any allele, including itself, at
an equal probability of e2= ε2/k. In other words, an
observed allele is independent of the underlying true allele

when a mistyping occurs. Thus the probabilities that an
allele X is observed as itself, x, and as one of the other
alleles, y (y ≠ x), at the locus are Prb(x|X)= 1− ε2+ e2 and
Prb(y|X)= e2, respectively, where e2= ε2/k. These prob-
abilities sum to 1, Prb(x|X)+ (k− 1)Prb(y|X) ≡ 1, as
expected. This error model ensures that the probability an
allele is correctly observed is always not smaller than that it
is incorrectly observed to an alternative allele. With ε2
increasing towards the limiting value of 1, the uncertainty of
an observation always increases, and Prb(x|X) always
decreases but is never smaller than Prb(y|X). For the case of
k= 2, Prb(x|X)= 1− ε2/2 and Prb(y|X)= ε2/2. The mini-
mum value (0.5) of Prb(x|X) is equal to the maximum value
(0.5) of Prb(y|X), which occurs at the highest possible value
of ε2= 1. This error model was used in evaluating marker
information content (Wang 2006), and some variants were
also used in detecting mistypings in pedigree genotyping
data (e.g. Ehm et al. 1996).

Error-penetrance function

Given the two error (dropouts and false alleles) models and
error rates (ε1, ε2), it is straightforward to derive the prob-
ability that a genotype is observed to be any phenotype.
These error-penetrance functions were shown in Wang
(2004) for the above dropout model and the old false allele
model. They are good approximations when the rates of
both types of errors are small, but become increasingly
inappropriate and could cause a loss of relationship infer-
ence accuracy when error rates are substantial (as shown
below).

For the improved false allele model, these error-
penetrance functions are listed in Table 1, derived by
assuming that, when both false alleles and dropouts occur to

Table 1 Error-penetrance functions

Genotype Phenotype Penetrance function (Prb(g|G))

Gst gst 1� ε2 þ e2ð Þ2þ e22

� �
1� ε1ð Þ= 1þ ε1ð Þ

Gst gss or gtt ((ε1+ (1− ε1)e2)e2(1− k)+ ε1+ e2)/(1− ε1)

Gst guu e2(e2− ε1e2+ 2ε1)/(1+ ε1)

Gst guv 2e22 1� ε1ð Þ= 1þ ε1ð Þ
Gst gsu or gtu (1− ε2+ 2e2)e2(1− ε1)/(1+ ε1)

Gss gss (1− ε2+ e2)
2+ 2(1− ε2+ e2)(ε2− e2)e1

Gss gst 2(1− ε2+ e2)e2(1− ε1)/(1+ ε1)

Gss gtt 2e2 1� e2ð Þe1 þ e22
Gss gtu 2e22 1� ε1ð Þ= 1þ ε1ð Þ
The third column gives the probability of a phenotype (second column,
g) given a genotype (first column, G), Prb(g|G). A locus has k
codominant alleles. Allele indexes s, t, u, v indicate different alleles.
Allelic dropout rate and false allele rate are ε1 and ε2 respectively, and
e1= ε1/(1+ ε1), e2= ε2/k
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the same genotype, they occur in that order. These functions
are exact regardless of the values of ε1 and ε2, and
regardless of the number of alleles, k, at a locus. For a locus
with k codominant alleles, there are k(k+ 1)/2 possible
genotypes and the same number of phenotypes. The prob-
abilities of these phenotypes for any given genotype always
sum to 1, which can be confirmed by using the functions
listed in Table 1.

Simulated pedigrees

There are so many possible two-generation pedigrees in
reality that even a simulation study can only consider a few,
hopefully representative, ones. In general, half sibship (HS)
is much more difficult to infer than full sibship (FS) and
parent−offspring relationship (PO), because genotypes of
HS have more uncertainties in IBD (identical by descent)
sharing and HS is difficult to distinguish from unrelated
(UR). The focus of this study is to investigate whether the
current and the improved error models can handle high
mistyping rates, and whether markers of extremely high
error rates are still informative for relationship inference and
thus should be used rather than discarded or not. Therefore,
I choose to analyse two pedigrees with modest difficulty to
infer.

