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In this research, we proposed a novel deep residual convolutional neural network with 197 layers (ResNet197) for the detection of
various plant leaf diseases. Six blocks of layers were used to develop ResNet197. ResNet197 was trained and tested using a
combined plant leaf disease image dataset. Scaling, cropping, flipping, padding, rotation, affine transformation, saturation, and
hue transformation techniques were used to create the augmentation data of the plant leaf disease image dataset. ,e dataset
consisted of 103 diseased and healthy image classes of 22 plants and 154,500 images of healthy and diseased plant leaves. ,e
evolutionary search technique was used to optimise the layers and hyperparameter values of ResNet197. ResNet197 was trained on
the combined plant leaf disease image dataset using a graphics processing unit (GPU) environment for 1000 epochs. It produced a
99.58 percentage average classification accuracy on the test dataset. ,e experimental results were superior to existing ResNet
architectures and recent transfer learning techniques.

1. Introduction

Agriculture is an important sector for many countries and
provides raw resources for many businesses [1]. Diseases,
insects, and nutrient deficiencies are the most common
threats to the growth of crops. Disease diagnosis and
treatment, pest management, and fertiliser application are
performing an important role in decreasing yield loss [2].
,e traditional process for disease detection is not feasible
for all crop fields and farmers. Finding suitable human
experts for disease diagnosis and treatment requires more
time and money. An artificial intelligence approach is
required for the automatic detection of plant diseases to
overcome difficulties in the traditional approach [3].

Deep learning is a type of artificial intelligence tech-
nique that extends from artificial neural networks [4]. ,e
deep learning technique imitates how humans make in-
telligent decisions through acquiring knowledge [5]. It is
increasingly being used in various industrial applications

for decision support to increase productivity, reduce errors,
and reduce costs. Deep learning techniques perform better
than traditional artificial intelligence techniques in terms of
decision accuracy and reliability [6]. Deep convolutional
neural networks (DCNN) are a class of supervised deep
learning techniques. ,e DCNNs are most successful in
image classification and object detection tasks [7]. A large
volume of data is required to train the DCNN models for
use in various domains [8]. ,e data augmentation tech-
nique was introduced to increase the amount of training
data without data collection for better training perfor-
mance of DCNN models [9]. Training the DCNN model
needs huge computation and storage.,e graphics pro-
cessing units (GPUs) are commonly used to train models
more efficiently [10].

,e major contributions of this research are as follows:

(i) ,e leaf diseases of twenty-two different plants were
diagnosed using novel deep residual convolutional
neural networks.
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(ii) A novel deep residual convolutional neural network
with 197 layers (ResNet197) was designed and
developed for leaf disease detection.

(iii) In addition, the evolutionary searching technique
was used as a tuning technique to discover the
suitable number of layers and hyperparameter
values for the proposed ResNet197 model.

(iv) ResNet197 was trained on the plant leaf disease
dataset up to 1000 epochs in a GPU environment.

(v) ,e classification performance of trained Resnet197
was calculated on the test dataset using standard
performance metrics.

(vi) ,is research also proposed a model that could be
used by farmers for diagnosing various plant dis-
eases from a camera-captured image without any
prior knowledge of plant diseases.

(vii) Performance comparison of the proposed model
and recent transfer learning techniques showed that
it is superior to other transfer learning methods in
leaf disease detection tasks.

,e research article is organized as follows: In Section 2,
we provided a brief study about plant leaf disease detection
using various machine learning and deep learning ap-
proaches. In Section 3, the data preparation, the ResNet197
architecture, and the corresponding training process were
presented. In Section 4, we experimentally compared the
performance of ResNet197 with recent deep transfer
learning techniques and discussed the outcomes. Finally, we
concluded the research by summarizing the outcomes and
future directions in Section 5.

2. Literature Survey

,e recent developments in artificial intelligence techniques
support efficient identification of numerous diseases and
pest attacks in precision farming. ,is survey discusses the
modern artificial intelligence approaches to plant leaf disease
detection. In [11], the authors compared the performance of
standard machine learning and deep transfer learning
techniques in plant leaf disease detection. ,ey identified
that the performance of the deep learning techniques was
better than that of machine learning techniques in leaf
disease detections.,eVGG-16 net produced a classification
accuracy of 89.5% on plant leaf disease detection, which is
higher than that of other machine learning and deep
learning techniques.

