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Systemic inflammation correlates with an increased risk of atrial fibrillation (AF)
and thrombogenesis. Systemic inflammation alters vessel permeability, allowing 
inflammatory and immune cell migration toward target organs, including the heart. 
Among inflammatory cells infiltrating the atria, macrophages and mast cell have 
recently attracted the interest of basic researchers due to the pathogenic mechanisms 
triggered by their activation. This chemotactic invasion is likely implicated in short- 
and long-term changes in cardiac cell-to-cell communication and in triggering fibrous 
tissue accumulation in the atrial myocardium and electrophysiological re-arrangements 
of atrial cardiomyocytes, thus favoring the onset and progression of AF. Serine 
proteases are a large and heterogeneous class of proteases involved in several 
processes that are important for cardiac function and are involved in cardiac 
diseases, such as (i) coagulation, (ii) fibrinolysis, (iii) extracellular matrix degradation, 
(iv) activation of receptors (i.e., protease-activated receptors [PPARs]), and (v) 
modulation of the activity of endogenous signals. The recognition of serine proteases 
substrates and their involvement in inflammatory/profibrotic mechanisms allowed the 
identification of novel cardio-protective mechanisms for commonly used drugs that 
inhibit serine proteases. The aim of this review is to summarize knowledge on the 
role of inflammation and fibrosis as determinants of AF. Moreover, we will recapitulate 
current findings on the role of serine proteases in the pathogenesis of AF and the 
possible beneficial effects of drugs inhibiting serine proteases in reducing the risk of AF 
through decrease of cardiac inflammation and fibrosis. These drugs include thrombin 
and factor Xa inhibitors (used as oral anticoagulants), dipeptidyl-peptidase 4 (DPP4) 
inhibitors, used for type-2 diabetes, as well as novel experimental inhibitors of mast  
cell chymases.
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INTRODUCTION
Atrial fibrillation (AF) is the most frequent cardiac arrhythmia 
in the clinical practice (Karnik, 2019). The prevalence of AF is 
rapidly growing in Europe and in the US, as it closely follows 
the rapidly increasing prevalence of heart failure in the aging 
population (Vasan et al., 2019). However, while total mortality 
for heart failure has remained stable in the last few years, due 
to treatment improvement and optimization (Vasan et al., 2019), 
hospitalization rates and mortality for AF are steadily rising 
(Freeman, 2017). Indeed, AF is associated with an increased 
risk of heart failure decompensation, as well as to arterial 
thromboembolism leading to ischemic stroke (Best, 2019; 
Carlisle, 2019). AF is, therefore, a major health issue, associated 
with significant social and economic costs in developed 
countries. The main risk factors for AF are hypertension, 
valvular disease, cardiomyopathies, heart failure with reduced 
or preserved ejection fraction, obesity, and diabetes. Most of 
these AF predisposing conditions are associated with systemic 
inflammation and cardiac fibrosis, two major pathophysiological 
determinants of the functional and structural abnormalities of 
atrial myocardium that precede the onset of atrial arrhythmias.

In the first part of the review, we will focus on the role of local 
and systemic inflammation as a risk factor for the development 
and progression of AF, focusing on the cellular and molecular 
mechanisms linking inflammation to atrial electrical abnormalities. 
We will then describe the role of atrial fibrosis as a pathological 
mechanism predisposing to distinct AF-linked electrical 
abnormalities, through alteration of both atrial excitability and 
conduction by proliferation of collagen and fibroblasts. Afterward, 
we will summarize recent work on the role of coagulation factor 
serine proteases (thrombin and factor Xa) and protease-activated 
receptors (PARs) as determinants of atrial fibrosis, inflammation, 

and AF-related electrical abnormalities; with this regard, we 
will describe how novel anticoagulants, through inhibition of 
thrombin or factor Xa, may affect the pathophysiology of AF and 
alter disease progression. Finally, we will discuss the possible role 
of other serine proteases active in the atria (mast-cell chymases and 
dipeptidyl-peptidase 4) and the possible efficacy of their selective 
inhibitors in modulating the risk of AF.

AF AND INFLAMMATION
The occurrence and perpetration of AF is usually preceded 
by structural modifications of atrial structure and function 
(atrial remodeling), both at macroscopic level and at cellular/
subcellular scale. At macroscopic level, atrial dilatation and 
loss of atrial contractility often precede AF, paralleled by 
proliferation of fibroblasts and collagen (fibrosis) in atrial 
myocardium (Greiser, 2009; Jalife and Kaur, 2015; Rapacciuolo, 
2019). At cellular/subcellular level, arrhythmia susceptibility 
is caused by changes of the expression and function of ion 
channels leading to alterations of L-type calcium current, 
calcium-activated, and acetylcholine-activated potassium 
currents, as well as changes of ryanodine receptors leading to 
alterations of intracellular calcium handling (Neuberger, 2006; 
Denham, 2018). Hypertension, valvular heart disease, and 
cardiomyopathies can initiate atrial dilatation and remodeling 
due to the increased left ventricular filling pressures leading 
to increased atrial pressure and wall stress: as atrial muscle 
is relatively thin and atria are low-pressure chambers, they 
respond to increased pressures with dilatation rather than 
wall thickening and hypertrophy (Nattel and Harada, 2014). 
In addition to the hemodynamic changes associated with 
the aforementioned conditions, the pathophysiological 
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mechanism linking predisposing conditions to persistent 
AF involves changes in several molecular pathways within 
atrial cardiomyocytes and all the surrounding myocardial cell 
types and structures (e.g., endothelial cells and small vessels, 
fibroblasts, and extracellular matrix, epicardial fat tissue) 
(Heijman, 2016).

Systemic Inflammation Is Associated  
with AF
Evidence suggests that inflammatory and oxidative pathways 
may mediate, at least in part, the progression of atrial 
remodeling, and may contribute to the initiation of AF and 
to progression of the arrhythmia from paroxysmal/episodic 
to persistent/permanent. Interestingly, most cardiovascular 
and systemic conditions that are associated with AF are also 
associated with low-grade chronic inflammation (Hu, 2015). 
These conditions include heart failure, arterial hypertension, 
coronary artery disease (CAD), obesity, sleep-apnea syndrome, 
and chronic obstructive pulmonary disease (COPD), as well 
as diabetes mellitus (Andrade, 2014). Angiotensin II, one 
of the most important mediators of vascular dysregulation 
in hypertension, on top of vasoconstriction, also induces 
production of pro-inflammatory cytokines, and activation of 
immune cells. Heart failure, the main condition predisposing 
to AF, is characterized by cardiac inflammation and increased 
immune activation within the ventricular myocardium, 
contributing to cardiomyocyte death, myocardial fibrosis, and 
mechanical dysfunction (Ayoub, 2017). In CAD, progression 
of atherosclerosis is driven by chronic inflammation of blood 
vessels. In these conditions, inflammation may affect atrial 
muscle and promote AF (da Silva, 2017). Interestingly, it has 
been observed that typical markers of atherosclerosis such as 
coronary artery calcifications can also predict the risk of AF 
(da Silva, 2017). In COPD, generalized inflammation and 
hypoxia-linked oxidative stress, paralleled by alterations of the 
autonomic balance, may promote AF in the absence of heart 
failure or hypertension (Goudis, 2017). In patients with AF, the 
onset of COPD is associated with increased AF recurrences, low 
likelihood of cardioversion, faster progression to permanent 
arrhythmia (Goudis, 2017). It is to be noted that the main 
risk factor for COPD, that is cigarette smoking, is linked with 
oxidative damage in the lungs and in the cardiovascular system, 
and is a known promoter of inflammation (Zhu, 2016). Diabetes 
mellitus is also linked with systemic immune activation and 
chronic generalized inflammation. Moreover, hyperglycemia 
may have direct deleterious effects on atrial cardiomyocytes, 
promoting electrical and mechanical abnormalities that 
predispose to atrial remodeling and AF (Goudis, 2015). Obesity 
increases the likelihood of AF with several mechanisms (Lavie, 
2017): 1) increases the risk of hypertension, diabetes, and CAD; 
2) promotes the growth of epicardial fat, which is linked to 
local inflammation; 3) is often associated with obstructive sleep 
apnea (OSA) syndrome. OSA favors atrial volume overload, 
cause hypoxia and oxidative stress, and is linked with systemic 
inflammation, thus representing an independent risk factor for 
AF (Goudis and Ketikoglou, 2017).