The first pedigree contains eight sets of full sibships,
with set i (i= 1~8) having 28−i identical sibships and each
sibship having 2i−1 offspring coming from the same pair of
parents. The sampled pedigree has thus a total number of
1024 offspring distributed in 255 full sibships, many being
very small (e.g. 128 sibships with each having just 1 off-
spring and 64 sibships with each having only 2 offspring)
and a few being very large (e.g. the largest sibship has 128
offspring). Many singletons and small sibships mean a high
potential of type I errors (i.e. non-sibs being inferred to be
sibs), and very large sibships mean also a high chance of
type II errors (i.e. sib family being split and sibs being
inferred to be non-sibs).

The simulated pedigree has in total 255 sibships, each
being produced by two singly mated and unrelated parents.
Among the 255 true fathers, 15 are selected at random to
include in a candidate father sample, which also contains 85
unrelated males. Thus the probability that a true father is
sampled is about 0.06, and this probability is used in par-
entage analysis. The candidate mother sample is generated
similarly.

The second pedigree contains seven sets of half sibships.
Each set i (i= 1~7) has 27−i identical half sibships, with
each half sibship having 2i−1 mothers mated with a single
father and with each mating producing a single offspring.
Similar to pedigree one, pedigree two has many small half
sibships and a few large half sibships. Among the 127 true
fathers, 15 are selected at random to include in a candidate

father sample, which also contains 85 unrelated males. Thus
the probability that a true father is sampled is about 0.12,
and this probability is used in parentage analysis. Among
the 448 true mothers, 15 are selected at random to include in
a candidate mother sample, which also contains 85 unre-
lated females. Thus the probability that a true mother is
sampled is about 0.03, and this probability is used in par-
entage analysis.

Simulation of SNPs from NGS

I simulated a number of L variable loci equally spaced in a
genomic region of d Morgans in genetic map length. Each
locus was assumed to have two alleles, with allele fre-
quencies drawn at random from a uniform distribution in
the range (0, 1). Given the simulated pedigree, the genotype
of each individual at each locus was simulated following
Mendelian inheritance laws. Linkage and recombination
was simulated by assuming no crossover interference, using
Haldane’s mapping function r ¼ 1

2 1� e�2d
� �

, where r is
the recombination rate. For each simulated individual at
each locus, the number of reads, n, was drawn from a
Poisson distribution with the mean equal to the specified
sequencing coverage, c. To simulate sequencing errors, the
allele of each read was changed to any of the two alleles
(i.e. including itself) at an equal rate ε2/2, where ε2 is the
false allele rate. When n= 0, the genotype was determined
as missing. When the n (>0) reads at a locus of an individual
display one or two allele types, the genotype is determined
as a homozygote or heterozygote of the observed alleles,
respectively.

In the simulations, I assumed L= 100, 1000 and 10,000,
d= 1, 5, and 10M, ε2= 0.5, 1, and 2%, and c= 1, 2, 3, 4, 5
and 10. In analysing the data by Colony (Wang 2004; Jones
and Wang 2010), the simulated value of ε2 was used as the
false allele rate at a locus, and the dropout rate at a locus is
calculated as

ε1 ¼
P1

n¼1 0:5
n�1cnexp �cð Þ=n!

1� exp �cð Þ ¼ 2
1þ exp c=2ð Þ : ð1Þ

When c= 1, 2, 3, 4, 5 and 10, Eq. (1) gives a dropout
rate of ε1= 0.75, 0.54, 0.36, 0.24, 0.15 and 0.01
approximately.

Simulation of SSRs from noninvasive sampling

I simulated a number of L unlinked microsatellites, each
having k alleles in a uniform frequency distribution. Due to
factors such as the presence of inhibitors, pollutions, and the
low quality and quantity of DNA extracted from non-
invasive samples (such as faeces), a high dropout rate (ε1)
and a high other error rate (ε2) are possible (Gagneux et al.
1997; Pompanon et al. 2005). Because dropouts were
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considered in NGS data, I focused on false alleles by
keeping a constant and low dropout rate of ε2= 0.01 and by
considering a wide range of ε2 values (0.01~0.64) for each
locus. The values of k used in simulations were 10 and 2,
for microsatellites and SNPs, respectively.