,e authors in [12] proposed a DCNN with nineteen
convolutional layers for the classification of two major apple
leaf diseases. ,e classification accuracy of the model on test
data for apple disease detection was 99.2%. ,e model
produced a better performance than support vector machine
(SVM), k-nearest neighbour (K-NN), random forest (RF),
and logistic regression (LR) techniques. On the other hand,
the authors in [13] used a capsule network with a bidirec-
tional long short-term memory model for the classification
of apple leaf diseases. ,e classification performance of their
model was better than that of the standard machine learning

techniques. Also, the ensemble subspace discriminant
analysis classifier with a mask region-based convolutional
neural network was used to detect the infected regions of
apple crop leaves by the authors in [14]. ,ey achieved a
classification accuracy of 96.6% on the tomato leaf disease
dataset using their model.

,e authors in [15] used a dense convolutional neural
network (DenseNet) andmultilayer perceptron for detecting
bacterial leaf blight, brown spot, and leaf smut diseases in
rice crops. ,e maximum classification accuracy of the rice
disease detection model was 97.68%. In [16], the authors
proposed a rice crop disease detection model using an at-
tention-based neural network and MobileNet. ,e rice crop
disease detection model has classified the diseases with an
accuracy of 94.65% on the test data. ,e authors in [17]
developed a VGG16Net-based rice and wheat leaf disease
detection model. ,e rice disease and wheat disease clas-
sification accuracy of the model was 97.22% and 98.75%,
respectively. ,ey compared the performance of the model
in rice and wheat disease detection with that of other transfer
learning techniques.

Likewise, the authors in [18] designed a simple DCNN to
diagnose tomato crop diseases, and they achieved a 98.49%
of classification accuracy on testing data. In [19], the authors
developed a tomato leaf disease detection model using the
DenseNet121 transfer learning technique. ,ey used the
conditional generative adversarial network (C-GAN) for
creating augmented data for balancing training datasets. ,e
DenseNet121 model achieved an accuracy of 97.11% on
tomato disease classification. In [20], the authors proposed a
custom convolutional neural network for plant disease
classification. ,e custom network achieved a classification
accuracy of 94.5% on the test dataset. ,e authors in [21]
developed an EfficientNet pretrained model for detecting
peach plant diseases with an accuracy of 96.6% on the test
data. ,e improved MobileNet model was proposed for
cassava disease detection by the authors in [22]. Also, they
achieved better performance than other machine learning
and transfer learning techniques in cassava leaf disease
detection using MobileNet.

Similarly, the authors in [23] proposed a cucumber leaf
disease severity classification model using U-Net architec-
ture and achieved a testing accuracy of 92.85% on the cu-
cumber leaf disease dataset. In [24], the authors proposed a
pumpkin powdery mildew disease identification technique
using principal component analysis (PCA) and SVM. ,e
model detected the pumpkin powdery mildew disease on the
pumpkin leaf with an accuracy of 97.3%, and the authors in
[25] developed a cotton lesion detection model using the
Resnet50 transfer learning technique. ,e model produced a
classification accuracy of 89.2%, which is better than that of
GoogleNet and standard machine learning techniques.
Moreover, the authors in [26] developed a super-resolution
generative adversarial network (SR-GAN) as an augmen-
tation technique for balancing the data numbers in classes of
the dataset.

Also, they identified that the augmented dataset in-
creases the classification accuracy of deep learning models. A
custom DCNN model with nine layers was proposed to
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identify the diseases of thirteen different species by the
authors in [27]. ,e model classified 96% of the images
accurately in the test dataset. Recently, the authors in [28]
proposed a custom DCNN model for the detection of plant
leaf diseases on the standard dataset and field-collected
images. ,e custom DCNN model achieved an average
testing accuracy of 99.84% on the test dataset. ,e authors in
[29] proposed a DenseNet architecture for the diagnosis of
the twenty-seven different classes of diseases from six crops.
,e validation and testing accuracy of the classification
model was 99.58% and 99.19%, respectively. ,e authors in
[30] proposed a custom network for detecting pearl millet
diseases. ,ey achieved an accuracy of 98.78%, which is
higher than that of the transfer learning techniques. ,e
authors in [31] studied various plant leaf disease detection

Table 1: List of classes in the proposed dataset.

