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BRD9 is a druggable component of
interferon-stimulated gene expression and antiviral
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Abstract

Interferon (IFN) induction of IFN-stimulated genes (ISGs)
creates a formidable protective antiviral state. However, loss of
appropriate control mechanisms can result in constitutive
pathogenic ISG upregulation. Here, we used genome-scale loss-
of-function screening to establish genes critical for IFN-induced
transcription, identifying all expected members of the JAK-STAT
signaling pathway and a previously unappreciated epigenetic
reader, bromodomain-containing protein 9 (BRD9), the defining
subunit of non-canonical BAF (ncBAF) chromatin-remodeling
complexes. Genetic knockout or small-molecule-mediated
degradation of BRD9 limits IFN-induced expression of a subset
of ISGs in multiple cell types and prevents IFN from exerting
full antiviral activity against several RNA and DNA viruses,
including influenza virus, human immunodeficiency virus (HIV1),
and herpes simplex virus (HSV1). Mechanistically, BRD9 acts at
the level of transcription, and its IFN-triggered proximal associ-
ation with the ISG transcriptional activator, STAT2, suggests a
functional localization at selected ISG promoters. Furthermore,
BRD9 relies on its intact acetyl-binding bromodomain and
unique ncBAF scaffolding interaction with GLTSCR1/1L to
promote IFN action. Given its druggability, BRD9 is an attrac-
tive target for dampening ISG expression under certain autoin-
flammatory conditions.
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Introduction

The type I interferon (IFN-a/b) system is a key component of the

human innate immune response and acts as a first line of defense

against invading pathogens such as viruses. At a general level,

following host recognition of infection, secreted type I IFNs relay

signals to target cells via their binding to cognate cell surface recep-

tors (IFNAR1/IFNAR2) and the subsequent triggering of a well-

defined phosphorylation-activation JAK-STAT signaling cascade

involving the Janus kinases (JAK1/TYK2) and signal transducer and

activator of transcription (STAT1/STAT2) proteins. Together with

IFN-regulatory factor 9 (IRF9), activated STAT1 and STAT2 form a

heterotrimeric transcription factor complex, termed ISGF3, that facil-

itates the transcription of hundreds of antiviral IFN-stimulated genes

(ISGs) (Shaw et al, 2017; Lazear et al, 2019; Mesev et al, 2019).

The critical nature of the IFN system in protecting humans against

infection is exemplified by findings that some individuals with

genetic defects in IFN pathway components can exhibit severe, or

even fatal, viral diseases, particularly in the absence of pre-existing

humoral immunity, as may be the case in young infants or following

infection with an antigenically novel pandemic virus (Zhang et al,

2020; Duncan et al, 2021; Stertz & Hale, 2021).

It is essential that the IFN system is tightly regulated at the

molecular level to prevent exuberant proinflammatory responses

following infection (Ivashkiv & Donlin, 2014; Porritt & Hertzog,

2015; Lumb et al, 2017). Furthermore, uncontrolled activation of

the IFN system caused by loss- or gain-of-function mutations in key

regulators of the IFN pathway can be associated with aberrantly

high levels of circulating IFNs and/or the constitutive expression of

ISGs, leading to a broad range of autoinflammatory disorders known

as interferonopathies (Zhang et al, 2015; Meuwissen et al, 2016;

Rodero & Crow, 2016; Rodero et al, 2017; Duncan et al, 2019; Kong
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et al, 2020; Martin-Fernandez et al, 2020; Rice et al, 2020).

Proposed treatments for interferonopathies include JAK inhibitors

(such as baricitinib (Sanchez et al, 2018), ruxolitinib (Alsohime

et al, 2020), or tofacitinib (Alsohime et al, 2020)) to limit the signal-

ing action of high levels of constitutively circulating IFN or inappro-

priate JAK-STAT regulation. However, while effective in treating

interferonopathies, inhibiting critical components of the IFN signal-

ing pathway can increase patient susceptibility to some viral infec-

tions (Kalunian, 2016; Marie et al, 2018). Therefore, a nuanced

approach targeting factors involved in transcription of specific ISGs

may be more appropriate (Marie et al, 2018).

In this study, we sought to leverage CRISPR/Cas9-mediated

genome-scale loss-of-function screening to interrogate the IFN

signaling cascade and identify human host factors required for ISG

expression. Our screening results led us to focus on Bromodomain-

containing protein 9 (BRD9), a defining subunit of specific

chromatin-remodeling complexes (Alpsoy & Dykhuizen, 2018;

Mashtalir et al, 2018), which has not previously been implicated in

IFN responses. Many factors involved in transcriptional regulation

via chromatin modification or remodeling play important roles in

STAT-mediated ISG expression (Bhattacharya et al, 1996; Paulson

et al, 1999; Huang et al, 2002; Liu et al, 2002; Paulson et al, 2002;

Lau et al, 2003; Nusinzon & Horvath, 2003; Chang et al, 2004; Cui

et al, 2004; Sakamoto et al, 2004; Gnatovskiy et al, 2013; Patel

et al, 2013; Au-Yeung & Horvath, 2018; Marie et al, 2018; Lu et al,

2019), and some (such as histone deacetylases (HDACs) and

bromodomain-containing proteins (Sakamoto et al, 2004; Patel

et al, 2013; Au-Yeung & Horvath, 2018; Marie et al, 2018)) can be

targeted pharmacologically. Here, we provide evidence that BRD9

contributes to the expression of a subset of ISGs (and thus the full

antiviral action of IFN) via its unique functions in non-canonical

BAF (BRG1- or BRM-associated factor; ncBAF) chromatin-

remodeling complexes. Importantly, this contribution of BRD9 is

conserved across numerous human cell types, including primary

cells, and against multiple distinct viruses. Moreover, BRD9 can be

specifically targeted for degradation by small-molecule compounds

without impacting cell viability. Our data add insights into human

factors required for the full activity of IFN and suggest a plausible

therapeutic target to rationally temper detrimentally high ISG levels

in some autoinflammatory disorders, including interferonopathies.

Results

A genome-scale loss-of-function screen identifies human genes
important for interferon-stimulated gene expression

The type I IFN signaling pathway leading to induction of ISG expres-

sion is comprised of several canonical gene components, including

receptors (IFNAR1, IFNAR2), kinases (JAK1, TYK2), and transcrip-

tion factors (ISGF3: STAT1, STAT2, IRF9) (Fig 1A). To identify addi-

tional, previously uncharacterized, genes critical for the ability of

IFN to signal and induce ISG expression, we performed a genome-

scale FACS-based loss-of-function screen in the human lung epithe-

lial cell line, A549. We used the GeCKOv2 CRISPR-Cas9 library,

which contains a total of 123,411 CRISPR single-guide RNAs

(sgRNAs) targeting 19,050 genes in the human genome with 6

guide RNAs per gene (Sanjana et al, 2014). First, we generated a

sub-clone of an A549-based reporter cell line that expresses eGFP

under control of an IFN-stimulated response element (A549/pr

(ISRE).eGFP.A1) (Stewart et al, 2014) and confirmed that treatment

of this sub-clone with IFN-a2 leads to high and homogenous expres-

sion of eGFP, with clear separation of IFN-stimulated and non-

stimulated cell populations in flow cytometry analysis (Fig 1B). As

a pre-screen validation, we next transduced this reporter cell line

with all-in-one puromycin-resistant lentiviral vectors expressing

Cas9 and several control sgRNAs selected from the GeCKOv2

human library. Following puromycin selection for 10 days to ensure

protein depletion after CRISPR gene editing, we observed that a

significant proportion of reporter cells transduced with sgRNAs

targeting the canonical pathway components, IFNAR1 or STAT1,

failed to express eGFP in response to IFN-a2 stimulation (Fig 1C).

As expected, reporter cells transduced with an sgRNA targeting a

non-pathway component, IFNLR1, responded similarly to IFN-a2
stimulation as the parental cell line (Fig 1C). These data indicate

that a FACS-based loss-of-function screen based on the GeCKOv2

human library can be used to identify components of the type I IFN

signaling pathway in A549 cells.