Local Inflammation Is a Cause of AF
The effects of local inflammation on atrial function have been 
studied in cardiac surgery patients (Bruins, 1997). Cardiac 
operations, especially those requiring pericardiotomy and 
atriotomy, lead to acute inflammation of the pericardium and 
myocardium: between the second and the fourth day after 
surgery, post-operative AF may occur in surgical patients, as a 
direct consequence of the inflammatory processes that follow 
the operation (Maesen, 2012). Post-operative AF is usually short 
lasting and does not evolve into chronic arrhythmia, rather, it 
tends to disappear as local wounds repair and local inflammation 
levels decrease. Nonetheless, it may complicate the recovery from 
cardiac surgery due to the heightened risk of thromboembolism 
and the deleterious hemodynamic consequences, thus requiring 
aggressive treatment. Another local inflammatory condition 
associated with AF is gastroesophageal reflux with active 
esophagitis: lower esophagus is in close proximity with the atria 
and esophageal inflammation may also affect the neighboring 
atrial muscle, thus promoting AF (Linz, 2017).

How Does Inflammation Promote AF?
It is difficult to separate the direct deleterious effects on atrial 
muscle of conditions associated with AF (e.g., hypertension, 
diabetes or CAD) from those mediated only by systemic 
inflammation, which is always present in these conditions. 
Therefore, the direct effects of inflammation on the atria 
have been studied in purely inflammatory diseases such as 
autoimmune rheumatic syndromes (Baek, 2016), where the risk 
of AF is increased in the absence of any local or hemodynamic 
conditions that damage the atria. In rheumatic diseases, the 
increase of circulating inflammatory mediators is directly 
associated with dysregulation of connexins, leading to altered gap 
junction function and uneven electrical conduction (Lazzerini 
et al., 2017). Moreover, cytokines have been shown to induce 
acute abnormalities of intracellular calcium handling, leading 
to cardiomyocyte calcium overload and to an increased rate of 
Ca2+-dependent arrhythmias (Korantzopoulos, 2003; Hu, 2015). 
A number of inflammatory mediators have been implicated 
in the generation of pro-arrhythmic changes in the atria. In 
particular, interleukin (IL)-2 and tumor necrosis factor alpha 
(TNFα) impair calcium handling and leads to arrhythmogenic 
electrophysiological changes (e.g., shortening of action 
potentials) in atrial cardiomyocytes, in particular in the region 
adjacent to pulmonary veins (PVs) in the left atrial posterior 
wall, a hot-spot for atrial arrhythmias (Korantzopoulos, 2003; 
Hu, 2015). High levels of TNFα in the mouse lead to reduced 
systolic calcium transient amplitude and elevated diastolic 
calcium concentration within atrial cardiomyocytes (Saba, 
2005). Ca2+ transients are also prolonged, due to a reduction of 
sarcoplasmic endoplasmic reticulum calcium ATPase (SERCA) 
expression, an increase of Na+/Ca2+ exchanger (NCX) activity, 
and a decrease of phospholamban. Altered TNFα-mediated 
Ca2+ handling could lead to arrhythmias due to calcium waves 
and delayed after-depolarization, which in turn may generate 
premature APs and give birth to spontaneous beats that can 
then perpetuate themselves through re-entry. In addition to 
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promoting atrial cellular arrhythmias, circulating cytokines can 
also stimulate NF-κB within atrial cardiomyocytes, leading to 
activation of the apoptosis cascade, which in turn is responsible 
for cardiomyocyte death and fibrous substitution.

AF Causes Inflammation: Role of 
Infiltrating Inflammatory Cells
While inflammation can cause AF, AF can cause both local and 
generalized inflammation (Korantzopoulos, 2018). In patients 
with isolated forms of AF (“lone” AF), who do not have any other 
underlying cardiac or extracardiac AF-associated disease, atrial 
tissue displays a mild level of local inflammation comprising 
cellular infiltration (Frustaci, 1997), which appears to be a direct 
consequence of the arrhythmia. Indeed, atrial tachycardia causes 
intracellular calcium overload, which in turn leads to energetic 
insufficiency and oxidative stress, and may stimulate apoptosis 
(Van Wagoner, 2008; Hu, 2015). These processes lead to activation 
of resident immune cells and production of cytokines, promoting 
local inflammation. In line with that, it was shown that C-reactive 
protein and IL-6, two circulating mediators of inflammation, 
are constantly elevated in patients during and shortly after 
episodes of AF, even in patients with “lone” AF (Marcus, 2010). 
Blood levels of C-reactive protein and IL-6 in patients with 
AF are inversely related with the success rate of cardioversion 
(Marcus, 2010). Other acute-phase circulating inflammatory 
proteins, such as fibrinogen, were associated with AF: in patients 
who received a successful electrical cardioversion, circulating 
fibrinogen levels paralleled the risk of AF recurrence (Weymann, 
2017). Markers of immune cell activation are also related with 
the risk of AF: an increased white blood cell count was associated 
with the incidence of AF. In particular, the combination of a 
high white cell count with an elevated neutrophil-to-lymphocyte 
ratio has an elevated predictive power for AF recurrences (Im, 
2013; Shao, 2015). In patients with paroxysmal “lone” AF, a 
study found an elevated count of circulating neutrophils and 
eosinophils: eosinophil count was independently linked with 
the probability of AF relapses (Chen, 2017a). The risk of AF 
progression from paroxysmal to persistent arrhythmia appears 
also to be associated with the recruitment of macrophages 
in the atrial endocardium, supporting the idea that local 
inflammatory activation contributes to arrhythmia progression 
and worsening (Yamashita, 2010). This macrophagic infiltrate 
produces reactive oxygen species, as well as high levels of TNF, 
transforming growth factor (TGFβ), and IL-6 (Pinho-Gomes, 
2014). Interestingly, in patients with rheumatic mitral stenosis, 
proinflammatory M1 macrophages infiltrating atrial tissue were 
much more abundant in patients with a history of AF, with respect 
to patients without atrial arrhythmias (He, 2016), suggesting the 
key role of infiltrating macrophages in mediating local atrial 
inflammation in AF. An elegant study evidenced a clear cross-
talk in vitro between macrophages and atrial cardiomyocytes. 
On one hand, fast stimulation of atrial myocytes (simulating AF) 
led to pro-inflammatory macrophage polarization. On the other 
hand, activation of macrophages with lipopolysaccharide (LPS) 
led to reduced Ca2+ current and refractory period, leading to 

increased arrhythmic events, in atrial myocytes (Sun, 2016). The 
activation of resident inflammatory cells by pro-inflammatory 
mediators causes local oxidative cellular damage mediated by 
myeloperoxidase (MPO), as well as disruption of atrial tissue 
organization by secreted proteases (see below). Indeed, MPO is a 
catalytic enzyme that generates reactive oxygen species, affecting 
several signaling cascades in cardiomyocytes and other cell types 
(Friedrichs et al., 2012). Circulating MPO levels are higher in 
patients with AF, and MPO is particularly concentrated in atrial 
tissue in AF patients. Of note, MPO stimulates local production 
of matrix-metalloproteinases (MMPs), which contribute to 
tissue remodeling and fibrous substitution. These clinical and 
preclinical studies support the idea that AF episodes can generate 
an inflammatory state that in turn stimulates the formation of 
stable pro-arrhythmic structural abnormalities in the atria, 
leading to chronic/persistent arrhythmia.