ID Class name
1 Aloe_Vera_Healthy
2 Aloe_Vera_Leaf_Rot
3 Aloe_Vera_Leaf_Rust
4 Apple_Black_Rot
5 Apple_Healthy
6 Apple_Leaf_Rust
7 Apple_Leaf_Scab
8 Banana_Bacterial_Wilt
9 Banana_Black_Sigatoka
10 Banana_Healthy
11 Banana_Mosaic
12 Carrot_ Alternaria Leaf Blight
13 Carrot_ Cercospora Leaf Blight
14 Carrot_ Sclerotinia Rot
15 Carrot_ Healthy
16 Cherry_Healthy
17 Cherry_Leaf_Rust
18 Cherry_leaf_Spot
19 Cherry_Powdery_Mildew
20 Citrus_Black_Spot
21 Citrus_Canker
22 Citrus_Greening
23 Citrus_Healthy
24 Citrus_Melanose
25 Coffee_Cercospora_Leaf_Spot
26 Coffee_Healthy
27 Coffee_Leaf_Rust
28 Coffee_Red_Spider_Mite
29 Corn_Common_Rust
30 Corn_Healthy
31 Corn_Leaf_Spot
32 Corn_Northern_Leaf_Blight
33 Corn_Southern_Leaf_Blight
34 Eggplant_Cercospora_Leaf_Spot
35 Eggplant_Healthy
36 Eggplant_Powdery_Mildew
37 Eggplant_Verticillium_Wilt
38 Grape_Black_Measles
39 Grape_Black_Rot
40 Grape_Healthy
41 Grape_Leaf_Blight
42 Groundnut_Early_Leaf_Spot
43 Groundnut_Healthy
44 Groundnut_Late_Leaf_Spot
45 Groundnut_Leaf_Rust
46 Groundnut_Web_Blotch
47 Guava_Algal_Leaf_Spot
48 Guava_Healthy
49 Guava_Leaf_Rust
50 Guava_Pseudocercospora_Leaf_Spot
51 Paddy_Bacterial_Blight
52 Paddy_Brown_Spot
53 Paddy_Cercospora_Leaf_Spot
54 Paddy_Healthy
55 Paddy_Hispa
56 Paddy_Leaf_Blast
57 Paddy_Leaf_Streak
58 Peach_Bacterial_Spot
59 Peach_Healthy
60 Peach_Leaf_Curl

Table 1: Continued.

ID Class name
61 Peach_Leaf_Rust
62 Pepper_Cercospora_Leaf_Spot
63 Pepper_Fusarium_Wilt
64 Pepper_Gray_Leaf_Spot
65 Pepper_Healthy
66 Potato_Early_Blight
67 Potato_Healthy
68 Potato_Late_Blight
69 Potato_Leaf_Roll
70 Potato_Potato_Virus_Y
71 Strawberry_Angular_Leaf_Spot
72 Strawberry_Healthy
73 Strawberry_Leaf_Scorch
74 Strawberry_Leaf_Scorch
75 Sugarcane_Eye Spot
76 Sugarcane_Red_Rot
77 Sugarcane_Pineapple_Disease
78 Sugarcane_Leaf_Scald
79 Sugarcane_Mosaic_Virus
80 Sugarcane_Healthy
81 Tea_Healthy
82 Tea_Leaf_Blight
83 Tea_Red_Leaf_Spot
84 Tea_Red_Scab
85 Tomato_Bacterial_Spot
86 Tomato_Early_Blight
87 Tomato_Healthy
88 Tomato_Late_Blight
89 Tomato_Leaf_Mold
90 Tomato_Leaf_Spot
91 Tomato_Mosaic_Virus
92 Tomato_Spider_Mite
93 Tomato_Target_Spot
94 Tomato_Yellow_Leaf_Curl_Virus
95 Turmeric_Bacterial_Wilt
96 Turmeric_Healthy
97 Turmeric_Leaf_Blotch
98 Turmeric_Leaf_Spot
99 Wheat_Bacterial_Leaf_Streak
100 Wheat_Healthy
101 Wheat_Leaf_Rust
102 Wheat_Powdery_Mildew
103 Wheat_Tan_Spot
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techniques using a deep convolutional neural network. Also,
they discussed several datasets, which are available for plant
leaf disease detection model development.