Simulation of SNPs with high and variable false
allele rates

I simulated data of a number (L= 100, 500) of unlinked SNPs
with high false allele rates, ε2, to compare the accuracies of the
old and new false allele models for full-sib, half-sib and par-
entage inferences. I also simulated unlinked SNPs with vari-
able ε2 across loci to investigate the effects of the variation in
ε2 on relationship inference. In both cases, the allelic dropout
rate at each locus was fixed at 0.01. For variable ε2, I assumed
that ε2 followed Beta(α, β) distribution, and a value drawn
from the distribution was taken as ε2 for a locus. The mean
and variance of a variable in Beta(α, β) distribution are α/(α+
β) and αβ/(α+ β)2/(α+ β+ 1) respectively. For a given mean
ε2 and variance v2 of ε2 in Beta(α, β), therefore, the parameter
values α and β can be derived as

α ¼ ε22 1� ε2ð Þ=v2 � ε2 and β ¼ ε2 � 1ð Þ ε22 � ε2
�

þv2Þ=v2, respectively. I used ε2 = 0.2 and v2= {0.001,
0.002, 0.004, 0.008, 0.016, 0.032, 0.064} in the
simulations.

An ant dataset

This dataset was used in studying the mating frequency of
an ant species, Leptothorax acervorum (Hammond et al.
2001). A total number of 377 ant workers (diploid) were
sampled from 10 colonies, with each of 6 colonies con-
tributing 45 workers and the remaining 4 colonies con-
tributing 47, 44, 9, and 7 workers to the sample. Each
sampled colony was known to be headed by a single
(diploid) queen mated with a single (haploid) male; thus the
sampled workers from the same colony and different
colonies were full siblings and non-siblings respectively.
Each sampled worker was genotyped at up to six micro-
satellite loci, which had a number of observed alleles
varying between 3 and 22.

To investigate the effects of genotyping errors and the
ability of different error models in handling the errors, the
worker genotype data were modified by introducing each
type (allelic dropouts or false alleles) of errors separately
and at varying rates. For each type and rate (=0.05, 0.1,
0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7) of errors, a number of 100
replicate datasets were generated from the original dataset.
To simulate dropouts at rate e, the genotype at each locus of
each individual was examined. If it had a homozygote or
missing genotype, then no changes were made. If it had a
heterozygous genotype, then a uniformly distributed

random number R was generated. If R ≤ e, a dropout
occurred and the genotype was reset to a homozygote of
one allele taken at random from the two alleles of the het-
erozygote. Otherwise, the genotype was not changed.
Similarly, the false allele model was applied to each allele in
a genotype at each locus of each worker at a rate e (details
below). Accuracy of reconstructed pedigree was assessed
by comparing the known and estimated pedigrees.

Data simulation and analyses

For each parameter combination, a number of 100 replicate
datasets were simulated and analysed by the pedigree
reconstruction program Colony (Jones and Wang 2010)
using either the old or/and the new error models. Note false
allele rate is defined and modelled differently in the old and
new models. In simulations, false alleles were generated
following the new false allele model, and the simulated
false allele rate, ε2, was used in analysing the data by the
new error model. The same data were analysed also by the
old error model, with false allele rate ε2 being reduced to
ε�2 ¼ 1� 1=kð Þε2 for a locus with k alleles. In presentations
of the analysis results, ε2 (rather than ε�2) was used, bearing
in mind that the actual value used by the old error model
was ε�2 ¼ 1� 1=kð Þε2.

Assessments of inference quality

The quality of reconstructed pedigrees was assessed by
evaluating the frequency that a pairwise relationship was
correctly inferred. Among the 1024 offspring in a sample
from simulated pedigree one, there are two types of pair-
wise relationships, full siblings (FS) and non-siblings (NS).
The accuracy measures are thus Prb(fs|FS) and Prb(ns|NS),
the frequencies that a random FS and non-sib (NS) pair are
correctly inferred as such (i.e. fs and ns). Between the
offspring and candidate parents, there are two types of
pairwise relationships, PO and unrelated (UN). I use the
frequencies that a dyadic relationship (PO or UN, in a total
of 1024 × 200= 204,800 pairs) is correctly inferred, Prb(po|
PO) and Prb(un|UN), to assess parentage assignment
accuracy. For simulated pedigree two, there are two types of
relationships among offspring, half siblings (HS) and non-
siblings (NS), and two types of relationships between off-
spring and candidate parents, PO and unrelated (UN).
Accuracy is thus measured by Prb(hs|HS), Prb(ns|NS), Prb
(po|PO), and Prb(un|UN).