Role of Mast Cells in the Pathogenesis  
of AF
In addition to infiltrating macrophages and neutrophils, 
resident atrial mast cells were also found to be involved in AF 
pathogenesis. In patient with AF and thrombosis in the atrial 
appendages, the number of mast cells and the expression of mast-
cell growth factor were markedly increased in atrial tissue, with 
respect to patients without AF or thrombosis (Bankl, 1995). In 
an animal model of pressure overload, mast cells accumulated in 
the dilated atria: activated mast cells produced a large amount of 
platelet-derived growth factor (PDGF)α, which in turn promoted 
fibroblast activation and fibrosis (see below). Interestingly, 
neutralizing PDGFα-receptor with specific antibody attenuated 
atrial fibrosis and inducibility of AF in the atria of pressure-
overloaded animals (Liao, 2010). In a model of streptozotocin-
induced diabetes in the mouse, hyperglycemia led to increased 
mast-cell infiltration in the atria, paralleled by atrial fibrosis, 
cardiomyocyte apoptosis, and increased production of cytokines. 
In transgenic mast-cell deficient mice, where mast cell infiltration 
was prevented, most of the aforementioned pathological changes 
were greatly attenuated (Uemura, 2016). Activated mast cells 
produce mast cell chymases, serine proteases with possible pro-
arrhtythmic effects in the atria (see below).

effects of Anti-Inflammatory Drugs on the 
Risk of AF
A confirmation of the important role of inflammation in the 
pathophysiology of AF comes from studies assessing the effects 
of pharmacological agents with anti-inflammatory activity in 
patients at risk of AF. A meta-analysis of 42 small randomized 
placebo-controlled studies (over 4500 total patients) confirmed 
that glucocorticoid prophylaxis in patients who underwent 
cardiac surgery reduced the risk of perioperative AF (Liu, 
2014). However, a larger carefully conducted study showed that 
the risk of perioperative AF was 33% in patients who received 
dexamethasone and 35% in patients who received placebo, 
showing no clear advantage of corticosteroid treatment in this 
clinical setting (van Osch, 2015). In patents who underwent PV 
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trans-catheter radiofrequency ablation for AF, instead, a few 
days of dexamethasone treatment decrease the risk of short-
term relapses (Kim, 2015). Another anti-inflammatory and 
anti-chemotactic agent that was found effective in preventing 
post-operative and post-ablation AF is colchicine, an inhibitor of 
microtubule polymerization (Salih, 2017). Ablation is a procedure 
that generates programmed damage to atrial myocardium, 
aiming to block electrical conduction from arrhythmic hot-spots 
like PVs. Tissue damage generates local edema and inflammation, 
which may be the primary cause of early AF relapses (Lim, 2014); 
hence the advantage of using anti-inflammatory medications after 
ablation. Drugs that are used for the reduction of cardiovascular 
risk factors, such as statins, may have an additional anti-
inflammatory efficacy, which may be of benefit for the prevention 
of AF. Pre-treatment with statins reduces the risk of recurrences 
after electrical cardioversion and decreases the likelihood of 
AF after cardiac surgery (Zheng, 2016; An, 2017). This effect 
appears to be linked with the anti-inflammatory actions of 
statins (Pinho-Gomes, 2014), as statin-treatment it is associated 
with a reduced peak of circulating C-reactive protein after 
surgery. Finally, aldosterone antagonists may help preventing 
AF due to their anti-inflammatory properties, on top of their 
anti-fibrotic and anti-oxidant capabilities (Korantzopoulos and 
Goudevenos, 2010). Finally, treatment with mineralocorticoid 
receptor blockers was also shown to be associated with a reduced 
incidence of new-onset AF and a lower frequency of recurrent 
events (Neefs, 2017).

AF AND FIBROSIS

Pathophysiology of Atrial Fibrosis
In all tissues and organs, the fibrotic process involves an 
increased activity of fibroblasts and an amplified production of 
various components of the extracellular matrix (ECM) by them 
(Nattel, 2017). These include fibronectin (which forms an initial 
scaffold for fibroblast to attach and collagen fibers to build up), 
procollagen (later converted to mature fibrous collagen thanks 
to cross-linkers), enzymes that cross-link collagen (e.g., lysyl-
oxidase), enzymes that are able to modify and remodel the 
ECM, such as MMPs, as well as inhibitors of MMPs. Fibroblasts 
are small spindle-like cells constituting about 10-15% of total 
cardiac mass (Yue et al., 2011), both in atria and in ventricles. 
Cardiomyocytes are approximately 70% to 75% of total 
myocardial mass in the ventricles, while only about 45% in the 
atria (Hinescu and Popescu, 2005). The physiological amount 
of ECM in the atria is therefore much higher in the atria than 
in the ventricles; this is probably the result of the different 
phenotype and activity of atrial fibroblasts as compared with 
the ventricular counterpart (Hinescu, 2006). Fibroblasts are 
continuously active in maintaining the integrity of cardiac 
ECM, modifying its structure and composition in response 
to physiological and pathological stimuli. For this reason, 
fibroblasts communicate with the surrounding environment 
via direct connection with other cell types or with matrix 
components, or via a number of paracrine mediators, growth 
factors, and cytokines (Camelliti et al., 2005). In response to 

cardiac tissue damage, fibroblasts migrate to the damage site and 
become activated by differentiating into a different cell type that 
resemble small muscle (the so called “myofibroblasts”) (Majno, 
1971). Myofibroblast phenotype changes from proliferative to 
secretory and they start producing compact fibrous collagen 
matrix, aiming to repair the damage and rapidly create a scar 
(Cleutjens, 1995).

evidence That AF Is Associated with  
Atrial Fibrosis
The first work that showed a causative association between 
atrial fibrosis and AF was published in 1999 by the group of 
Stanley Nattel (Li, 1999; Nattel, 2016): in a canine model of 
congestive heart failure, progressive development of atrial 
fibrosis went hand-in-hand with the increased susceptibility to 
atrial arrhythmia induction. Mathematical models simulating 
the role of electrical conduction blocks in cardiac tissue 
had previously suggested a possible role for fibrosis in the 
pathogenesis of AF (Spach and Josephson, 1994). Moreover, 
it had been observed that the atria from patients with AF 
displayed increased myocardial fibrosis (Frustaci, 1997). Indeed, 
atrial fibrosis is a very common finding in human AF (Kostin, 
2002). Increased collagen has been shown also in patients with 
“lone” AF (Frustaci, 1997). In general, the degree of ECM 
expansion correlates with the persistence of AF (Xu, 2004). AF 
is correlated with an increased expression of pro-fibrotic genes 
and proteins (see below) in human atrial biopsies (Barth, 2005). 
The link between fibrosis and atrial arrhythmia was supported 
by the observation that fibrosis and the resulting abnormalities 
of cardiac conduction promote initiation and maintenance of 
AF even in the absence of abnormalities of atrial cardiomyocyte 
ion currents (Cha, 2004).

How Atrial Fibrosis Causes electrical 
Abnormalities
The reparative (replacement) fibrosis is aimed at substituting 
regions of dead cardiomyocytes with fibrous tissue (Weber, 
2013): in the atria of animal models of heart failure, increased 
atrial filling pressures and atrial dilatation causes the formation of 
extended regions of cell death in the atria. Dead cardiomyocytes 
are replaced by collagen, thus creating regions of fibrosis that 
are intercalated among surviving muscle bundles and represent 
a clear barrier to electrical conduction in the longitudinal 
direction (Hanna, 2004). These new ECM deposits interfere with 
the formation of connexin-rich tight junctions (gap junctions) 
and can cause slowing of electrical conduction or even local 
conduction blocks (Burstein, 2009). Reactive fibrosis, instead, 
occurs mainly in response to local of systemic inflammatory 
stimuli in the absence of an extensive myocyte death: activated 
myofibroblast produce collagen strands that accumulate in the 
space surrounding blood vessels and cardiomyocytes, creating 
thick sheaths that surround myocardial fibers, thereby insulating 
them and impeding transversal conduction (Krul, 2015). 
The insulation of myocardial fibers in the presence of reactive 
interstitial fibrosis accelerate longitudinal conduction within 
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the fiber, favoring the formation of multiple reentry circuits 
(Burstein and Nattel, 2008).

Active Role of Fibroblasts in Atrial 
electrical Dysfunction
In addition to the consequences of the increased collagen, 
activated fibroblasts can directly modify atrial electrical activity 
due to formation of gap junctions with cardiomyocytes (Camelliti, 
2004). Because membrane potential of fibroblast is less negative 
that that of cardiomyocytes, this electrotonic interaction causes 
the depolarization of all myocytes forming gap junctions with 
fibroblast, ultimately resulting in slower conduction speed due 
to reduced sodium channel availability (Miragoli et al., 2006). 
Myocyte depolarization favors spontaneous activity (Miragoli et 
al., 2007), while areas of slower conduction may favor reentry. 
Studies in co-cultures of fibroblasts and myocytes, as well as 
mathematical models, suggest that electrical interaction between 
fibroblasts and myocytes may significantly alter the properties of 
AF (Aguilar, 2014), on top of the consequences of fibrosis. In a 
recent modeling study (Zahid, 2016), the atria of AF patients were 
reconstructed in silico from detailed magnetic resonance images 
providing information on the distribution of fibrosis (gadolinium 
enhancement). By simulating the electrical activity of the atria in 
the presence of fibrosis, the model showed that triggers for atrial 
arrhythmias are generated in areas of high coupling between 
myofibroblasts and cardiomyocytes, and the consequent ectopic 
activation can generate stable reentry circuits where electrically 
active myocytes surround larger fibrotic regions, that constitute 
anchors for reentry (Schotten, 2011).