We transduced A549/pr(ISRE).eGFP.A1 cells with a pool of all-

in-one puromycin-resistant lentiviral vectors (lentiCRISPRv2)

comprising the entire GeCKOv2 human library at a multiplicity of

infection (MOI) of 0.3 focus forming units (FFU)/cell to ensure that

most transduced cells received only one sgRNA. We then selected

the cells with puromycin for 10 days to ensure that only transduced

cells survived and to allow for protein depletion after genome edit-

ing. Puromycin-selected reporter cells were then treated (or not)

with 1,000 IU/ml IFN-a2 for 16 h to stimulate eGFP expression, and

FACS was used to enrich for eGFP-negative cells that failed to

respond to IFN-a2 (Fig 1D). Following extraction of genomic DNA

from both the parental library-transduced reporter cell line and the

eGFP-negative cells that failed to respond to IFN treatment, sgRNA

abundance was determined via targeted sequencing (Fig 1D). Two

biological replicates of the screen were performed, and for each

replicate, the adjusted robust-rank aggregation (aRRA) feature of

the PinAPL-Py platform was used to determine gene-level rankings

(based on relative enrichment of each individual sgRNA (Kolde

et al, 2012; Spahn et al, 2017)) for loss-of-function events leading to

IFN non-responsiveness. From this genome-scale screen, we identi-

fied 8 genes that exhibited significant aRRA enrichment (P < 0.01)

in both biological replicates (Fig 1E, Dataset EV1). The robustness

of our results was validated by the observation that 7 of these 8

genes comprise all the known essential factors in the canonical type

I IFN signaling pathway leading to ISG expression: IFNAR1, IFNAR2,

JAK1, TYK2, STAT1, STAT2, and IRF9. The 8th gene found to be

significantly enriched in both our screens was BRD9, which has not

previously been characterized for its role in the type I IFN signaling

pathway. To validate this result, we performed independent experi-

ments using individually cloned and arrayed sgRNAs and could con-

firm that all 6 BRD9-targeting sgRNAs within the GeCKOv2 human

library limit IFN-a2-stimulated expression of eGFP in A549/pr

(ISRE).eGFP.A1 cells (Fig EV1A). Notably, a recent independent

genome-wide screening approach using insertional mutagenesis in

HAP1 cells also identified BRD9 enrichment when searching for

positive regulators of type III IFN-stimulated gene expression (Lumb

et al, 2017), which is thought to use the same intracellular signaling

machinery as type I IFN (Lazear et al, 2019). Thus, our genome-
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scale loss-of-function screen successfully identified both known

genetic components of the human type I IFN signaling pathway and

a new uncharacterized factor, BRD9.

BRD9 is important for interferon-stimulated gene transcription
and antiviral activity

BRD9 encodes Bromodomain-containing protein 9 (BRD9). BRD9 is

a defining subunit of the recently described non-canonical BAF

(ncBAF) complex, one of three major distinct types of ATP-

dependent chromatin-remodeling complexes (together with canoni-

cal BAF and the polybromo-associated, PBAF) that govern DNA

accessibility and thus appropriate regulation of gene transcriptional

programs (Fig EV1B) (Alpsoy & Dykhuizen, 2018; Mashtalir et al,

2018). To initially understand the specificity of our CRISPR screen

finding, we used siRNA pools to deplete unique components of

either ncBAF (BRD9 and GLTSCR1) or PBAF (BRD7 and ARID2) and

study the contribution of these BAF complexes to the antiviral

action of human type I IFN. Notably, treatment of A549 cells with

siRNAs that target BRD9 or GLTSCR1, but not BRD7 or ARID2, led

A

D E

B

C

Figure 1. A genome-scale loss-of-function screen identifies human genes important for interferon-stimulated gene expression.

A Schematic representation of the type I IFN signaling pathway in human cells.
B Stimulation of A549/pr(ISRE).eGFP.A1 cells with 1,000 IU/ml of IFN-a2 for 16 h results in high and homogeneous expression of eGFP as determined by fluorescence

microscopy (left panels, scale bars indicate 300 lm) and flow cytometry (right panel). The FITC channel was used to monitor eGFP levels by flow cytometry, and AU
refers to arbitrary units. Data are representative of at least two biological replicates.

C A549/pr(ISRE).eGFP.A1 cells were transduced for at least 10 days with lentivirus pools expressing Cas9 and sgRNAs targeting the indicated host genes. eGFP levels
following 16 h of IFN-a2 treatment (1,000 IU/ml) or mock were determined by flow cytometry. Data are representative of at least two biological replicates.

D Workflow overview of the genome-scale loss-of-function screen for essential IFN signaling components using the full GeCKOv2 CRISPR-Cas9 library.
E 1/aRRA scores from two biological replicates of the genome-scale screen. Dotted lines represent the significance cutoffs for each replicate. Genes identified as

significant in both screens are highlighted.

Data information: See also Fig EV1 and Dataset EV1.
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to a reproducible (although not statistically significant) reduction in

the ability of IFN-a2 to fully protect cells from infection with the

IFN-sensitive vesicular stomatitis virus (VSV) (Fig EV1C). The rela-

tively small, yet highly consistent, functional effects observed may

be due to inefficient depletion of the respective factors by the

siRNAs used, which were not assessed in this secondary screening

assay. Nevertheless, these data independently support the evidence

from the genome-scale CRISPR screen that BRD9 contributes to IFN

function and additionally indicate that the ncBAF complex may

have a specific role in this pathway.

To dissect further the functions of BRD9 in IFN signaling and to

solidify the siRNA-based findings, we used CRISPR/Cas9 to generate

two independent sets of A549-based BRD9 knockout (KO) and

control (CTRL) clonal cell lines (termed CTRL#1, CTRL#2, BRD9-

KO#1, and BRD9-KO#2). Amplicon sequencing of genomic DNA

confirmed the KO and CTRL genotypes of all clones, and Western

blot validated the complete loss of BRD9 protein expression in both

KO clones (Figs 2A and B, EV2A and B). Loss of BRD9 did not inter-

fere with IFN-a2-induced phosphorylation of JAK1 or STAT1, or

with the IFN-a2-induced translocation of phosphorylated STAT1 to

the nucleus (Fig 2C and D). However, consistent with its known

role in regulation of chromatin remodeling and gene transcription,

loss of BRD9 led to a reduction in IFN-a2-induced MX1 mRNA levels

and a consequent reduction in IFN-a2-induced MxA protein levels

(Figs 2E and F, and EV2C). The effect of BRD9 on inducible gene

expression was specific to IFN-a2 stimulation, as TNF-a-induced
NFKBIA mRNA levels were unaffected by loss of BRD9 (Fig EV2G).

Importantly, loss of BRD9 rendered cells unable to mount a fully

effective IFN-a2-stimulated antiviral response against influenza A

virus (IAV) (Figs 2G and EV2D). To confirm that the observed

phenotypes were due only to the loss of BRD9 (and not to off-target

CRISPR edits), we used a lentivirus vector to reconstitute BRD9

expression. Reconstitution of BRD9 in BRD9-KO cells restored the

ability of IFN-a2 to induce MxA protein levels (Figs 2H and EV2E)

and promoted the ability of IFN-a2 to mediate antiviral activity

against IAV (Figs 2I and EV2F). These results identify a role for

BRD9 in type I IFN signaling at the level of ISG transcription and

reveal that this role is critical for the effective antiviral activity of

IFN.

Targeted degradation of BRD9 reveals its cell type-independent
contribution to interferon-stimulated antiviral activity against
multiple viruses

We used a targeted chemical degrader of BRD9, dBRD9-A, as a tool

to efficiently deplete cells of BRD9 protein in the absence of genetic

manipulation. dBRD9-A is a highly optimized heterobifunctional

ligand that specifically targets the BRD9 bromodomain and bridges

it to the Cereblon E3 ubiquitin ligase complex, thereby targeting

BRD9 protein for proteasome-mediated degradation (Remillard et al,

2017; Brien et al, 2018) (Fig 3A). Treatment of A549 cells with

125 nM dBRD9-A led to a rapid depletion of BRD9 protein within

6 h (Fig 3B), and we could confirm the high specificity of this deple-

tion as levels of the closely related BRD7 protein were unaffected

(Fig 3C). Importantly, and consistent with our ability to generate

BRD9-KO A549 cells, BRD9 degradation by dBRD9-A treatment had

negligible effects on cell viability (Fig EV3A). Using dBRD9-A, we

confirmed that BRD9 depletion leads to a reduction in IFN-a2-

induced MxA protein levels in A549 cells (Fig 3D) and to an inef-

fective mounting of IFN-a2-stimulated antiviral responses against

IAV (Fig 3E). Such defective mounting of antiviral responses was

not limited to the inefficient control of IAV, as dBRD9-A-treated

A549 cells also failed to induce full IFN-a2-mediated antiviral

programs against another RNA virus (VSV), a DNA virus (herpes

simplex virus type 1, HSV1), and a retrovirus (human immunodefi-

ciency virus type 1, HIV1) (Fig 3F–H). In these assays, no effects of

dBRD9-A treatment on virus replication were noted in the absence

of IFN-a2 treatment. In addition, dBRD9-A treatment of a panel of

human cell lines (including Hep2, Huh-7, Calu-3, and U87MG),

murine 3T3, primary-like human MRC-5, and primary undifferenti-

ated human tracheobronchial epithelial (HTBE) cells revealed that

BRD9 contributes to IFN-stimulated antiviral activity in a broad

range of cell types and hosts (Figs 3I and L, and EV3B–D). The inde-

pendent ability of dBRD9-A to recapitulate the results from BRD9-

KO cells supports the hypothesis that BRD9 promotes IFN-

stimulated gene expression. Furthermore, these data highlight the

cell type-independent function of BRD9 in the IFN-mediated antivi-

ral response against different viruses.