To measure the overall accuracy of the inferred relationship
among offspring, I calculate Prb(OO)= Prb(fs|FS) × Fre(FS)
+ Prb(ns|NS) × Fre(NS), where Fre(FS) and Fre(NS) are the
frequencies of FS pairs and NS pairs, respectively, in the
offspring sample. Therefore, Prb(OO) is the frequency that the
relationship of a pair of individuals drawn at random from the
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offspring sample is correctly inferred. For pedigree two, Prb
(OO) is calculated similarly, replacing Prb(fs|FS) and Fre(FS)
by Prb(hs|HS) and Fre(HS), respectively. Similarly, the overall
accuracy of the inferred relationship between offspring and
candidate parent samples is calculated by Prb(PO)= Prb(po|
PO) × Fre(PO)+ Prb(un|UN) × Fre(UN).

Accuracy is assessed similarly for the real dataset, using
Prb(fs|FS) and Prb(ns|NS), as the sibship among sampled
offspring is known.

Results

Comparison of false allele models

When false allele rate (ε2) is low (i.e. ε2 < 0.1), the new and
old error models yield almost identical results, as is
expected. This is true for both sibship and parentage
assignments, no matter the markers are microsatellites (k=
10) or SNPs (k= 2) and whether the number of markers
used in the inference is high (L= 40 and 80 for micro-
satellites, L= 100 and 400 for SNPs, Fig. 1) or low (e.g. L
= 10 for microsatellites or L= 50 for SNPs, data not
shown). With an increasing ε2 above 0.2, however, the new
error model gives increasingly more accurate inferences
than the old model (Fig. 1). The contrast between models is
especially startling when both ε2 and L are large.

Figure 1 also demonstrates that markers of extremely
high error rates (ε2) are still informative about pedigrees
when the proper new error model is applied. At the high
false allele rate of ε2= 0.64 for example, the accuracy of
sibship and parentage can still reach 0.9 when L= 40
microsatellites are used by the new error model. However,
this is not true under the old error model. This means that
markers of extremely high error rates are still informative
for relatedness under the new error model, but are unin-
formative under the old error model.

Similar results were obtained in using SNPs of various
false allele rates for reconstructing half-sib families (Fig. 2).
Again the new and old error models are indistinguishable
when ε2 < 0.2. With increasing values of ε2 > 0.2, the new
model becomes more accurate in inferring non-sibs (NS)
among offspring and in identifying unrelated (UR) pairs of
offspring and candidate parents, while the old model becomes
more accurate in inferring half-sibs (HS) among offspring and
in inferring parentage (PO). However, because NS and UR
relationships are almost always much more frequent than HS
and PO relationships in a dataset, the overall accuracy mea-
sured by the frequency that the relationship of a random pair
of individuals is correctly inferred is higher for the new model
than the old model. Basically, the old model results in over-
assignments of HS and PO relationships, and infers many
false HS and PO relationships.

SNP data of different dropout rates

The accuracy of both sibship and parentage assignments
increases with an increasing average coverage, c (Fig. 3).
While Prb(fs|FS) quickly reaches a plateau (at 0.94) at a low
coverage of c= 2, Prb(po|PO) increases with c without
abating even when c= 10. The low accuracy for both sib-
ship and parentage inferences when c is low is because
marker information is rather limited, and is not because the
error model is inadequate. With c= 1, the dropout rate,
0.75, is so high that only 25% of heterozygotes are observed
as such. At this high error rate, 100 SNPs simply do not
have sufficient information for pedigree reconstruction.
Indeed, 1000 SNPs distributed evenly on a chromosome
segment of 5 Morgans yield almost perfect reconstructed
pedigrees, with Prb(fs|FS) and Prb(po|PO) being 0.999 and
0.936 when c= 1, and 1.0 and 1.0 when c= 2.