Role of Ion Channels expressed on 
Fibroblast Membrane
The relationship of cardiomyocytes with fibroblasts in the atria 
is made more complicated by the observation that fibroblasts 
express some ion channels (Yue et al., 2011). Cardiac fibroblasts 
cannot be defined as electrically excitable cells, however they 
show a resting membrane potentials (RMPs) with average values 
of −37 mV (Kamkin et al., 2003), whose primary determinant 
is represented by the inward-rectifier K+ current, IK1 (Chilton, 
2005). Qi et al. evaluated the potential effects of fibroblast IK1 
modulation in a canine model of heart failure, noticing that 
fibroblast IK1 upregulation promoted fibroblast proliferation and 
the development of pro-arrhythmic atrial structural changes, 
while downregulation of fibroblasts IK1 lead to suppression of 
atrial fibrosis and arrhythmogenesis (Qi, 2015). The potential 
influence of fibroblast IK1 currents on cardiac electrical activity 
was recently evaluated by Aguilar et al. through a mathematical 
model of cardiomyocyte-fibroblast coupling (Aguilar, 2014). The 
authors of this study showed that upregulation of IK1 currents 
in fibroblasts has profibrillatory consequences, principally 
caused by the shortening of atrial action potential duration. The 
functional role of cardiac fibroblasts has also been evaluated in 
studies conducted on human samples. Poulet et al. compared 
atrial fibroblasts from patients in sinus rhythm (SR) to that of 
patients affected by chronic AF and found that AF fibroblasts 

differentiated into myofibroblasts more readily than SR fibroblasts 
and were characterized by larger Na+ and IK1 currents, compared 
to currents recorded in the SR group. This was accompanied by 
changes in electrophysiological properties which may contribute 
to the pathophysiology of AF(Poulet, 2016).

Signaling Cascades Involved in the 
Generation of Atrial Fibrosis in AF
The Renin-Angiotensin System
Angiotensin II is produced by cardiomyocytes upon stretching 
(Malhotra, 1999) and can directly affect fibroblasts and cause 
their activation. Several studies have highlighted that myocardial 
fibrosis in heart failure (Weber et al., 1993), myocardial infarction 
(Hanatani, 1995), and cardiomyopathies is, at least in part, driven 
by the activation of the renin-angiotensin system. The role 
played by the renin-angiotensin system in the development of 
atrial fibrosis has been investigated in different animal models. 
Indeed, angiotensin-converting enzyme (ACE) overexpression, 
induced in a transgenic mouse model, was responsible for atrial 
fibrosis (Xiao, 2004). Moreover, many studies have shown the 
ability of ACE inhibitors to significantly reduce the occurrence 
of AF in animal models and patients (Shi, 2002; Healey, 2005). 
Similar results have been observed in canine models with either 
experimental heart failure or rapid atrial pacing, where enalapril 
was shown to reduce atrial fibrosis and the duration of AF 
episodes (Sakabe, 2004). Moreover, candesartan (angiotensin 
II type 1 receptor blocker) was capable to prevent both fibrosis 
and atrial structural remodeling in rats (Okazaki, 2006) and dogs 
(Kumagai, 2003). In patients with AF and atrial fibrosis, Goette et 
al. observed enhanced ERK activation in association to increased 
Angiotensin II concentration in atrial tissue (Goette, 2000). 
Retrospective clinical studies show that the incidence of AF is 
decreased in patients treated with angiotensin-receptor blockers 
(ARBs) or ACE inhibitors (Vermes, 2003; L’Allier, 2004). Taken 
together, clinical data support the use of ACE inhibitors to delay 
the onset and progression of atrial fibrosis and AF. Recent studies 
showed that the fixed combination of an ARB (valsartan) with a 
neprilysin inhibitor (sacubitril) was able to reduce cardiac fibrosis 
and the risk of ventricular arrhythmias and sudden death in 
patients with heart failure (Sarrias and Bayes-Genis, 2018; Aimo 
et al., 2019; Martens, 2019). However, the valsartan/sacubitril 
combination does not appear to have additional beneficial effects 
on atrial arrhythmic burden, as compared with ARBs or ACE-I 
alone (Martens, 2019). Neprilysin catalyzes the degradation 
of natriuretic peptides (atrial- and brain-derived natriuretic 
peptides, ANP, and BNP, respectively), which have anti-fibrotic 
effects. As clinical studies showed that neprilysin inhibition has 
antifibrotic and antiarrhythmic effects only in the ventricles, the 
downstream signaling pathway of natriuretic peptides may be 
scarcely relevant for the regulation fibrous tissue in the atria.

Transforming Growth Factor β1
TGFβ1 stimulates collagen production exerting its effect 
through the “small mother against decapentaplegic” (SMAD) 
signaling pathway (Evans, 2003). Studies have highlighted that 
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TGFβ1 expression cause an increase of myocardial fibrosis 
(Lijnen et al., 2000). In fact, selective atrial interstitial fibrosis 
was evidenced in a transgenic mouse model characterized by 
the overexpression of a constitutively active form of TGFβ1. 
Albeit the overexpression of TGFβ1 was comparable in the 
atrium and the ventricles, abnormalities were evidenced only 
in atrial tissue, suggesting that the atria are more susceptible 
than the ventricles to the development of TGFβ1-induced 
fibrosis (Verheule, 2004). Atrial TGF-β1 is released in response 
to hypertrophic stimuli and prolonged stretch by multiple cell 
types, including cardiomyocytes, fibroblasts, and endothelial 
cells; these cells also express TGF-β1 receptors, so its signaling is 
both paracrine and autocrine (Nattel, 2017). The augmentation 
of atrial fibrosis was associated with increased AF vulnerability 
and conduction abnormalities. In an experimental model of 
heart failure, characterized by an increased TGF-β1 expression 
and atrial fibrosis, the authors showed that the administration 
of the drug pirfenidone (a novel antifibrotic agent in use for 
idiopathic pulmonary fibrosis) was able to significantly reduce 
the expression of TGFβ1, with a concomitant decrease in atrial 
fibrosis, conduction abnormalities, and AF vulnerability (Lee, 
2006). Interestingly, a large placebo-controlled study with 
pirfenidone is ongoing in patients with chronic heart failure and 
preserved ejection fraction (HFpEF), a condition that is strongly 
associated with the risk of AF (Lewis, 2019).

The Oxidative Stress Pathways
Oxidative stress is likely to play a leading role in promoting AF, as 
evidences of oxidative damages are observed during AF episodes 
(Mihm, 2001). The oxidative stress could represent an important 
starting point for the development of AF through the activation 
of the ERK intracellular pathway.

Platelet-Derived Growth Factor
PDGF is a cytokine that stimulates fibroblast proliferation and 
their subsequent differentiation to myofibroblasts (Fan, 2014) 
through the direct activation of the Janus kinase (JAK)-STAT 
pathway (Patel, 1996). PDGF-β is prominently produced by 
activated resident mast cells within affected atria, thus linking 
fibrosis with inflammation. In the heart, the activation of the 
JAK-STAT pathway by PDGF-β stimulates cardiomyocyte 
survival and simultaneously reduces apoptosis by positively 
regulating the expression of several cardioprotective and anti-
inflammatory-related genes (Kishore and Verma, 2012) (Jacoby, 
2003). The potential ability of PDGF-JAK-STAT system to 
modulate the behavior of atrial fibroblast and atrial-selective 
fibrosis was evaluated by Chen et al. (Chen, 2017b) on dogs with 
heart-failure caused by prolonged ventricular tachypacing. The 
authors of this study observed that PDGF-mediated stimulation 
of atrial fibroblasts triggered an up-regulation of JAK-STAT 
expression and its consequent increased activity was associated 
to an augmented production of ECM-protein. This study also 
showed that AG 1296 (PDGF receptor inhibitor), S3I 201 (STAT3 
inhibitor), AG-490 (JAK2 selective inhibitor), and filgotinib (JAK-
inhibitor) attenuated the profibrotic effects of PDGF highlighting 
the central role of the JAK-STAT pathway in the development of 
atrial fibrosis and AF in heart failure(Chen, 2017b).