BRD9 promotes the interferon-stimulated expression of a subset
of antiviral genes

To gain a deeper, and system-wide understanding of the spectrum

of IFN-stimulated genes regulated by BRD9, we conducted a tran-

scriptomic experiment to identify genes differentially expressed

upon IFN-a2 stimulation of A549 cells in the presence or absence of

dBRD9-A (Fig 4A). Experiments were performed three independent

times, and we defined up- or downregulated genes using cutoff

values of 2-fold-change (FC) and a P-value of ≤ 0.001. Using these

criteria, we identified 333 significantly upregulated, and 5 signifi-

cantly downregulated, gene transcripts in A549 cells following 6 h

of 100 IU/ml IFN-a2 treatment (Fig 4B, Dataset EV2). Notably,

dBRD9-A treatment in the absence of IFN-a2 resulted in the down-

regulation of only 11 gene transcripts, and none of these genes have

previously been implicated in the type I IFN signaling pathway (top

5 downregulated: PCED1B, NAMPT, CLDN2, NNMT, and ARPIN)

(Dataset EV2). However, we note that at least 3 of these dBRD9-A-

regulated genes (PCED1B, NAMPT, and NNMT) are putative

mammalian ISGs (Shaw et al, 2017) and may therefore be basally

regulated by STAT transcription factor complexes. Of the 333 IFN-

upregulated genes (ISGs) we identified in A549 cells, we found that

prior dBRD9-A treatment led to significantly reduced induction of 29

ISGs, including many ISGs known to harbor antiviral activity against

the viruses used in this study, such as MX1, MX2, IFITM1, IFITM3,

IDO1, and BST2 (Fig 4C, Dataset EV2). Importantly, the expression

of many ISGs was not affected by dBRD9-A treatment, and it was

notable that the impact of dBRD9-A on ISG expression did not

appear to directly correlate (positively or negatively) with gene

induction levels by IFN-a2, indicating gene specificity (Fig 4D and

E). Targeted RT–qPCR analysis confirmed the inhibitory effect of

dBRD9-A treatment on IFN-a2-stimulated expression of MX1, MX2,

and IFITM1, but not IFIT1 or ISG15 (Fig 4F). Strikingly, this gene-

specific pattern was not identical between different human cell lines

(Fig EV4A–C), suggesting that epigenetic factors regulating chro-

matin state (rather than specific ISG promoter sequences) likely

determine the contribution of BRD9 to ISG expression. Indeed, we
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could not find an enrichment of any specific promoter sequences in

the ISGs regulated by dBRD9-A treatment. These data indicate that

BRD9 has a role in promoting the IFN-stimulated expression of a

broad set of specific ISGs and that this set of ISGs may be cell type,

or cell state, specific.

BRD9 function requires its acetyl-binding activity and unique
DUF3512 scaffolding domain

BRD9 comprises an N-terminal bromodomain and a C-terminal

DUF3512 scaffolding domain that mediates a specific interaction

with the GLTSCR1/1L component of ncBAF (Mashtalir et al, 2018;

Wang et al, 2019) (Fig 5A). Bromodomains are reader modules of

acylated residues and generally mediate the interaction of protein

complexes, such as ncBAF, with DNA via acetylated histones. The

bromodomain of BRD9 is reported to exhibit high binding affinity

toward acetylated lysines as well as an unconventional binding of

butyrylated lysines (Flynn et al, 2015). To test the impact of BRD9

activities on type I IFN-induced function, we initially constructed a

series of BRD9 mutants that either lacked the entire bromodomain

(dBD), or which contained single amino acid substitutions known to

abolish the ability of BRD9 to bind acetylated lysines (N216A) or

◀ Figure 2. BRD9 is important for interferon-stimulated gene transcription and antiviral activity.

A An A549-derived BRD9-KO cell clone (KO#1) was generated using a crRNA targeting exon 8 of BRD9. The target sequence of the crRNA (termed crRNA1), and the
resulting genomic alterations determined by NGS for the two BRD9 alleles, is shown in comparison to an unedited control clone (CTRL#1). Generated indels lead to a
premature termination codon (PMT) in the following exon. Encoded amino acids are shown below the CTRL nucleotide sequence.

B Western blot analysis of lysates from CTRL#1 or BRD9-KO#1 cells. BRD9 and b-actin were detected with specific antibodies. Data are representative of at least two
biological replicates.

C Western blot analysis of CTRL#1 or BRD9-KO#1 lysates from cells treated for the indicated times with 1,000 IU/ml of IFN-a2. The indicated proteins were detected
with specific antibodies. Data are representative of at least two biological replicates.

D Immunofluorescence analysis of CTRL#1 or BRD9-KO#1 cells treated for the indicated times with 1,000 IU/ml of IFN-a2. The indicated proteins were detected with
specific antibodies. Data are representative of at least two biological replicates. Scale bars indicate 10 lm.

E RT–qPCR analysis of MX1 levels in CTRL#1 or BRD9-KO#1 cells following treatment, or not, with 100 IU/mL of IFN-a2 for 6 h. GAPDH transcript levels were used for
normalization. Data represent means and standard deviations of fold expression changes (relative to CTRL#1 without IFN-a2 treatment) from n = 3 biological
replicates (individual data points shown). Statistical significance was determined by unpaired 2-tailed t-test on DCt values (***P < 0.001).

F Western blot analysis of CTRL#1 or BRD9-KO#1 lysates from cells treated or not for 16 h with 1,000 IU/ml of IFN-a2. The indicated proteins were detected with
specific antibodies. Data are representative of at least two biological replicates.

G CTRL#1 or BRD9-KO#1 cells were treated, or not, with 1,000 IU/ml of IFN-a2 for 16 h prior to infection with IAV (WSN/33) at an MOI of 0.01 PFU/cell. Viral titers
were determined after 24 h by plaque assay.

H CTRL#1 or BRD9-KO#1 cells were stably transduced with BRD9-expressing, or control (EV, empty vector), lentiviruses and treated with a range of IFN-a2
concentrations (0, 10, 100, 1,000 IU/ml) for 16 h prior to lysis and analysis for the indicated proteins by Western blot. Data are representative of at least two
biological replicates.

I CTRL#1 or BRD9-KO#1 cells were stably transduced with BRD9-expressing, or control (EV, empty vector), lentiviruses and treated with 1,000 IU/ml of IFN-a2 for 16 h
prior to infection with IAV (WSN/33) at an MOI of 0.01 PFU/cell. Viral titers were determined after 24 h by plaque assay.

Data information: For (G) and (I), data represent means and standard deviations from n = 3 biological experiments (individual data points shown). Statistical significance
was determined by 1-way ANOVA on log-transformed plaque counts (**P < 0.001; ****P < 0.0001). Dotted lines are a visual guide for maximum and minimum virus
replication in control cells in the absence and presence of IFN-a2, respectively. Numbers above IFN-a2-treated bars indicate their approximate difference to the
respective untreated conditions. See also Fig EV2.
Source data are available online for this figure.

▸Figure 3. Targeted degradation of BRD9 reveals its cell type-independent contribution to interferon-stimulated antiviral activity against multiple viruses.

A Schematic representation of the mechanism of action of dBRD9-A. dBRD9-A simultaneously recruits the ubiquitin E3 ligase Cereblon (CRBN) to the bromodomain
(BD) of BRD9, thereby facilitating the ubiquitination and degradation of BRD9.

B A549 cells were treated for the indicated time with either DMSO or 125 nM dBRD9-A. Following lysis and Western blot analysis for the indicated proteins, BRD9
levels were quantified by densitometry and made relative to levels in DMSO-treated cells (% below). Data are representative of at least two biological replicates.