,e literature survey recognized that residual and dense
convolutional neural networks performed better than other
transfer learning techniques in plant disease detection [32].
,e residual and dense network created deeper connections
between the layers than simple convolutional neural net-
works. ,e residual and dense networks avoided the van-
ishing-gradient problem and minimized the number of
training parameters. ,e performance of the residual and
dense network in existing plant leaf disease detection ap-
plications provided the motivation to propose a residual
convolutional neural network for plant leaf disease detec-
tion. Most of the state-of-the-art transfer learning tech-
niques were trained on the ImageNet dataset. ,e transfer
learning techniques may cause negative transfer and over-
fitting problems while using the architecture and weights of
the pretrained models for new applications.

In addition, the literature survey shows the significance
of data augmentation and hyperparameter tuning for the
classification algorithms. A novel residual convolutional
neural network was proposed in this research with improved
performance than existing residual networks and other
transfer learning techniques for detecting plant diseases. ,e
subsequent section discussed the architecture and training
process of the proposed plant disease detection model.

3. Materials and Methods

,e proposed plant leaf disease detection model imple-
mentation steps are classified into two stages. Imple-
mentation of the proposed ResNet197 model started with
the data preparation. ,e data preparation phase concen-
trates on data collection, augmentation, and data pre-
processing. ,e model training phase includes ResNet197

design, fine-tuning, and training processes. ,e following
subsections describe each of the implementation phases in
detail.

3.1. Data Preparation. Implementation of a deep learning
algorithm starts with the data preparation phase. It includes
data collection, data augmentation, and preprocessing
stages. ,e proposed dataset was collected from various
standard leaf disease detection datasets [27, 32]. ,ere are
103 classes of healthy and diseased images in the proposed
dataset. Table 1 illustrates the list of diseased and healthy
plant leaf classes in the proposed dataset.

Some classes in the original dataset have fewer samples.
On the other hand, some classes have more images. For
example, the tea leaf blight disease class has only 214 images,
but the tomato yellow leaf curl virus disease classes have
3209 samples. ,e number of samples should be equal in
each class to increase the performance of the classification
algorithms. Data augmentation techniques were used in this
research to increase the number of samples without col-
lecting new data. ,e scaling, cropping, flipping, padding,
rotation, affine transformation, saturation, and hue trans-
formation techniques were used to produce augmented
images on the dataset. ,e data augmentation process
equalized the number of images in each class to become
1500. Figure 1 shows the sample augmented images on the
plant leaf disease dataset using data augmentation
techniques.

After the augmentation step, the dataset was split for the
training, validation, and testing process. ,e images in the
dataset were shuffled and randomly selected for training,
validation, and testing. ,e number of images in the
training, validation, and the testing dataset is illustrated in
Table 2.

,e training process of the proposed ResNet197 model
was discussed in subsequent sections. ,e training process
includes model design, fine-tuning, and model training
steps.

3.2. Model Training. ,is section discussed the construction
and training process of the proposed ResNet197 model for
leaf disease detection. Six blocks of layers were used in the
proposed model. Also, the proposed model was called a deep

(a) (b) (c) (d)

Figure 1: Sample augmented images from the plant leaf disease dataset.

Table 2: Size of training, validation, and the test dataset.

Dataset name Number of images Number of images in each
class

Training set 133,900 1,300
Validation set 10,300 100
Testing set 10,300 100
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residual convolutional neural network with 197 layers
(ResNet197). ,e proposed ResNet197 model includes 197
layers in total. ,e layered architecture of the proposed
ResNet197 model is shown in Figure 2.