Micro-Ribonucleic Acids
Micro-ribonucleic acids (miRNAs) are 18- to 22-nucleotide RNA 
sequences capable of negatively modulating the expression of 
specific families of genes through the interaction with messenger 
RNAs (mRNAs) (Luo et al., 2015). The activity of specific miRNAs 
is involved in fibrotic responses associated with AF. MiR-30 and 
miR-133 interact with TGFβ and its receptor (Duisters, 2009; 
Chen, 2014). Moreover, miR-29, whose expression is reduced 
in the atria of HF patients, interacts with the mRNAs coding 
for collagen and fibronectin. MiR-26 is another player in the 
atrial fibrotic response. In AF, miR-26 is down-regulated by the 
activation of Ca2+/calmodulin/calcineurin signaling (Luo, 2013). 
MiR-26 is capable of targeting KCNJ2, the gene encoding for 
the IK1 (inward rectifier) K+ current. As a consequence, miR-
26 down-regulation in AF promotes an increased expression of 
KCNJ2/IK1 in both fibroblasts (Qi, 2015) and cardiomyocytes 
(Luo, 2013). In fibroblast, increased IK1 hyperpolarizes the cell 
membrane, impairs atrial conduction (see above), and stimulates 
fibroblast activation. In cardiomyocytes, increased IK1 shortens 
action potential duration and atrial refractory period, thus 
stabilizing re-entrant rotors (Pandit, 2005).

The role of atrial inflammation and fibrosis in AF is 
summarized in Figure 1.

COAGULATION FACTOR PROTeASeS 
AND PARS IN AF
Atrial fibrillation (AF) is responsible for the activation of blood 
coagulation (Watson et al., 2009), mainly due to blood stasis in 
the dilated fibrillating atria, which are unable to efficiently expel 
blood through contraction. Coagulation factor X is a vitamin 
K-dependent serine protease playing a central role in the cascade 
of blood coagulation, whose main activity is the conversion of 
prothrombin into thrombin (Borensztajn et al., 2008). Thrombin 
(factor II) is also a serine protease that converts fibrinogen into 
fibrin, thus forming blood clots (Figure 2) Recently, an additional 
role of activated factor X (FXa) and thrombin, non-related with 
coagulation, has been identified (Leadley et al., 2001): activation of 
PARs, PAR-1 and PAR-2. PAR-1 was identified as a rather selective 
receptor of thrombin (activated factor II) in 1991 and represents 
the first of an unique subclass of G-protein-linked seven-
transmembrane domains receptors, that is, receptors activated by 
proteolytic cleavage of a N-terminal portion of their extracellular 
domain by specific proteases (Coughlin, 2000; Ossovskaya and 
Bunnett, 2004) (Figure 3). A reignited interest into the signaling 
cascades initiated by coagulation factors started to grow upon the 
identification of PAR-2 as a fundamental player in the development 
and progression of several disease states characterized by 
inflammation and fibrosis, including renal diseases (Grandaliano, 
2003), cancer (Nierodzik and Karpatkin, 2006), abnormal wound 
healing (Diegelmann and Evans, 2004), as well as cardiovascular 
diseases such as atherosclerosis (Borissoff et al., 2011). PAR-1 
and -2 receptors are expressed in many different tissues including 
the airways, the epidermis, the kidney, the intestine, the central 
nervous system, and the pancreas. In the cardiovascular system, 
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they are expressed in endothelial cells, vascular smooth muscle 
cells, fibroblasts, and cardiomyocytes (Borensztajn et al., 2008). 
FXa preferentially activates PAR-2 when the protease is part of the 
ternary complex tissue factor (TF)–FVIIa–FXa, while lone FXa is 
active on both PAR-1 and PAR-2 with lower agonist activity(Ruf 
et al., 2003). PAR-1 and PAR-2 are associated with Gq proteins 
and thus, upon activation, stimulate phospholipase C to hydrolyze 
phosphatidylinositol into inositol tri-phosphate (IP3) and di-acyl 
glycerol (DAG). IP3 forces Ca2+ mobilization from the intracellular 
stores, while DAG activates protein-kinase C, which affects several 
downstream targets. Moreover, PAR receptors also activate 
extracellular-signal related kinase (ERK) and c-Jun N-terminal 
kinase (JNK) pathways, which lead to the initiation of a number 
of specific transcriptional programs (Borensztajn et al., 2008). In 
general, activation of these pathways stimulates cell growth and 

differentiation, production of cytokines, production and deposition 
of ECM components, and expression of adhesion molecules. In 
endothelial cells, PAR receptors stimulate production of adhesion 
molecules (E-selectin, VCAM), chemoattractant cytokines, and 
vascular permeabilization, thus promoting local inflammation 
and tissue infiltration (Ossovskaya and Bunnett, 2004). In 
fibroblasts, PAR activation causes cell proliferation, transition into 
myofibroblasts, production of collagen and fibronectin (Blanc-
Brude, 2005), as well as production of chemoattractant cytokines 
(IL-6, IL-8, and monocyte chemoattractant protein-1 [MCP-1]) 
(Bachli,  2003). In cardiac fibroblasts, PAR-1 can transactivate 
epidermal growth factor receptor (EGFR), which in turn leads to 
activation of extracellular signal-regulated kinase, p38-mitogen-
activated protein kinase, and protein kinase B (Sabri, 2002). The 
possible role of PARs in the development and progression of 

FIGURe 1 | Systemic inflammation correlates with an increased risk of atrial fibrillation (AF) and thrombogenesis. Different inflammatory mediators, such as 
interleukin (IL)-2 and tumor necrosis factor alpha (TNFα), affect calcium handling and cause arrhythmogenic changes in atrial cardiomyocytes. In particular, altered 
TNFα-mediated Ca2+ handling could lead to arrhythmias due to calcium waves and delayed after-depolarization, which may generate premature APs and give birth 
to spontaneous beats that can then perpetuate themselves through re-entry mechanism. In addition, circulating cytokines can also stimulate NF-κB within atrial 
cardiomyocytes, leading to activation of the apoptosis cascade, which in turn is responsible for cardiomyocyte death and fibrous substitution.
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AF and atrial remodelling has been investigated in a few studies 
(Figure 4). Spronk et al. evaluated whether structural remodeling 
observable in the atria during AF could be stimulated by the 
hypercoagulable state. The authors worked on transgenic mice 
with a pro-coagulant phenotype (TMpro/pro mice), carrying a 
mutation on the thrombomodulin gene responsible for a reduced 
degradation of Factors V and VIII, observing an increased AF 
inducibility and stability, as well as enhanced collagen deposition 
(Spronk, 2017). These results support the potential involvement 
of hypercoagulability in the development of AF-related electrical 
and structural abnormalities. The authors of this work also found 
that administration of Nadroparin in goats with a hypercoagulable 
state associated to AF, mediating inhibition of Factor Xa-mediated 
thrombin generation, was able to partially affect the development 
of atrial fibrosis (Spronk, 2017). These results suggest that 
anticoagulation therapy can partially attenuate atrial fibrosis thus 
preventing the development of AF-related atrial abnormalities, 
though the authors did not demonstrate a direct mechanistic 
relationship between hypercoagulability and atrial fibrosis, and 
did not study PAR signaling in their AF models. A detailed study 
conducted on fibroblasts isolated from the atrial appendage of 
patients with AF who underwent cardiac surgery (Altieri, 2018a) 
revealed that atrial fibroblasts express high levels of PAR-1; 

when activated in vitro by thrombin-mediated cleavage, PAR-1 
elicited myofibroblast transformation; production of collagen; 
and synthesis of TGFβ, MCP-1, and endothelin-1. Interestingly, 
dabigatran, an inhibitor of thrombin, prevented all these effects 
(Altieri, 2018b). The results of this work support the idea that 
thrombin inhibition may counteract the molecular and cellular 
events leading to the formation of AF-related functional and 
morphological changes in the diseased atria. Another elegant 
study was conducted on cultured tissue slices from human atrial 
biopsies (Bukowska, 2013). Atrial tissue was cultured in the 
presence of FXa and was subjected to rapid pacing to resemble 
AF. After 24 h, expression of PAR-1, PAR-2 and a number of 
inflammatory mediators such as IL-8 were found increased. 
These effects were inhibited the FXa inhibitor rivaroxaban and 
by the experimental PAR-2 inhibitor GB83 (Bukowska, 2013). 
In mice with atrial dilatation due to trans-aortic constriction, an 
increased expression of PAR-2 was observed in the atria, alongside 
an increased production of pro-inflammatory cytokines. Pre-
incubation with the factor Xa inhibitor rivaroxaban suppressed 
these pathological changes (Kondo, 2018). In a rat model of 
heart failure associated with left atrial dilation, it was observed 
that direct thrombin inhibitors prevented left atrial dilatation, 
fibroblast activation, tissue fibrosis, reduced atrial tissue 