C A549 cells were treated with 125 nM dBRD9-A (+) or DMSO (�) for 6 h prior to lysis and analysis by Western blot for the indicated proteins. Data are representative
of at least two biological replicates.

D A549 cells were treated with 125 nM dBRD9-A (+) or DMSO (�) for 6 h prior stimulation with 1,000 IU/ml of IFN-a2 for 16 h. Following lysis, Western blot was
used to detect levels of the indicated proteins. Data are representative of at least two biological replicates.

E A549 cells were treated as described in (D), but following stimulation with 1,000 IU/ml of IFN-a2 for 16 h were infected with IAV (WSN/33) at an MOI of 0.01
PFU/cell. Viral titers were determined after 24 h by plaque assay. Data represent means and standard deviations from n = 3 biological experiments (individual data
points shown). Statistical significance was determined by 1-way ANOVA on log-transformed plaque counts (***P < 0.001).

F–H A549 cells were treated as described in (E), but IFN-a2 concentrations ranged from 10 to 1,000 IU/ml depending upon the virus, and infections were similarly
performed but with: VSV-GFP (F); HSV1-GFP (G); or VSV-G pseudotyped HIV1-GFP (H).

I–L Hep2 (I), Huh-7 (J), MRC-5 (K), and undifferentiated HTBE (L) were treated and infected with VSV-GFP as in (F).

Data information: For F-L, total integrated green fluorescent intensities were determined using the Incucyte live-cell analysis system after 10 h (G), 24 h (F, I-L), or 48 h
(H). Data represent means and standard deviations from n = 3 biological experiments (individual data points shown). Statistical significance was determined by 1-way
ANOVA on log-transformed intensity values (*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001). For E-L, dotted lines are a visual guide for maximum and minimum
virus replication in control cells in the absence and presence of IFN-a2, respectively. Numbers above IFN-a2-treated bars indicate their approximate difference to the
respective untreated conditions. See also Fig EV3.
Source data are available online for this figure.
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butyrylated lysines (M208I) (Flynn et al, 2015). Furthermore, we

used CRISPR/Cas9 to generate an independent set of A549-based

BRD9 knockout (KO) and control (CTRL) clonal cell lines (termed

CTRL#3 and BRD9-KO#3) that were both derived from a highly IFN-

sensitive A549 sub-clone, 2D8, that is regularly used in our labora-

tory. The rationale for making this additional CTRL/KO pair on a

more homogenous genetic background was to increase the dynamic

range of antiviral assays and thereby improve the study of BRD9

mutants. Amplicon sequencing of genomic DNA confirmed the KO

and CTRL genotypes of these clones, and Western blot validated the

loss of BRD9 protein expression in the KO#3 clone (Fig EV5A and

B). Lentivirus-mediated reconstitution of BRD9-KO#3 cells with

either wild-type (wt) BRD9 or the individual BRD9 mutants revealed

that all constructs were expressed similarly (Fig 5A). However,

there were clear differences in the ability of each BRD9 construct to

restore the antiviral activity of IFN-a2: as compared to wt BRD9,

BRD9 mutants lacking the entire bromodomain (dBD) or lacking

acetyl-lysine binding (N216A) were inefficient at reconstituting IFN-

a2 activity, while the BRD9 mutant lacking butyryl-lysine binding

(M208I) functioned similarly to wt BRD9 (Fig 5B). These data

suggest that acetyl (but not butyryl) binding by the BRD9 bromod-

omain is important, although apparently not essential, for the func-

tion of BRD9 in the context of a type I IFN-mediated antiviral

response.

We next investigated the contribution of the BRD9 DUF3512

domain to type I IFN-mediated antiviral activity. Highly homologous

DUF3512 domains are shared between BRD9 and the closely related

BRD7, although each serves as a specific scaffolding interaction

A

E F G H

I J K L

B C D

Figure 3.
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platform for either the ncBAF component, GLTSCR1/1L, or the PBAF

component, ARID2, respectively (Mashtalir et al, 2018; Wang et al,

2019) (Fig EV1B). We generated N-terminally HA-tagged chimeras

between BRD9 and BRD7 (Fig 5C–E), as well as specific BRD7/BRD9

domain swap constructs (Fig 5F–I) (Michel et al, 2018), and used

lentivirus vectors to reconstitute BRD9-KO#3 cells with each variant.

All constructs were expressed similarly to their respective wt BRD9

control and at levels above endogenous BRD9 levels in unedited

CTRL#3 cells (Fig 5D and G). Furthermore, we confirmed that wt

BRD9 could specifically co-precipitate GLTSCR1, and not ARID2, but

that such interactions could be reversed by replacing the DUF3512

domain of BRD9 with that of BRD7 (Fig 5H). As compared to wt

BRD9, BRD7 expression was unable to restore the antiviral activity of

IFN-a2 in BRD9-KO#3 cells (Fig 5E), a result consistent with our

A D

B

C

E F

Figure 4.
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previous siRNA-based observations (Fig EV1C) which again high-

lights the specificity of BRD9/ncBAF function in this pathway.

Notably, constructs consisting of the BRD9 bromodomain in the

context of the BRD7 DUF3512 domain also failed to restore the antivi-

ral activity of IFN-a2 in BRD9-KO#3 cells, while constructs containing

the BRD9 DUF3512 domain (even in the context of the BRD7 bromod-

omain) exhibited a strong ability to restore IFN-a2 function, albeit not

to levels equivalent to full-length BRD9 (Figs 5E and I). These data

suggest that acetyl-binding is important for BRD9 function in the type

I IFN-mediated antiviral response somewhat independently of

bromodomain identity. Furthermore, in this antiviral process, BRD9

must act via the specific ncBAF complex, likely using GLTSCR1/1L,

as altering the DUF3512-mediated complex composition attenuated

BRD9 function in the type I IFN-mediated antiviral response. Such

features of general BRD9 function have been observed previously

(Hohmann et al, 2016), and it is noteworthy that GLTSCR1 was

enriched in a previous screen to identify positive regulators of type III

IFN-stimulated gene expression (Lumb et al, 2017), which is consis-

tent with our own siRNA-based observations (Fig EV1C). These data

support the hypothesis of specific involvement of the ncBAF complex

in promoting IFN-stimulated gene expression and antiviral activity.

Interferon induces the close proximity of BRD9 with STAT2

To further understand the involvement of BRD9 (and the ncBAF

complex) in IFN-stimulated gene expression, we sought to identify

the BRD9 protein interactome in A549 cells, as well as any IFN-

induced changes to this interactome. We therefore N-terminally

tagged wt BRD9 with the highly active and promiscuous biotin

ligase, TurboID (Branon et al, 2018), with the aim of biotinylating

proteins proximal to BRD9 in living cells and subsequently captur-

ing them with streptavidin beads prior to identification by mass

spectrometry. The benefits of using TurboID for detecting protein–

protein interactions include the in situ nature of biotin labeling

reducing the likelihood of identifying artefactual interactions, and

the ability to identify weak or transient interactions in the local envi-

ronment that might otherwise be lost with other affinity-based

methods (Branon et al, 2018). For these assays, TurboID-tagged

mCherry served as a negative control (Fig 6A). Using lentivirus

vectors, both TurboID-tagged mCherry and TurboID-tagged BRD9

were independently expressed in A549 cells, and their biotinylated

interactomes under resting conditions were determined (Fig 6B). By

comparison with the mCherry-negative control across 3 biological

replicates, we identified (with high confidence) 145 proteins in close

proximity to BRD9 under these non-stimulated conditions (Dataset

EV3). Notable among the interactors were 7 subunits of the ncBAF

complex, including GLTSCR1/1L (also known as BICRA/L) (Fig 6C).

Furthermore, ARID2, a specific interactor of the BRD7 DUF3512

domain and key component of the PBAF complex, was not identi-

fied as a BRD9 interactor. These findings are fully in line with our

own confirmatory co-immunoprecipitation data presented in Fig 5H.

Gene ontology (GO) analysis also revealed that these 145 protein

interactors are functionally enriched for cellular processes including

chromatin remodeling/modification, regulation of transcription, and

nucleosome/histone activity (Fig 6D). These analyses validate the

specificity of our approach in identifying proteins in close proximity

to BRD9 and the ncBAF complex in A549 cells.

We next used the TurboID assay to study the BRD9 interactome

in the presence or absence of a 60-min stimulation with IFN-a2
(Fig 6B), which was chosen as a time point representing the initia-

tion of ISG transcription. The deduced BRD9 interactomes under

these two conditions were essentially identical, suggesting that the

pre-formed BRD9-nucleated ncBAF complex is not perturbed.