Figure 3 also shows that parentage inference is more
affected by false homozygotes (due to dropouts or sampling
errors in NGS) than sibship inference. With 100 SNPs,
sibship inference accuracy becomes almost plateaued when
c reaches 2, but parentage inference accuracy is still
increasing rapidly even when c reaches 10. Similarly, par-
entage inference is also more sensitive to false allele rates
than sibship inference (Fig. 1).

Number of SNPs with high false allele rates

The new false allele model gives increasingly more accurate
inferences of both full sibship and parentage with an
increasing number of SNPs of different high false allele rates
(Fig. 4). This again proves that markers, even at a high false
allele rate of 0.4, are still informative for pedigree recon-
struction and more markers lead to more accurate inferences.

Variation of false allele rates among loci

The inferences of FS and PO relationships are affected dif-
ferently by the variation in ε2 among loci (Fig. 5). With an
increasing variance of ε2 in a beta distribution, Prb(fs|FS) is
almost constant while Prb(po|PO) increases. At a high var-
iance (say, 0.06), many loci have either high ε2 values (say,
>0.8) or low ε2 values (say, <0.05). At a low variance (say,
0.002), all loci have ε2 values closely centred around the mean
of ε2 ¼ 0:2. It seems that markers of low false allele rates are
more important in accurately inferring parentage than sibship.

Ant data

Allelic dropouts have little effect on the accuracy of
reconstructed sibship (Fig. 6). This is true even when
dropout rate is extremely high (ε1= 0.7). However, sibship
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inference is affected substantially by false alleles, even
when they occur at a moderate rate (say, ε2= 0.2).

The results were shown for the modified false allele
model, but similar results were obtained from the old model.
This is because the two models differ substantially in
accuracy only when false allele rate is high and the number
of loci is large. This dataset of only six microsatellites with
many missing genotypes has simply very little information
for pedigree reconstruction when false allele rate is high.

Discussion

This study shows that how to properly model genotyping
errors becomes important in marker-based pedigree recon-
struction when such errors occur at a high rate, and when
the number of markers is not small. Some error models in
the literature (e.g. Sancristobal and Chevalet 1997; Sieberts
et al. 2001; Sobel et al. 2002; Wang 2004) work well when

error rate is low, but become increasingly inappropriate and
inadequate with an increasing error rate. The fundamental
problem of these models is that the uncertainty of a phe-
notype can counterintuitively decrease when error rate
approaches its maximal value of 1. The problem becomes
more acute with a decreasing polymorphism (i.e. number of
alleles or genotypes) at a locus, and with an increasing
number of marker loci. It also shows that a modified error
model reduces the problem and leads to more accurate
sibship and parentage assignments even when error rates are
very high.

Integrating proper error models, the likelihood method
implemented in Colony (Wang 2004; Wang and Santure
2009) can yield highly accurate sibship and parentage
assignments even when markers of the same high error rates
are used, as shown in Figs. 1–4. This is especially true for
allelic dropouts, and almost perfect relationship inferences
could be obtained with either a moderate number of SNPs
from very low-coverage sequencing (i.e. high dropout rate,

0 0.1 0.2 0.3 0.4 0.5 0.6

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6

0.4

0.6

0.8

1

Ac
cu

ra
cy

 
Ac

cu
ra

cy
 

     Prb(OO), New model 
                    Prb(PO), New model 

      Prb(OO), Old model 
                    Prb(PO), Old model 

L=40, k=10 L=80, k=10

L=100, k=2 L=400, k=2

Fig. 1 A comparison of the new and old error models for full sibship
and parentage inference accuracy (Prb(OO) and Prb(PO), y-axis) as a
function of false allele rate (ε2, x-axis). A number of 40 (upper left
panel) or 80 (upper right panel) unlinked microsatellites, or a number
of 100 (lower left panel) or 400 (lower right panel) unlinked SNPs,