FIGURe 2 | Serine proteases mechanisms of action. Serine proteases are a particular types of endoproteases involved in endogenous processes including the 
activation of inactive peptide (zymogens; i.e., coagulation cascade), inactivation of bioactive peptides (GLP-1 as DPP-4). Serine protease activity is controlled 
homeostatically by endogenous inhibitors (serpins). Furthermore, serine protease may also activate specific protease activated receptors (PAR) by cleaving 
the N-extracellular portion of the receptor and producing a tethered ligand. Such ligand interaction with the specific site of the trans-membrane-portion of the 
receptor induces G-protein recruitment and intracellular cascade including G-protein-dependent and -independent cascades. Figure created using Servier 
medical art templates.
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macrophage infiltration, and suppressed the inducibility of atrial 
arrhythmias with local electrical burst stimuli. Interestingly, 
none of these effects were observed with warfarin and similar 
results were obtained with the experimental inhibitor of PAR-1 
F16618 (Jumeau, 2016).

Activation of PAR-1 in the atria favors AF not only because 
it stimulates fibrosis and inflammation but also due to its direct 
effects on the electrical activity of atrial cardiomyocytes. A study 
in isolated cardiomyocytes showed that thrombin-activated PAR1 
induced a tetrodotoxin-sensitive late sodium current, which may 

FIGURe 3 | Direct anticoagulants may be thought as indirect PAR inhibitors. Direct anticoagulants including low molecular weight heparins and novel oral 
anticoagulants (NOAC) have different pharmacokinetic features including the volume of distribution and oral availability but share their ability to inhibit FII and FXa 
activity. Irrespective of their mechanism of coagulation factors inhibition, direct anticoagulants mimic serpin activity. This effect in turn reduces the possibility that 
coagulation factors may activate PAR and generate a pro-fibrotic cascade. Figure created using Servier medical art templates.

FIGURe 4 | Pharmacological strategies to control hyperacoagulability and heart inflammation. Hypercoagulability generates and sustains vascular inflammation and 
permeability, a condition allowing the chemotaxis of inflammatory cells to neighbor tissues. Activated Inflammatory cells secrete, among the many signals, serine 
proteases, and disseminate inflammation in the invaded tissue. The control of serine protease activity may be achieved pharmacologically directly and indirectly by 
using drugs already in use or by promising novel drugs with proved effectiveness in preclinical investigations. Figure created using Servier medical art templates.
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lead to intracellular calcium overload and spontaneous arrhythmic 
activity; this effect was mediated by the calcium-independent 
phospholipase-A(2) signaling pathway (Pinet, 2008). In another 
study, PAR-1 activation increased intracellular cardiomyocyte 
[Ca2+] with membrane-independent mechanisms (Ide, 2007). A 
study investigated the effects of PAR-1 activation in isolated rabbit 
PV preparations: thrombin and blood-clot solutions increased left 
atrial diastolic tension, shortened action potential duration, and 
decreased atrial contractility; moreover, they led to depolarization 
of diastolic membrane potential, delayed after-depolarizations, 
and bursts of spontaneous activity. All these effects were prevented 
by the simultaneous application of BMS 200261, a PAR-1 
inhibitor (Chang, 2012). Additionally, in the same model it was 
observed that the thrombin inhibitor dabigatran (Chang, 2012) 
and the FXa inhibitors edoxaban and rivaroxaban reduced the 
rate of spontaneous beating in the PV arrhythmogenic hotspot. 
This effect was mediated by inhibition of late Na+ current within 
atrial cardiomyocytes in the PV area and was mimicked by the 
application of BMS200261, a PAR-1 inhibitor (Chang, 2018). 
In another study, apixaban increased action potential duration 
and reduced spontaneous diastolic depolarization in rabbit PV 
preparations, an effect that was suppressed by the application of 
the PAR-1 agonist SFLLR-NH2, while warfarin failed to show 
any benefits (Font, 2018). All in all, these studies show that 
PAR activation by hypercoagulation in the atria may favor the 
onset and progression of AF via three concurrent mechanisms: 
promotion of inflammation, atrial fibrosis, and induction of an 
arrhythmogenic phenotype in atrial myocytes.

Direct inhibitors of PAR-1 have been developed and are 
available in the clinic as antiplatelet drugs for secondary 
prevention of myocardial infarction, ischemic stroke, and 
peripheral artery disease (Tricoci, 2012; Bonaca, 2014; Magnani, 

2015; Ungar, 2018). The antiaggregant effect is achieved 
through inhibition of the thrombi-receptor (PAR-1) expressed 
on the membrane of platelets (Moon, 2018). Vorapaxar has 
been available for more than 6 years, and the results obtained 
in atherothrombotic diseases were rather modest in terms of 
reduction of new acute ischemic events, and the drugs increases 
the risk of bleeding and hemorrhagic stroke (Sharma, 2017). 
However, in an animal model of HFpEF, vorapaxar reduced 
cardiac fibrosis and inflammation (Friebel, 2019). Moreover, 
vorapaxar reduces endothelial activation, cytokine production, 
and systemic inflammation (Schoergenhofer, 2018). Whether 
PAR-1 direct inhibition by vorapaxar affects the development 
and progression of AF remains to be investigated, both 
experimentally and clinically. An overview of the currently 
available pharmacological agents acting on PAR signalling is 
provided in Table 1.

ROLe OF OTHeR SeRINe-PROTeASeS IN 
AF: MAST CeLL CHYMASe, DIPePTIDYL-
PePTIDASe-4 AND PROSTATe-SPeCIFIC  
ANTIGeN KALLIKReIN
We previously highlighted the possible role of mast cell 
proliferation in the onset and progression of AF. Interestingly, 
mast cells are the main cell type expressing chymase (Urata, 
1993), a serine protease stored in mast cell granules, which 
acts on several targets that are relevant for atrial function 
and dysfunction. In particular, chymase can locally convert 
angiotensin-I to the active mediator angiotensin-II (Ang 
II), which notably promotes inflammation and fibrosis (see 

TABLe 1 | Drugs acting on PAR signaling.

DRUG CLASS [references] CLINICALLY 
AvAILABLe 
MOLeCULeS

MeCHANISM CLINICAL USe ROLe IN AF

Heparins (Spronk, 2017) Unfractionated heparins, 
low molecular weight 
heparins

Fxa and thrombin 
inhibition by binding to 
anti-thrombins

Parenteral anticoagulants Reduced atrial fibrosis

Heparin derivatives (Spronk, 2017) Fondaparinux 
(penta-saccharide)

FXa inhibition Parenteral anticoagulant Reduced atrial fibrosis

Direct thrombin inhibitors(Chang, 2012; 
Jumeau, 2016; Altieri, 2018a)

Dabigatran, ximelagatran Thrombin inhibition (New) oral anticoagulants Lower atrial fibrosis, 
inflammation, AF inducibility

Factor Xa inhibitors(Chang, 2012; 
Bukowska, 2013; Font, 2018; Kondo, 2018)

Apixaban, rivaroxaban, 
edoxaban

Reduction of thrombin 
formation

(New) oral anticoagulants Lower atrial fibrosis, 
inflammation, firing of 
pulmonary veins, AF 
inducibility

PAR-1 inhibitors (Chang, 2012; Tricoci, 2012; 
Bonaca, 2014; Magnani, 2015; Jumeau, 
2016; Chang, 2018; Schoergenhofer, 2018; 
Ungar, 2018; Friebel, 2019)

Vorapaxar Block of PAR-1 signaling Oral anti-platelet agent Unknown

DPP-4 inhibitors (Lendeckel, 2001; Tremblay, 
2014; Wronkowitz, 2014; Gong et al., 2015; 
Yamamoto, 2015; Chang, 2017; Zhang, 
2017; Igarashi, 2018)