However, IFN-a2 stimulation did lead to the significant enrichment

of STAT2 as a biotinylated factor in the close environment of BRD9

(Fig 6E, Dataset EV3). These results were confirmed in independent

proximity labeling, affinity purification, and Western blot experi-

ments, where GLTSCR1 could also be validated as a constitutive

and specific interactor of BRD9, while the association of STAT2 with

BRD9 was only observed following IFN-a2 treatment (Fig 6F). This

is reminiscent of a previous observation that the central catalytic

BAF subunit, SMARCA4, can directly interact with STAT2 and that

this interaction can be enhanced by IFN-a stimulation (Huang et al,

2002). Notably, A549 cells appear to express a severely truncated

and non-functional SMARCA4 (Medina et al, 2008; Vangamudi

et al, 2015; Dornfeld et al, 2018), and the SMARCA4 paralogue

SMARCA2 may compensate for SMARCA4 deficiency in BAF

complexes during antiviral responses (Dornfeld et al, 2018).

Together, these data suggest a functional interaction between BRD9-

containing ncBAF complexes and STAT2 following IFN stimulation

that likely contributes to driving ISG expression.

Discussion

Herein, we describe the identification and characterization of BRD9

as a host factor required for the efficient expression of a subset of

ISGs and for the full antiviral activity of IFN. Mechanistically, BRD9

◀ Figure 4. BRD9 promotes the interferon-stimulated expression of a subset of antiviral genes.

A Overview of the dBRD9-A transcriptomics experiment in A549 cells.
B Up-regulated (red) and downregulated (blue) genes identified in A549 cells following treatment with 100 IU/ml IFN-a2 for 6 h: ISGs were defined as induced by IFN-

a2 with FC > 2, P-value ≤ 0.001.
C Impact of dBRD9-A pretreatment on the induction of ISGs identified in (B). Colors indicate IFN-induced transcripts significantly affected (blue) or unaffected (gray) by

dBRD9-A pretreatment (FC > 2, P-value ≤ 0.001).
D Heatmaps highlighting the gene expression changes observed with each treatment. Left: the top 50 ISGs, ranked by IFN-induced expression (B), were compared with

respect to the impact that dBRD9-A pretreatment had on induction. Right: comparative fold change in induction for each ISG in the presence or absence of dBRD9-A.
E ISG expression level following IFN-a2 stimulation, grouped by whether they were affected or not by dBRD9-A pretreatment (see C).
F RT–qPCR confirmation of transcriptomics results for selected transcripts (MX1, MX2, IFITM1, ISG15, and IFIT1) in A549 cells treated as outlined in (A). GAPDH transcript

levels were used for normalization. Data represent means and standard deviations from n = 3 biological experiments (individual data points shown). Statistical
significance was determined by unpaired 2-tailed t-test on DCt values (*P < 0.05; n.s. not significant).

Data information: See also Fig EV4.
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appears to act downstream of cytoplasmic JAK-STAT signaling and

STAT protein nuclear translocation and likely impacts the IFN-

induced transcription of ISGs following its proximal association at

ISG promoters with nuclear STAT2-containing transcription factor

complexes (i.e., the whole activated ISGF3 complex of STAT1,

STAT2, and IRF9). BRD9 is a defining member of the ncBAF

A

C

D

F

G H

E
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B

Figure 5.
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complex, and its C-terminal DUF3512 domain is essential for recruit-

ing a key component, GLTSCR1/1L, into this complex. We found

that switching the recruitment function of BRD9 from GLTSCR1/1L

to ARID2 (a PBAF complex component), using a previously estab-

lished domain swap technique (Michel et al, 2018), compromised

the ability of BRD9 to promote the antiviral effects of IFN, suggest-

ing an important and specific role for the ncBAF complex as a whole

in the transcription-promoting activity of IFN. In support of this, we

note that GLTSCR1, like BRD9, was also enriched in a separate

screen to identify positive regulators of antiviral ISG expression in

response to the type III IFN, IFN-k (Lumb et al, 2017), a finding that

we further observed with type I IFN-a using siRNAs. While some

components of the canonical BAF and PBAF complexes (e.g.,

SMARCB1/BAF47 and ARID2/BAF200), as well as the central

SMARCA4/BRG1 subunit, have previously been implicated in

promoting specific ISG transcription in knockdown experiments

(Huang et al, 2002; Liu et al, 2002; Cui et al, 2004; Yan et al, 2005;

Patel et al, 2013; Marie et al, 2018), no other BAF or PBAF exclusive

components were enriched in our genome-scale knockout screen,

and siRNAs targeting the PBAF-specific BRD7 and ARID2 also failed

to limit the antiviral action of IFN in our experiments. This could

indicate that these canonical BAF factors are essential for cell viabil-

ity, at least in the A549 cell line used here, or are already non-

functional, as is reported for SMARCA4 (Medina et al, 2008; Vanga-

mudi et al, 2015; Dornfeld et al, 2018). It is also possible that

distinct BAF complexes differentially regulate specific ISG subsets in

different cell types depending upon epigenetic factors or subunit

expression levels, such that the presence of specific BAF complex

compositions within cells actively shapes their individual ISG pro-

files in response to IFN. Why such distinct transcription regulatory

mechanisms might be required in the IFN response, are gene speci-

fic, or involve different BAF complexes is currently unclear. Further-

more, it remains to be determined why such an additional level of

regulation beyond formation of the canonical ISGF3 complex should

be necessary for specific ISGs. Nevertheless, our findings here

indicate that BRD9 is important, overall, for the antiviral ISG

response (and can be targeted for inhibition) in a range of primary

and transformed cells. Indeed, taken together with previous inde-

pendent screening data (Lumb et al, 2017), the whole ncBAF

complex appears to play a specific role in selected ISG expression in

different cell types in response to both type I and III IFNs.

BRD9 function requires an intact bromodomain, and the ability

to bind acetylated lysines is necessary for its promotion of IFN-

stimulated antiviral activity. Presumably, this mediates the recruit-

ment of the entire ncBAF complex to a specific target that remains

to be elucidated, but which is likely to be acetylated histone tails

(Flynn et al, 2015). Thus, the simplest interpretation of our findings,

which is consistent with a previously published model of BAF

complex association with the promoters of regulated genes (Cui

et al, 2004), is that ncBAF constitutively localizes to some key gene

promoters (including critical ISGs) via the acetyl-binding property of

BRD9, where this complex functions to increase chromatin accessi-

bility and thereby “prime” maximal ISG induction following IFN

stimulation (Fig 7). We currently favor this model, as our proximity

labeling proteomic assays did not reveal dramatic changes in the

BRD9 interactome that might have indicated IFN-stimulated recruit-

ment of BRD9 to new genomic sites. Rather, our data suggest

recruitment of the STAT2-containing ISGF3 transcription factor

complex to ISG promoters already harboring BRD9 and ncBAF,

which is in line with other reports (Huang et al, 2002). However,

we cannot rule out a more nuanced mechanism, or one that

includes specific IFN-stimulated recruitment of BRD9/ncBAF to a

subset of some ISG promoters that exhibit a particular epigenetic

state, where ncBAF then impacts chromatin accessibility to promote

STAT2/ISGF3 binding and/or activity. In addition, our proteomic

experiments confirmed the previously described interaction of BRD4

with the ncBAF complex (Rahman et al, 2011; Alpsoy & Dykhuizen,

2018; Gatchalian et al, 2018), and BRD4 can mediate the recruit-

ment of ncBAF subunits to chromatin in a bromodomain-dependent

manner (Gatchalian et al, 2018). Furthermore, BRD4 itself has been

◀ Figure 5. BRD9 function requires its acetyl-binding activity and unique DUF3512 scaffolding domain.

A Top: schematic representation of wild-type (wt) human BRD9 and selected mutants, highlighting the acyl-binding bromodomain (BD9) and the DUF3512 domain
responsible for ncBAF assembly. Numbers represent amino acid residues. The box highlights BD9 positions 208–216, which include residues critical for acetyl (N216)
or butyryl (M208) binding. dBD is an engineered BRD9 variant lacking the entire bromodomain (residues 140–237). Bottom: Western blot analysis of CTRL#3 or BRD9-
KO#3 cells stably transduced with lentiviruses expressing empty vector (EV), or wt and mutant BRD9 constructs.