,e input image size of the proposed ResNet197 model
was 224× 224× 3 pixels. ,e first block consisted of one
convolutional (Conv) layer. ,e first convolutional (Conv)
layer produced 112×112 sized outputs using a 7× 7 Conv
function with a stride of 2. ,e convoluted data were for-
warded to the second block. ,e second block consisted of
one max-pooling layer and three Conv layers. ,e three
Conv layers were used three times in sequence.,e output of
block 1 was forwarded to the max-pooling layer, which uses
a 3× 3 max-pooling function with a stride of 2.,e output of
the pooling layer was sent as an input to three Conv layers.
,e second layer block produced an output sized 56× 56.
,e output of the second block was forwarded to the third
block. ,e third layer block consisted of three Conv layers
sized 1× 1, 3× 3, and 1× 1 filter size. ,e Conv layers were
used 12 times in a sequence. ,e third block produced an
output sized 28× 28. After the third block layer, the data
were forwarded to the fourth layer block. ,ree Conv layers
were available in the fourth block. ,e three Conv layers
were used 47 times in a sequence. ,e fourth Conv layer
produced the output data with a size of 14×14. ,e fifth
layer block was introduced after the fourth block. ,ree
Conv layers were used in the fifth block three times in a
sequence. ,e fifth block produced the 7× 7 sized output.
,e output of the fifth block was forwarded to the sixth and
final block of the model. ,e sixth block consisted of an

average pooling layer and one fully connected (dense) layer
with 103 neurons. ,e softmax activation function was used
in this layer for classifying the input leaf images.

,e suitable batch size, loss function, optimizer function,
and learning rate of the proposed ResNet197 model were
identified using the evolutionary search technique. Table 3
displays the optimised hyperparameter value of the pro-
posed ResNet197 model.

,e proposed ResNet197 model was trained on the plant
leaf disease dataset using the optimised hyperparameters up
to 1000 training epochs.,e training progress and validation
progress of the proposed ResNet197 model are shown in
Figure 3.

,ere was no significant change in the validation per-
formance of ResNet197 after reaching 1000 epochs. So, the
training process of the model was stopped with 1000 epochs
in the GPU environment. ,e proposed ResNet197 model
was deployed after the successful completion of the training
process. ,e testing process of the proposed ResNet197
model was discussed in the upcoming section.

4. Results and Discussions

,is section discussed the performance of the proposed
ResNet197 model in plant leaf disease detection. Also, it
compares the ResNet197 model with other versions of
ResNet models and state-of-the-art transfer learning tech-
niques using standard performance metrics. VGG-19 Net,
ResNet-152, InceptionV3 Net, Mobile Net, and Dense-
Net201 are the state-of-the-art transfer learning techniques
that are used for the performance comparison.

,e area under the curve-receiver operating character-
istics (AUC-ROC) curve is the most popular metric for
estimating the performance of classification techniques. ,e
ROC of classification techniques for a specific class is cal-
culated using the true positive rate (TPR) and false positive
rate (FPR) values of the class on the test data. ,e TPR
represents the number of correctly classified positive sam-
ples in the test data [27]. Similarly, the FPR represents the

Block 1
Conv 1

7 × 7, 64 stride 2

Block 6
Average Pooling

103 – Dimension FCL

Block 2
Conv 2

3 × 3, Max Pool, stride 2
1 x 1 64

64
256

× 3
1 x 1
3 x 3

Block 5
Conv 5

1 x 1 512
512

2048
× 3

1 x 1
3 x 3

Block 4
Conv 4

1 x 1 256
256

1024
× 47

1 x 1
3 x 3

Block 2
Conv 2

1 x 1 128
128
512

× 12
1 x 1
3 x 3

Figure 2: Layered architecture of the proposed ResNet197 model.

Table 3: Optimized hyperparameter values of the ResNet197
model.

Hyperparameter Optimized value
Batch sizes 64
Loss Categorical cross entropy
Optimizer Adam
Learning rate 0.001
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number of incorrect positive predictions among negative
samples in the test data. ,e TPR and FPR values are used to
plot the ROC curve and calculate the AUC value of the
classification model for a specific class. ,e x-axis and y-axis
of the graph represent the scale of TPR and FPR, respec-
tively. ,e AUC-ROC curves of proposed and existing
models on two randomly selected classes are shown in
Figure 4. ,e AUC values of ResNet197 on the sample
classes were higher than those of other standard transfer
learning techniques. ,e AUC value of the proposed
ResNet197 model on the sample classes is between 0.98 and
1.0; it shows the performance excellence of ResNet197 on
plant leaf disease classification.