Sitagliptin, saxagliptin and 
other gliptins

Inhibition of circulating 
and local DPP-4, a PAR 
activator

Type-II diabetes (oral 
glucose lowering)

Reduced inflammation, 
small evidence

Chymase inhibitors (Matsumoto, 2003; 
Hooshdaran, 2017)

None Inhibition of local 
chymases, PAR-1 
activators

Experimental drugs Unknown
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above). The presence of chymase in the heart can therefore 
limit the efficacy of ACE inhibitors (Wei, 2010). Indeed, in 
atrial samples from patients with AF who underwent surgery, 
it was observed that chymase mediated the formation of 
Ang II from angiotensin-(1-12) (Ahmad, 2011). It remains 
to be established whether mast cell chymase can directly 
activate PAR receptors in cardiac tissue. The experimental 
chymase inhibitor SUNC8257 partially prevented ventricular 
remodeling in an animal model of tachycardia-induced heart 
failure, leading to reduction of diastolic dysfunction and 
atrial dilatation (Matsumoto, 2003). In a model of cardiac 
infarction, chymase inhibition prevented myocyte apoptosis 
and fibroblast migration/differentiation (Hooshdaran, 2017). 
In different animal models of myocardial infarction, treatment 
with specific inhibitors of mast-cell chymase, including TEI-
E548, BCEAB, and others, led to reduction of hypertrophy, 
improvement of diastolic function, reduced arrhythmias, and 
prolonged survival (Jin, 2002).

Whether chymase inhibition represents a feasible strategy to 
prevent atrial remodeling in the pathogenesis of AF remains to 
be investigated.

Dipeptidyl-peptidase-4 (DPP4) is a serine protease expressed 
in several cell types and organs, which is known to cleave and 
inactivate the incretin glucagon-like peptide-1 (GLP-1). In the 
heart, DPP4 is mainly expressed in the membrane of the capillary 
endothelium, in the sarcolemma of cardiomyocytes and is also 
produced by infiltrating macrophages (Kobara, 2018; Gorrell, 
2005). Oral DPP4 inhibitors (gliptins) are used in type-2 diabetes 
to potentiate GLP-1 signaling. A recent study observed that 
in obesity, DPP4 secreted by the liver is able to activate PAR-2 
receptors expressed by macrophages, in particular macrophages 
that populate adipose tissue, which in turn are activated and 
promote a generalized pro-inflammatory state (Ghorpade, 2018). 
Moreover, soluble DPP4 can mediate endothelial dysfunction, 
acting via activation of PAR-2 and consequent release of 
prostanoids with vasoconstrictor properties (Romacho, 2016). 
Also, soluble DPP-4 can activate PAR-2 in vascular smooth 
muscle cells, leading to production of pro-inflammatory 
cytokines (Wronkowitz, 2014). Recent work suggested that 
circulating and/or locally expressed DPP4 plays a role in AF 
pathogenesis (Lendeckel, 2001; Yamamoto, 2015; Chang, 2017; 
Zhang, 2017; Igarashi, 2018). A recent observational study 
revealed that diabetic patients treated with DPP4 inhibitors 
(gliptins) had a lower risk of AF as compared with patients 
treated with other drugs (Chang, 2017). Ectopeptidases such 
as DPP-4 are expressed in human atrial biopsies from surgical 
patients, independently from the presence or absence of AF 
(Lendeckel, 2001). In a canine model of AF due to rapid atrial 
pacing, linagliptin partially prevented the shortening of atrial 
refractory period and the slowing of atrial conduction induced 
by rapid pacing, thus lowering AF inducibility (Igarashi, 2018). In 
a rabbit heart failure model (ventricular tachypacing), treatment 
with alogliptin reduced atrial fibrosis and increased atrial 
capillary density, ultimately reducing the duration of AF episodes 
(Yamamoto, 2015). In diabetic rabbits showing atrial dilatation, 
fibrosis, and elevated AF propensity, treatment with alogliptin 
partially prevented atrial abnormalities, thanks to the reduction 

of mitochondrial ROS production by atrial cardiomyocytes 
(Zhang, 2017). However, whether these positive effects of DPP-4 
inhibitors on atrial myocardium function depend on the reduced 
PAR activation remains to be studied. Other mechanisms, 
involving the angiotensin-II/sodium-proton pump exchanger-1 
axis, have been suggested as mediators of the direct cardiac 
effects of these agents. In addition, gliptins were shown to have 
a clear anti-inflammatory effect, leading to decreased circulating 
pro-inflammatory cytokines (Gong et al., 2015) and endothelial 
expression of adhesion molecules (Tremblay, 2014); in line with 
this, while high-fructose/glucose diet increases the expression 
of TGFβ and MCP-1 in the myocardium, treatment with DPP-4 
inhibitors reduced these cardiac inflammation markers (Bostick, 
2014). However, it is unclear whether these anti-inflammatory 
effects of gliptins are mediated by the reduced activation of PARs 
in the heart. All in all, gliptins have a clear favorable profile in AF 
and may reduce AF-related atrial structural and electrical changes. 
Unfortunately, in two large clinical trials with DPP4 inhibitors 
(Scirica, 2013; White, 2013), no significant improvements in 
hard cardiovascular endpoints were noted, albeit no specific 
analysis on the rate of AF incidence was conducted. It is to be 
noted that in all studies performed in type-2 diabetes patients 
gliptins were used on top of metformin. Of note, metformin 
treatment was shown to reduce the risk of AF in population 
studies (Chang, 2014). Therefore, the beneficial effects of gliptins 
on AF may, at least in part, depend on their synergic interaction 
with metformin. Moreover, GLP-1 is increased by DPP-4 
inhibitors and the potentiation of GLP-1 dependent signaling 
may be involved in the suppression of atrial remodeling by 
gliptins. Indeed, the GLP-1 analog liraglutide suppressed most 
of the atrial electrophysiological changes induced by rapid atrial 
pacing in a dog model, ultimately reducing the inducibility 
of AF (Nakamura, 2019). However, a meta-analysis of several 
clinical studies with GLP-1 analogs in diabetic patients showed 
that they were not associated with a reduced incidence of  
AF (Monami, 2017).

Tissue kallikreins are a family of serine proteases that are 
expressed in several tissues and organs throughout the body (Wu 
et al., 2005), though their levels are relatively low in cardiac tissue 
(Nolly, 1994). Their main function is the conversion of kininogen 
to bradykinin, a potent vasoactive agent that is involved in 
vasodilation, pain, and inflammation (Bhoola et al., 1992), 
but may also convert Ang I to Ang II (Arakawa and Maruta, 
1980). Reduced urinary excretion of tissue kallikreins has been 
associated with hypertension, in line with the anti-hypertensive 
effects of the kallikrein-kinin system activation (Margolius, 1974). 
Moreover, kallikrein levels in atrial tissue are increased in patients 
type II diabetes mellitus (Campbell, 2010), suggesting that this 
cardioprotective system may be active in these patients to mitigate 
the deleterious effects of hyperglycemia in the heart. Kallikreins 
showed clear cardio-protective effects in animal models of 
myocardial infarction (Yoshida, 2000). Interestingly, kallikrein-
deficient transgenic mice develop a severe dilated cardiomyopathy 
(Meneton, 2001), which does not seem to be a consequence of 
the reduced bradykinin activation (Pesquero, 2000), suggesting 
additional physiological roles of kallikreins in the heart. Prostate-
specific antigen (PSA), also known as gamma-seminoprotein 
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or kallikrein-3 (KLK3), is a glycoprotein enzyme encoded in 
humans by the KLK3 gene and secreted by the epithelial cells of 
the prostate gland. Its physiological role is the liquefaction of the 
semen to facilitate sperm movement, but it may play a role in the 
pathophysiology of cardiovascular diseases (Patane and Marte, 
2009). Indeed, increased serum PSA has been reported in patients 
who received cardiopulmonary resuscitation (Koller-Strametz, 
2000), invasive open-chest cardiac surgery (Mahfouz, 2008), and 
in those who suffered from acute myocardial infarction (Crook 
et al., 1997). Interestingly, patients with myocardial infarction who 
had a marked elevation of PSA showed an increased likelihood of 
paroxysmal AF in the first days after the event (Patane and Marte, 
2010a; Patane and Marte, 2010b). Moreover, high PSA levels 
correlated with the risk of new-onset AF in hypertensive patients 
(Patane and Marte, 2012). However, it is unclear from these studies 
whether PSA plays an active role in the pathogenesis of AF and 
myocardial infarction or whether it is only an epiphenomenon, 
that is, PSA elevation goes in parallel with systemic inflammation 
levels. In contract with the previous observations, some studies go 
against the idea that PSA or other kallikreins play an active role 
in the pathophysiology of AF: infusion of the general kallikrein/
serine protease inhibitor aprotinin was not associated with a 
significant reduction in post-operative AF in patients undergoing 
cardiothoracic surgery (Gillespie, 2005).