B The various CTRL#3 or BRD9-KO#3 cells described in (A) were stimulated with 1,000 IU/ml of IFN-a2 for 16 h prior to infection with VSV-GFP at an MOI of 0.6
PFU/cell. Total integrated green fluorescent intensities were determined using the Incucyte live-cell analysis system at 48 h post-infection.

C Schematic representation of HA-tagged wt human BRD9, BRD7, and selected chimeric mutants. BD7 is the BRD7 bromodomain. Numbers represent amino acid
residues of the final constructs.

D Western blot analysis of CTRL#3 or BRD9-KO#3 cells stably transduced with lentiviruses expressing empty vector (EV), or HA-tagged wt and chimeric mutant
constructs described in (C).

E The various CTRL#3 or BRD9-KO#3 cells described in (D) were stimulated and infected as described in (B).
F Schematic representation of wt human BRD9, and selected chimeric mutants with domains from BRD7. Numbers represent amino acid residues of the final

constructs.
G Western blot analysis of CTRL#3 or BRD9-KO#3 cells stably transduced with lentiviruses expressing empty vector (EV), or wt and chimeric constructs described in (F).
H Western blot analysis of input lysates and anti-BRD9 immunoprecipitations (IPs) from cells described in (G) expressing wt BRD9 or the chimeric BRD7DUF. The

indicated proteins were detected with specific antibodies. Data are representative of two biological replicates.
I The various CTRL#3 or BRD9-KO#3 cells described in (G) were stimulated and infected as described in (B).

Data information: For (B), (E), and (I), data represent means and standard deviations from n = 3 biological experiments (individual data points shown). Numbers above
IFN-a2-treated bars indicate their approximate difference to the respective untreated conditions. Dotted lines are a visual guide for minimum virus replication in control
cells in the presence of IFN-a2. Statistical significance was determined by 1-way ANOVA on log-transformed intensity values (***P < 0.001; ****P < 0.0001; n.s. not
significant). See also Fig EV5.
Source data are available online for this figure.
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implicated in the transcriptional regulation of ISGs (Patel et al,

2013; Marie et al, 2018), and IFN-induced chromatin recruitment

mechanisms have been described in this context (Huang et al, 2002;

Patel et al, 2013). Thus, the functional interplay between BRD9 and

BRD4 remains to be further investigated, perhaps along with addi-

tional known targets of the BRD9 bromodomain, such as acetylated

RAD54 (Zhou et al, 2020), acetylated CCAR2 (Rajendran et al,

2019), and the acetylated vitamin D receptor (VDR) (Wei et al,

2018). In this context, we note that VDR also has a proposed role in

regulating the JAK-STAT pathway and IFN-mediated STAT1-

dependent ISG responses (Lange et al, 2014).

An important outcome of our study was the observation that

small-molecule-mediated degradation of BRD9, using dBRD9-A,

limits IFN-induced expression of certain ISGs in multiple cell types.

This finding could have implications for the consideration of BRD9

as a viable therapeutic target in the treatment of some autoin-

flammatory interferonopathies (Zhang et al, 2015; Meuwissen et al,

2016; Rodero & Crow, 2016; Rodero et al, 2017; Duncan et al, 2019;

A

F

D

B

C

E

Figure 6. Interferon induces the close proximity of BRD9 with STAT2.

A Schematic representation of TurboID-tagged (T.I.) mCherry (negative control) and TurboID-tagged BRD9. V5 indicates the location of a V5-tag. Numbers represent
amino acid residues of the final constructs. Both constructs were stably expressed in A549 cells.

B Overview of the proximity labeling workflow: interactomes of T.I.-mCherry or T.I.-BRD9 were determined in the presence/absence of a 60 min stimulation with
1,000 IU/ml of IFN-a2 and 500 lM biotin for 30 min.

C Schematic of the non-canonical BAF (ncBAF) complex, with factors identified with high confidence (SaintExpress Score ≥ 0.99) by proximity labeling to be specific
interactors of BRD9 (as compared to mCherry) colored in red.

D GO term analysis of the 145 interactors identified to be specific to BRD9.
E Comparative BRD9 interactome analysis in the presence/absence of a 60 min stimulation with 1,000 IU/ml of IFN-a2. Note that FDR for STAT2 was 0, but has been

set to 0.001 for visualization purposes.
F Western blot analysis of samples from independent small-scale streptavidin purifications (termed “Eluates”) following the proximity labeling approach outlined in (B).

The indicated proteins were detected with specific antibodies. M indicates the marker lane. Data are representative of at least two biological replicates.

Source data are available online for this figure.
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Kong et al, 2020; Martin-Fernandez et al, 2020; Rice et al, 2020),

particularly under specific circumstances where broad targeting of

JAK-mediated signaling may not be appropriate. Furthermore, we

also note that BRD9 inhibition (or degradation) is an attractive ther-

apeutic aim for the treatment of several cancers (Brien et al, 2018;

Mashtalir et al, 2018; Hu et al, 2019). Therefore, our data should

also raise awareness that, in such applications, drugs targeting

BRD9 may have the undesirable side effect of limiting the effective-

ness of endogenous host innate antiviral IFN responses, thereby

potentially increasing the susceptibility of individuals to some infec-

tions.

Materials and Methods

Cells and compounds

293T, A549, MDCK, Huh-7, U87MG, Calu-3, Hep2, and mouse 3T3

cells (all originally from ATCC) were maintained in Dulbecco’s

modified Eagle’s medium (DMEM) (Life Technologies) supple-

mented with 10% (v/v) fetal calf serum (FCS), 2 mM L-glutamine,

100 units/ml penicillin, and 100 lg/ml streptomycin (Gibco Life

Technologies). MRC-5 cells (originally from ATCC) were cultured in

minimum essential medium Eagle (MEM) supplemented with 10%

(v/v) FCS, 100 units/ml penicillin, 100 lg/ml streptomycin, 2 mM

L-glutamine (Gibco Life Technologies), and 1% (v/v) non-essential

amino acids (Life Technologies). Primary human tracheobronchial

epithelial cells were purchased from Lonza and maintained in

supplemented basal medium (Promocell). The original A549/pr

(ISRE).eGFP cells were kindly provided by Rick Randall and Cather-

ine Adamson (University of St Andrews, UK) (Stewart et al, 2014).

The A549/pr(ISRE).eGFP.A1 sub-clone was subsequently obtained

by limiting dilution of FACS-sorted eGFP-positive cells following 2

rounds of IFN-a2 (Novus Biologicals) stimulation (1,000 IU/ml for

16 h). The A549/pr(ISRE).eGFP.A1 sub-clone was found to induce

high and homogenous levels of eGFP following IFN-a2 stimulation

as assessed by the IncuCyte live-cell analysis system (Sartorius) and

flow cytometry (see below). The A549-2D8 sub-clone was obtained

by limiting dilution of A549 cells and subsequent selection of a

clone that exhibited high IFN-induced antiviral activity against IAV.

Cell lines were not authenticated, but were routinely tested for

mycoplasma contamination (GATC, Germany). None of the cell

lines used ever tested positive for mycoplasma. Cycloheximide was

purchased from Sigma-Aldrich. dBRD9-A (Brien et al, 2018) was

custom-synthesized by ChemPartner, dissolved in DMSO, and used

at the indicated concentration. Recombinant human TNF-a was

purchased from Preprotech. Cell viability was measured as indicated

using the CellTiterGlo (Promega) assay kit, following the manufac-

turer’s instructions.

Viruses and infections

Propagation, titration, and use of wild-type influenza A virus (IAV;

WSN/33 strain) have been described previously (Spieler et al,

2020). VSV-GFP was a kind gift from Peter Palese (Icahn School of

Medicine, New York, USA). HSV1-GFP was kindly provided by

Jovan Pavlovic (University of Zurich, Switzerland) (Crameri et al,

2018). VSV-G pseudotyped HIV1-GFP (NHGDenvGFP) was gener-

ated as previously described using plasmids from Sam Wilson

(University of Glasgow, UK) (Busnadiego et al, 2014; Kane et al,

2016). For IAV infections, approximately 1 × 105 cells were treated

or not with 1,000 IU/ml of IFN-a2 for 16 h prior to infection at the

indicated multiplicity of infection (MOI) in PBS supplemented with

0.3% BSA, 1 mM Ca2+/Mg2+, 100 units/ml penicillin, and 100 lg/

Figure 7. Hypothetical model of BRD9 and ncBAF function at selected interferon-stimulated gene promoters.