Classification accuracy, precision, recall, and F1-score
are the standard measures to assess the overall performance
of the classification techniques [27]. ,e performance of

ResNet197 and most recent transfer learning techniques was
compared using the abovementioned metrics. ,e perfor-
mance comparison of the proposed ResNet197 model and
transfer learning techniques is illustrated in Figure 5.

Also, Table 4 illustrates the performance comparison of
the proposed ResNet197 model and other ResNet models.

In addition, the classification performance of the pro-
posed ResNet197 model was compared with that of existing
state-of-the-art transfer learning techniques. ,e proposed
model achieved an average classification accuracy of 99.58%
on the test data. ,e performance comparison of the pro-
posed ResNet197 model and transfer learning techniques
using standard performancemetrics is illustrated in Figure 6.

Also, Table 5 shows the performance score of the pro-
posed and existing models on the plant leaf disease dataset.
,e comparison result shows that the proposed model
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Figure 3: (a) Training and (b) validation results of ResNet197.
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Figure 4: Sample AUC curves of ResNet197.
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Table 4: Performance comparison of ResNet models.

Model Accuracy Precision Sensitivity F1-score Specificity
ResNet50 87.65 85.94 86.92 86.43 85.68
ResNet101 90.34 91.14 90.83 90.98 91.23
ResNet152 94.72 93.68 93.74 93.7 92.87
Proposed ResNet197 99.58 99.36 99.42 99.39 99.27
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achieved better classification accuracy, precision, sensitivity,
F1-score, and specificity than existing transfer learning
techniques.

,e inceptionV3 network showed better performance
among the transfer learning techniques in plant leaf disease
detection. ,e average classification accuracy of the pro-
posed ResNet197 model on the test dataset was 99.58%,
which is 3.15% higher than that of the inceptionV3 network.
,e average classification accuracy, average precision, av-
erage recall, and average F1-score of the proposed
ResNet197model were superior to those of the other transfer
learning techniques. ,e AUC values and performance
metric outcomes of the proposed ResNet197 model showed
that the performance and reliability of the proposed
ResNet197 model were superior to those of advanced
transfer learning techniques in plant leaf disease detection.

5. Conclusions and Future Works

Automatic plant disease detection is a crucial process in
precision agriculture. ,is research study proposed a novel
deep residual convolutional neural network with 197 layers
(ResNet197) for the detection of common leaf diseases in 22
different plants. Some standard datasets and a few recent
image augmentation techniques were used to prepare the
proposed dataset for the ResNet197 training. Scaling,
cropping, flipping, padding, rotation, affine transformation,
saturation, and hue transformation techniques were used to
produce the augmented images. ,e proposed dataset
consisted of 133,900 images of 103 diseased and healthy
classes. ,e evolutionary searching technique was used to
identify suitable values for the hyperparameters of the
proposed ResNet197 model in plant leaf disease detection.
,e training process of ResNet197 and existing transfer
learning models was performed on GPU-enabled worksta-
tions up to 1000 training epochs.,e classification accuracy,
precision, sensitivity, F1-score and specificity of the pro-
posed ResNet197 model were 99.58%, 99.36%, 99.42%,
99.39%, and 99.27%, respectively.,e performance results of
the proposed ResNet197 model were superior to those of the
transfer learning techniques such as VGG19Net, ResNet152,
InceptionV3Net, MobileNet, and DenseNet201. Also, AUC
curves demonstrated the performance and reliability of
ResNet197 in plant leaf disease detection. ,is research
concludes that the deep residual convolutional neural net-
works with the optimised number of layer blocks perform
better than traditional deep learning techniques. ,is re-
search study also identified that the performance of the
classification algorithms can be improved by data

augmentation and hyperparameter optimization techniques.
,e limitation of ResNet197 is its computational density. It
requires significantly more FLOPS than similar models such
as VGG19Net and MobileNet. ,e development of a novel
deep convolutional neural network using residually con-
nected networks for the diagnosis of a number of plant
diseases is a future direction of the research study.

Data Availability

,e plant leaf disease data used to support the findings of
this study are available from the corresponding author upon
request.
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