were used in reconstructing the simulated full-sib pedigree. Each
microsatellite and SNP was assumed to have 10 and 2 alleles,
respectively, in a uniform frequency distribution. The false allele rate
for each marker varies from 0.01 to 0.64, while allelic dropout rate is
fixed at 0.01 for each locus in each simulation
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~0.7) (Fig. 3), or a few microsatellites of high dropout rate
(Fig. 6). However, the method is less tolerant to false
alleles, especially when few markers are available (Fig. 6).
At a high false allele rate (say ε2= 0.64), many markers are
needed to obtain reasonably good parentage and sibship
assignments (Figs. 1, 4). When just a few markers are used,
a moderate rate of false alleles can still cause a substantial
loss of inference accuracy (Fig. 6). This is because allelic
dropouts do not change allele frequencies, but false alleles
could homogenize allele frequencies. At a high value of ε2
at a locus with k alleles, the observed allele frequencies
calculated from the sampled genotypes (assuming no gen-
otyping errors) would converge to 1/k, irrespective of the
true underlying allele frequencies. This biased allele

frequency estimate calculated and used by Colony would
mislead to suboptimal reconstructed pedigrees. Although it
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Fig. 2 A comparison of the new and old error models for half sibship
and parentage inference accuracy as a function of false allele rate. A
number of 500 SNPs, each with a fixed dropout rate of 0.01 and a

variable false allele rate (ε2, x- axis), were used for reconstructing the
simulated half-sib pedigree. Each locus was assumed to have alleles in
a uniform frequency distribution
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Fig. 3 Sibship and parentage inference accuracy (Prb(fs|FS) and Prb
(po|PO), y-axis) as a function of average coverage (c, x-axis). A
number of 100 or 1000 SNPs distributed evenly on a chromosome
segment of 5 Morgans in genetic map length were used in recon-
structing the simulated full-sib pedigree, with each SNP having two
alleles of frequencies drawn from a uniform distribution. The
sequencing error rate for each read was 0.01. Prb(ns|NS) and Prb(un|
UN) are always close to 1 and are thus not plotted for clarity
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Fig. 4 Sibship (Prb(fs|FS), lower panel) and parentage (Prb(po|PO),
upper panel) inference accuracy as a function of the number of SNPs
(L, x- axis). A variable number of unlinked SNPs, each with two alleles
in a uniform frequency distribution, were used in reconstructing the
simulated full-sib pedigree. The dropout error rate was fixed at ε2=
0.01 while the false allele rates simulated and used were ε2= 0.1, 0.2,
0.3, and 0.4 for each locus. Prb(ns|NS) and Prb(un|UN) are always
close to 1 and are thus not plotted for clarity
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could iteratively refine allele frequencies by using the
reconstructed pedigrees, genotype data, and genotyping
error rate data, this ability is rather limited because it relies
on sufficient information to reconstruct the pedigree with
few errors. When ε2 is high and the number of markers is
low, the reconstructed pedigree is always far from the truth
and thus the refined allele frequencies are also far from the
true values. As a result, all inferences (including pedigree,
allele frequencies, etc.) are grossly erroneous.

An implication for practical marker-based pedigree
analysis is that markers with high error rates should still be
used rather than discarded, if the error rates can be esti-
mated. As shown in this study, markers with an allelic
dropout rate as high as 0.7 or a false allele rate as high as
0.5 are still informative about genealogy and contribute to
the reconstruction of pedigrees. This is great news for
situations where high-quality genotype data are out of reach
(e.g. microsatellite genotyping from poor noninvasive
samples), and where cost and other considerations override
data quality (e.g. SNPs from low-coverage NGS). This is
also good news for the situation where most loci can be
genotyped accurately but a few suffer from a high rate of
errors. For example, some microsatellites could have a high
null allele frequency or a high dropout rate (due to the use
of primers developed for closely related species, for
example), even when high-quality DNA extracted from
fresh tissue or blood samples is used in PCR. In such
situations, genotype data of the problematic loci should still
be used in pedigree reconstruction; discarding the data is
unnecessary and could cause a substantial loss of precious
information.

The new false allele model is implemented in the current
version (2.0.6.5) of Colony software downloadable from
https://www.zsl.org/science/software/colony.
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before the data were analysed for pedigree reconstruction. The results
were shown for the modified false allele model, but similar results
were obtained from the old model
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