We hypothesize that the ncBAF complex is localized to the promoters of regulated genes by the interaction of the BRD9 bromodomain with histone acetylation marks.
ncBAF activity may maintain the chromatin in an open state, thus enabling the efficient binding of ISGF3 complexes to ISRE sequences following IFN stimulation. Thus,
maximal induction of ISG transcription may be “primed” to enhance downstream antiviral activity. In the absence of BRD9 (through genetic loss or targeted degradation
with small molecules), ncBAF is removed from promoter regions, which may increase chromatin compaction and result in less efficient transcriptional activation of ISGs
following IFN stimulation.
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ml streptomycin. After 1 h, infected cells were washed three times

with PBS and then overlaid with DMEM supplemented with 0.1%

FBS, 0.3% BSA, 20 mM HEPES, 100 units/ml penicillin, and

100 lg/ml streptomycin. Supernatants were collected at the indi-

cated times post-infection and titrated by standard plaque assay on

MDCK cells. For the GFP-encoding reporter viruses (VSV-GFP,

HSV1-GFP, and pseudotyped HIV1-GFP), approximately 1.5–3 × 104

cells/well in 96-well plates were treated with DMSO, dBRD9-A,

and/or IFN-a2 (or universal IFN; PBL Assay Science) as indicated,

washed once in PBS, then incubated with the appropriate amount of

virus diluted in FluoroBrite DMEM (Life Technologies) medium

supplemented with 2% (v/v) FCS, 2 mM L-glutamine, 100 units/ml

penicillin, and 100 lg/ml streptomycin. Infections were monitored

in live cells via GFP expression using the Incucyte live-cell analysis

system (Sartorius) for 24–72 h. Total Green Integrated Intensity

(Green Calibrated Unit × μm²/image) values were exported at the

indicated time points.

CRISPR screening

The full human GeCKOv2 CRISPR knockout pooled library

(Addgene #1000000048, a gift from Feng Zhang) was used for

genome-scale screening (Sanjana et al, 2014), essentially as

described (Joung et al, 2017). Briefly, the GeCKOv2 plasmid library

with 6 guide RNAs per human gene was propagated in Endura

ElectroCompetent cells (Lucigen), and lentivirus stocks were gener-

ated by co-transfecting 293T cells with the GeCKOv2 plasmid

library, pMD2.G and psPAX2 (Addgene plasmids #12259 and

#12260, gifts from Didier Trono) at a ratio of 4:2:1 (GeCKOv2:

psPAX2:pMD2.G). After 48 h, lentivirus-containing supernatants

were clarified by low-speed centrifugation and filtration through a

0.45 lm filter prior to storage at �80°C. Following titration of the

lentiviral library, 1 × 108 A549/pr(ISRE).eGFP.A1 cells were trans-

duced at a multiplicity of infection (MOI) 0.3 FFU/cell and selected

with 1 lg/ml puromycin for 14 days. Surviving cells were stimu-

lated with 1,000 IU/ml of IFN-a2 (Novus Biologicals) for 16 h prior

to FACS-based sorting of eGFP-negative cells (Cytometry Facility,

University of Zurich), which were then plated into new flasks and

allowed to recover. DNA was subsequently isolated from both

sorted and non-sorted cells as previously described (Chen et al,

2015). Briefly, cells were lysed in 50 mM Tris pH 8, 50 mM EDTA,

and 1% SDS, supplemented with proteinase K (Qiagen), and incu-

bated overnight at 55°C. RNA was then digested by addition of

RNAseA (Qiagen) for 30 min at 37°C. Pre-cooled 7.5 M ammonium

acetate was added to a final concentration of 1.75 M, and remain-

ing impurities were removed by centrifugation. DNA was finally

precipitated by addition of isopropanol, washed once in 70%

ethanol, and resuspended in a 5 mM Tris buffer. Integrated

sgRNAs were PCR-amplified by an initial 14 cycles using 7 lg/
50 ll isolated DNA as template. Reactions were pooled and

subjected to a second round of 26 PCR cycles using described

primers (Joung et al, 2017). All PCRs were performed using Kapa

HiFi Hotstart polymerase (Kapa Biosystems). Amplicons were sepa-

rated on a 2% agarose gel, column-purified (Qiagen), and

sequenced on an Illumina NextSeq500 at the Functional Genomics

Center Zurich. Data analysis from two biologically independent

CRISPR screen experiments, including unsorted control samples,

was performed using the PinAPL-Py platform (Spahn et al, 2017)

and the adjusted robust-rank aggregation (aRRA) algorithm with

default settings (P-value = 0.01; 1,000 permutations).

siRNA transfections

ON-TARGETplus SMARTpool siRNAs targeting IRF9, BRD9,

GLTSCR1, BRD7, and ARID2 were purchased from Horizon Discovery.

A custom non-targeting scrambled control siRNA (scrambled1777;

siSCR) has been described previously (Karakus et al, 2019). Reverse

transfection of A549-2D8 cells was performed in 96-well plates 32 h

prior to the indicated treatment using approximately 8 × 103 cells/

well, 30 nM final concentration of each siRNA, and Lipofectamine

RNAiMAX Transfection Reagent (Thermo Fisher Scientific).

Generation of knockout (KO) cells

Gene knockouts were generated using either the lentiCRISPRv2

system (Addgene plasmid #52961, a gift from Feng Zhang) (Sanjana

et al, 2014) using the methods described above and specific sgRNA-

encoding oligos (Table EV1), or a ribonucleoprotein (RNP)-based

system described previously (Domingues et al, 2019). Briefly, pre-

assembled RNP complexes (see Table EV1 for crRNA sequences)

were delivered into cells by reverse transfection with RNAiMax

(Thermo Fisher Scientific), and individual cell clones were gener-

ated by limiting dilution. Genotypes of selected clones were deter-

mined by amplification of the appropriate genomic region and

subsequent NGS. Oligo sequences are deposited in Table EV1.

Flow cytometry analysis

A549/pr(ISRE).eGFP.A1 cells were transduced at high MOI (> 10

FFU/cell) with a pool of three lentiviruses encoding sgRNAs target-

ing the indicated factors. After 48 h, selection of transduced cells

was started with 1 lg/ml puromycin and maintained for at least

10 days. Transduced cells were then treated with 1,000 IU/ml IFN-

a2 for 16 h, and eGFP expression was quantified in the FITC chan-

nel using a BD FACSCanto II.

Plasmids and lentiviruses

cDNAs encoding BRD7, BRD9, BRD9-dBD, and BRD9-N216A were

PCR-amplified from existing vectors (Addgene plasmids #65379

(Gong et al, 2015) and #75114-6 (Hohmann et al, 2016); gifts from

Kyle Miller and Christopher Vakoc) and cloned into pLVX-IRES-

Puro (Takara) via XhoI/NotI or EcoRI/NotI sites. The indicated

chimeras of BRD7 and BRD9 were generated by overlapping PCRs

or InFusion (Takara). Remaining variants of BRD9 were generated

by overlap-extension PCR using Q5 Hot Start High-Fidelity (NEB).

TurboID-V5 constructs were generated by first sub-cloning TurboID

from an existing vector (Addgene plasmid #107169 (Branon et al,

2018), a gift from Alice Ting), together with the V5 linker sequence,

into the multiple cloning site of pLVX-IRES-Puro, followed by inser-

tion of BRD9, or mCherry, via EcoRI/NotI sites. All new constructs

were authenticated by DNA sequencing. All oligo sequences used

for cloning and mutagenesis are available in Table EV1. To generate

polyclonal cell lines expressing the gene of interest, lentiviral stocks

were initially prepared by co-transfecting 293T cells with each

pLVX-IRES-Puro-based plasmid, together with pMD2.G and psPAX2.
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Lentiviral supernatants were harvested ˜60 h post-transfection, fil-

tered through a 0.45lm filter, and aliquoted for storage at �80°C.

Cells were transduced with the appropriate lentivirus stock for 48 h

in the presence of 8 lg/ml of polybrene (Millipore) prior to selection

with puromycin.

RT–qPCR analyses

Around 1 × 105 cells were treated as indicated prior to lysis and

RNA isolation using the ReliaPrepTM RNA Miniprep kit (Promega).

Approximately 1 lg of total RNA was reverse transcribed into cDNA

using SuperScript III (Invitrogen) and an oligo(dT) primer (Thermo

Fisher). Transcripts were detected using specific primers

(Table EV1), the Fast EvaGreen qPCR Master Mix (Biotium), and an

ABI7300 Real-Time PCR System. Relative gene expression was

determined with the DDCt method, using GAPDH for normalization.