SUMMARY AND CONCLUSION
AF is the most common cardiac arrhythmia and the main risk 
factor for ischemic stroke due to the associated hypercoagulability 
leading to arterial embolism. Though a number of comorbidities 
are recognized as risk factors for AF (hypertension, CAD, 
diabetes obesity), the mechanisms leading to the onset of AF 
and to its chronicization remains to be clarified. Overall, clinical 
and experimental data indicate that AF is a multifactorial disease 
whose pathogenic ground might be the presence of a low-grade 
systemic and/or local inflammation. In this context, the search 
for novel drug targets remains a primary issue to help reducing 
inflammation, in order to avoid the development of fibrosis.

Clinical observational studies indicate that AF is associated 
with increased levels of systemic inflammatory marker. Episodic 
AF is able to generate atrial inflammation, inflammatory cells 
infiltration, and an increase of atrial macrophage population; the 
activation of infiltrating inflammatory cells, by the mean of their 
secretome, triggers stable pro-fibrotic structural changes within 
atrial cardiomyocytes and all the surrounding cell types, thus 
contributing to generate stable atrial structural changes that alter 
atrial electrical conduction and stabilize arrhythmogenic reentry 
circuits. In this respect, a central role is likely to be played by 
fibroblasts, which, upon activation by different pathways such 
as the renin angiotensin system, embrace the surviving atrial 
cardiomyocytes in a sheath of fibrous material, with severe 
arrhythymogenic consequences. Overall, experimental evidence 
suggests to monitor and detect early signs of low-grade atrial 
inflammation, before it evolves toward atrial fibrosis.

Pharmacological therapy of AF includes anticoagulants and 
long-term therapy with anti-fibrotic drugs, such as statins and 

renin/angiotensin system blockers, including aldosterone receptor 
antagonists. These drugs demonstrated a certain effectiveness in 
reducing atrial inflammation and fibrosis and showed some anti-
arrhythmic potential in several clinical settings.

In apparent contrast with the inflammatory hypothesis, the 
clinical effectiveness of classical anti-inflammatory drugs in AF 
[i.e., corticosteroids or non-steroideal anti-inflammatory drugs 
(NSAIDS)] remains elusive. However, this discrepancy likely 
derives from the heterogeneity of the clinical data available 
and the lack of focused studies. Overall, pharmacological data 
confirm the benefits of treating patients with well-tolerated 
molecules that oppose the effects of pro-hypertrophic and pro-
fibrotic signals and that the timing of therapy initiation is a main 
determinant of its eventual success.

Serine proteases are among the main players of inflammation. 
These enzymes can be found circulating in blood (e.g., 
coagulation factors), but are also components of the proteolytic 
capacity of all the cell types that form the cardiovascular system. 
Serine proteases are also found in the secretome of activated 
inflammatory cells; these proteases play a fundamental role 
in controlling extracellular matrix production/degradation. 
Physiologically, serine proteases participate in the activation/
deactivation of signaling peptides and play critical roles in 
regulating several homeostatic functions. In these sense, the most 
relevant proteases are DPP4, coagulation factors, and mast cells 
chymase. All these enzymes have signaling activities in addition 
to their biological action; this additional action is accomplished 
by activating specific G-protein coupled receptors, namely PARs, 
of which four isoforms are known (PAR1-4). Serine proteases 
activate PARs promoting the formation of an N-tethered 
ligand, which triggers the initiation of an intracellular cascade, 
a mechanism becoming relevant when protease levels overcome 
the buffering capacity of their endogenous inhibitors. PARs 
show complex mechanisms of activation (transactivation and 
formation of homo and etherodimers) and deactivation, may be 
present in biased conformations or activated by biased agonists. 
PAR expression/activity is increased in the atria and in the 
coronary vessels of AF subjects. Overall, experimental evidence 
indicates that the control of PAR signaling by serine proteases 
might participate to cardiac fibrosis and then considered a novel 
target for drug activity in AF. A direct PAR-1 inhibitor is available 
in the clinic. Vorapaxar is the first PAR1 inhibitor indicated as 
a novel antiplatelet drug, since PAR-1 is crucial for thrombin-
induced platelet aggregation. Despite clinical evidence indicated 
that vorapaxar administration is associated with a reduction of 
cardiac fibrosis, the clinical pharmacological profile of vorapaxar 
is complicated by the elevated incidence of adverse events, 
including severe bleeding. These conflicting results confirm that 
PAR pharmacological inhibitors should be managed carefully. 
Alternatively, a different and safer approach might be to block 
PAR indirectly by using serine-protease inhibitors, such as DPP4 
and chymase inhibitors, or direct anticoagulants.

Gliptins are inhibitors of soluble and tissue-bound DPP4 that 
exert their antidiabetic action by increasing incretin hormone 
levels. Interestingly, DPP4 is expressed in all cell cardiac types 
and plays an important role in vascular endothelium and on 
cardiac fibroblasts, where it activates PAR2. Because of this, 

Frontiers in Pharmacology | www.frontiersin.org December 2019 | Volume 10 | Article 1420

https://www.frontiersin.org/journals/pharmacology/
http://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Inflammation, Fibrosis, and PAR Receptors in AFCoppini et al.

14

gliptins potentially reduce the capacity of DPP4 to activate PAR2, 
with a beneficial effect on endothelial dysfunction, the main 
cellular mechanism predisposing to inflammation, typically 
occurring in the diabetic vasculature. Through PAR inhibition, 
gliptins may reduce the pro-fibrotic cascade triggered by PAR2 
activation. In addition, gliptins have the potential to increase the 
levels of cardiac protective hormones, such as GLP-1. Clinical 
evidence indicates that only aloglitpin, a third-generation gliptin, 
is effective in reducing AF chronicization, confirming that the 
cardiovascular protection of gliptins is molecule-dependent 
and may not be a class effects. However, the demonstrated 
effectiveness of alogliptin highlights the possibility to use gliptins 
also in not diabetic patients, given the excellent safety profile of 
these drugs.

At the moment, chymase inhibitors are still at the preclinical 
level of investigation. However, even if much remains to be 
investigated in respect of the most promising molecules, 
experimental evidence indicates their effectiveness in targeting 
and reducing cardiac fibroblast activation.

Coagulation factors, including thrombin and FXa are activators 
of PAR1 and PAR1 and PAR2, respectively. Experimental 
evidence suggests that increased levels of coagulation factors 
may also have a direct role in the onset of cardiac fibrosis. 
Interestingly, thrombin activation of PAR-1 in the atria, whose 
expression is increased in AF, generates pro-fibrotic pathways 
and affects the electrical activity of atrial cardiomyocytes. Since 
hypercoagulability is a risk factor for ischemic stroke in AF 
patients, anticoagulants are very often prescribed in AF patients.

Direct anticoagulants, low molecular weight heparins, and 
oral anticoagulants target the enzyme activity of thrombin and 
of FXa, thus reducing coagulation but also their probability to 
activate the PAR1 and PAR2 receptors that are expressed in 
the cardiovascular system. Experimental evidence indicates 

that heparins, thrombin inhibitors, and FXa inhibitors reduce 
atrial remodeling and fibrosis in different experimental settings. 
Heparins and oral anticoagulants have different pharmacokinetic 
features; the fact that direct oral anticoagulants are as effective 
as heparins in reducing atrial fibrosis and arrhythmogenenicity 
suggests that the beneficial effects of direct anticoagulants 
are mostly produced at the vascular level, as heparins cannot 
penetrate into tissues. No advantage of using FXa versus 
thrombin inhibitors as protective agents in AF are documented.

Taken together, this evidence suggests that the use of direct 
anticoagulants and, in general, of serine proteases inhibitors, 
including gliptins and possibly chymase inhibitors, might be 
included within the armamentarium of the pharmacological 
treatment for AF. However, only appropriately designed clinical 
trials will tell us whether these drugs really behave as disease 
modifying agents in this disease.
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