Transcriptome analysis

RNA was extracted as described above, and libraries from three

biologically independent experiments were prepared and analyzed

by the Functional Genomics Center Zurich following the Illumina

TruSeq stranded mRNA protocol. Briefly, the quality of RNA and

final libraries was first determined using the Agilent 4200 TapeSta-

tion System. Libraries were then pooled equimolarily and sequenced

on an Illumina NovaSeq6000 sequencer (single-end 100 bp) with a

depth of around 20 million reads per sample. Reads were quality-

checked with FastQC. Sequencing adapters were removed with

Trimmomatic (Bolger et al, 2014) and aligned to the reference

genome and transcriptome of Homo sapiens (GENCODE,

GRCh38.p10, release 91) with STAR v2.7.3 (Dobin et al, 2013).

Distribution of the reads across genomic isoform expression was

quantified using the R package GenomicRanges (Lawrence et al,

2013) from Bioconductor version 3.10. Minimum mapping quality,

as well as minimum feature overlaps, was set to 10. Multi-overlaps

were allowed. Differentially expressed transcripts were identified

using the R package edgeR (Robinson et al, 2010) from Bioconduc-

tor version 3.10, using a generalized linear model (glm) regression,

a quasi-likelihood (QL) differential expression test, and trimmed

means of M-values (TMM) normalization.

Western blotting

Generally, samples were prepared in urea disruption buffer (6 M urea,

2 M b-mercaptoethanol, and 4% SDS), and DNA was sheared either

by passing through a 29G needle or by sonication (Branson 250,

12×0.5/1s pulses at 10% amplitude). For detection of BRD9 in A549

cells, lysates were prepared on ice for 20 min in RIPA buffer (50 mM

Tris–HCl pH 8.0, 150 mM NaCl, 0.1% SDS, 1% sodium deoxycholate,

1% Triton X-100), DNA sheared as described above, and protein

concentration measured by BCA assay (Pierce Thermo Fisher). At least

30 lg of protein was loaded onto gels to detect endogenous BRD9.

Proteins were separated by SDS–PAGE on NuPAGE Novex or Bolt 4–

12% Bis-Tris gels (Invitrogen) prior to transfer to Protran nitrocellu-

lose membranes (Amersham) at 30 V for 90 min. Proteins were

detected using the following primary antibodies: b-actin (Santa Cruz,

sc-47778); MxA (kind gift from Jovan Pavlovic, University of Zurich,

Switzerland); FLAG M2 (Sigma, F1804); BRD9 (Bethyl Laboratories,

A303-781A-M); BRD7 (Cell Signaling Technology, D9K2T); HA (Cell

Signaling Technology, 3724); V5 (Bio-Rad, MCA1360); STAT1 (Cell

Signaling Technology, 14994S); pSTAT1 (Cell Signaling Technology,

9167S); STAT2 (Santa Cruz, sc-1668); GLTSCR1 (Santa Cruz, sc-

515086); JAK1 (BD Bioscience, 610231); pJAK1 (Cell Signaling Tech-

nology, 74129); ARID2 (Santa Cruz, sc-166117). Signal was detected

using the LiCOR system or ECL.

Immunofluorescence microscopy

5 × 105 cells were seeded onto coverslips in 12-well plates and treated

the next day for the indicated time with 1,000 IU/ml IFN-a2, prior to
fixation with 3.7% paraformaldehyde (Sigma-Aldrich) for 10 min at

room temperature. Coverslips were washed once in PBS, permeabi-

lized with 1% Triton X-100 (in PBS) for 10 min, then washed a

further three times in PBS. Blocking was performed by incubating

coverslips for 1 h with PBS + 2% BSA (v/v) at room temperature.

Following incubation of cells with pSTAT1 and STAT1 antibodies

(Cell Signaling 9167S and 14994S), cells were washed three times

with PBS before incubation with the appropriate secondary antibody

and a further three washes in PBS. As necessary, DNA was stained by

incubating with DAPI (Sigma-Aldrich) for 5 min. Following a final

three washes in PBS and two washes in ddH2O, coverslips were

mounted onto slides using ProLong Gold Antifade (Life Technolo-

gies). Cells were imaged using the Leica DM IL LED Fluo microscope

(Leica Microsystems), using the LasX software.

Immunoprecipitation (IP) assays

˜5 × 106 of the indicated cells were washed once in PBS prior to

lysis on ice in IP buffer (50 mM Tris–HCl pH 7.5, 150 mM NaCl,

1 mM EDTA, and 1% Triton X-100) supplemented with complete

protease inhibitors (Roche). DNA was sheared by sonication (Bran-

son 250, 30× 0.5/1s pulses at 10% amplitude) and removed by addi-

tion of Benzonase (Millipore) for 1 h at room temperature. Lysates

were cleared by centrifugation at 16,000 g for 10 min at 4°C, and a

fraction was taken to represent input. The remainder of the soluble

sample was incubated with 5 lg of anti-BRD9 antibody (see above)

for 16 h at 4°C with constant rotation. Antibody–protein complexes

were captured with Dynabeads Protein G (Thermo Fisher Scientific)

for 30 min at room temperature with constant rotation. Following

three bead washes in IP buffer, samples were prepared in Laemmli

buffer and analyzed by Western blot.

TurboID proximity labeling

Approximately 5 × 105 cells stably expressing the indicated

TurboID-V5-fusion proteins were treated as described prior to the

addition of 500 lM biotin (Sigma-Aldrich) for 30 min. Cells were

subsequently washed five times in PBS, before lysis on ice for

20 min in RIPA buffer supplemented with complete protease inhibi-

tors (Roche). DNA was sheared as described above and removed by

addition of Benzonase (Millipore) for 1 h at 4°C. Lysates were

cleared by centrifugation at 16,000 g for 10 min at 4°C, and a frac-

tion was taken to represent input. The remainder of the sample was

processed as described (Hung et al, 2016) with slight modifications:

briefly, lysates were incubated with streptavidin magnetic beads

(Pierce Thermo Fisher) for 1 h at room temperature on a rotator to
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bind biotinylated proteins. Samples were then washed twice in RIPA

buffer, once in 1 M KCl, once in 0.1 M Na2CO3, and once in freshly

prepared 1 M urea, 10 mM Tris–HCl pH 8.0. For proteomic analysis,

samples were then washed three times in freshly prepared ABC

buffer (50 mM ammonium bicarbonate). For Western blot analysis,

samples were washed three times in RIPA buffer. Proteomic sample

preparation and liquid chromatography–mass spectrometry analysis

was performed by the Functional Genomics Center Zurich. Proteins

were identified using FragPipe (v12.2) and the MSFragger—Ultrafast

Proteomics Search Engine (Kong et al, 2017). Spectra were searched

against a canonical Swiss-Prot Homo sapiens proteome database

(taxonomy 9606, version from 02/2020), concatenated to its

reversed decoyed fasta database. Methionine oxidation was set as

variable modification, and enzyme specificity was set to trypsin

allowing a maximum of two missed cleavages. A fragment ion mass

tolerance of 0.1 Da and a precursor mass tolerance of 50 PPM were

set. The SaintExpress algorithm (Teo et al, 2014) was utilized to

analyze the spectral count shotgun MS data between samples, with

the following settings applied by the CRAPome websuite:

lowMode = 0; minFold = 1; normalize = 0. The raw mass spectrom-

etry proteomics data have been deposited to the ProteomeXchange

Consortium via the PRIDE (Perez-Riverol et al, 2019) partner reposi-

tory with the dataset identifier PXD026926.

Gene ontology (GO) analyses

GO analyses of identified interactors in TurboID experiments, or dif-

ferential expressed genes in transcriptomics experiment, were

performed using medium stringency settings in DAVID (da Huang

et al, 2009), using all human genes as background. We excluded

BRD9 from the analysis of the proteomics data as it was the bait.

Statistical analyses

Statistical analyses were performed in GraphPad Prism 9.0.0. FACS

MFI data were analyzed by pairwise comparison using an unpaired

t-test. Data using virus titers or eGFP intensities were log10-

transformed and analyzed by unpaired 2-tailed t-test or 1-way

ANOVA for comparison of multiple conditions. For RT–qPCR data,

DCt values were analyzed by unpaired 2-tailed t-test.

Data availability

The datasets produced in this study are available in the following

databases:

• RNA-Seq data: Gene Expression Omnibus GSE178640 (https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE178640).

• Mass spectrometry proteomics data: PRIDE PXD026926 (http://

www.ebi.ac.uk/pride/archive/projects/PXD026926).

Expanded View for this article is available online.
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