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Lung disease is an infection that causes chronic inflammation of the human lung cells, which is one 
of the major causes of death around the world. Thoracic X-ray medical image is a well-known cheap 
screening approach used for lung disease detection. Deep learning networks, which are used to 
identify disease features in X-rays medical images, diagnosing a variety of lung diseases, are playing 
an increasingly important role in assisting clinical diagnosis. This paper proposes an explainable 
transformer with a hybrid network structure (LungMaxViT) combining CNN initial stage block with 
SE block to improve feature recognition for predicting Chest X-ray images for multiple lung disease 
classification. We contrast four classical pre-training models (ResNet50, MobileNetV2, ViT and MaxViT) 
through transfer learning based on two public datasets. The LungMaxVit, based on maxvit pre-trained 
with ImageNet 1K datasets, is a hybrid transformer with fine-tuning hyperparameters on the both 
X-ray datasets. The LungMaxVit outperforms all the four mentioned models, achieving a classification 
accuracy of 96.8%, AUC scores of 98.3%, and F1 scores of 96.7% on the COVID-19 dataset, while AUC 
scores of 93.2% and F1 scores of 70.7% on the Chest X-ray 14 dataset. The LungMaxVit distinguishes 
by its superior performance in terms of Accuracy, AUC and F1-score compared with other hybrids 
Networks. Several enhancement techniques, such as CLAHE, flipping and denoising, are employed 
to improve the classification performance of our study. The Grad-CAM visual technique is leveraged 
to represent the heat map of disease detection, explaining the consistency among clinical doctors 
and neural network models in the treatment of lung disease from Chest X-ray. The LungMaxVit shows 
the robust results and generalization in detecting multiple lung lesions and COVID-19 on Chest X-ray 
images.

It has been demonstrated that lung disease is one of the major causes of death around the world. According 
to the WHO, approximately 4 million early deaths occur yearly due to various lung-related illnesses, such as 
COVID-191, asthma and pneumonia2 of all ages. Lung disease is classified as infectious such as bacteria, viruses, 
mycoplasmas, chlamydial pneumonia and so on, while noninfectious pneumonia is seen as the body’s immune 
illness caused by chemical, physical or radiation. Chest X-ray scans of humans are an efficient diagnostic method 
employed by clinical doctors and medical image experts to detect lung lesions3. However, even for clinical 
medical experts, diagnosing various lung diseases is also a challenge because lung disease lesions appearing 
on X-ray images are ambiguous and without typical symptoms of disorders. On the other hand, Chest X-ray 
discrepancies have resulted in significant subjective judgements and differences in lung disease diagnosis, and 
capturing lung lesions from a complicated thoracic image background with human eyes is a time-consuming 
task. The problem is much more serious due to the shortage of skilled radiologists in developing countries, 
especially in rural regions. Therefore, a computer-aided diagnostic system (CAD) can be deployed to complete 
large-scale diagnosis of lung disease by using thoracic X-ray images.

Artificial Intelligence and deep learning algorithms have demonstrated remarkable performance in pathology 
detection from Chest X-ray (CXR) images in recent years4,5. Convolutional Neural Networks (CNNs) have 
significantly impacted on the field of medical imaging due to their ability to learn complex representations in 
deep neural networks, which has made an outstanding performance in image processing, voice recognition 
and pattern recognition6. CNNs have also demonstrated prominent improvements in numerous medical 
imaging modalities, including Radiography, Computed Tomography (CT)7, Ultrasound Images8 and Magnetic 
Resonance Imaging(MRI), to name a few. The operation of CNN is an end-to-end method to make predictions 
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from the extracted valuable and relevant features of the input images. According to the prior study experience of 
CNN models, leveraging deep learning algorithms to predict lung diseases on Chest X-rays can relieve the load 
on radiologists. Related works show that ensemble methods of different CNN models with transfer learning have 
made much progress. Muhammad Mujahid studied an ensemble model structure made by incorporating CNN 
with Inception-V3, VGG-16, and ResNet50, showing that Inception-V3 with CNN attained the highest accuracy 
and recall score, respectively in pneumonia classification9. Similarly, Mudasir Ali et al. achieved 94.02% accuracy 
on Guangzhou Women and Children Medical Center X-ray dataset using EfficientNetV2L10. Sohaib Bin Khalid 
Alvi et al. achieved an accuracy of 89.6% on a COVID-19 dataset by applying a federated learning approach. 
Building on these efforts11, Syeda Reeha Quasar et al. achieved an accuracy of 98% on a dataset for lung disease 
classification using CT images12. However, applying CNN to practice Chest X-rays classification also faces several 
substantial challenges. Despite the outstanding performance of CNN models, the problem of over-fitting and 
spatial information loss induced by normal convolution operation leads to poor result generalization. Recent 
studies have demonstrated that CNNs exhibit a strong bias toward style rather than content for classification.

Significant research effort has been made by the vision community to integrate the attention mechanisms13in 
CNN-inspired architectures. Alexey Dosovitskiy14 has shown that these transformer modules can fully replace 
the standard convolutions in deep neural networks by operating on a sequence of image patches, giving rise 
to Vision Transformers (ViTs). The transformer is a self-attention-based architecture that emerged as the 
preferred paradigm in today’s visual challenges. The adoption of transformer architecture enabled substantial 
parallelization and translation quality optimization. However, because the strong model capacity of transformers 
being imbued with less inductive bias, which leads to over-fitting, ViT does not perform well enough in image 
recognition without extensive pre-training. The Swin Transformer15 is one such successful attempt to modify 
transformers by applying self-attention on shifted non-overlapping windows among these sparse transformer 
models tailored for vision tasks such as local attention, which leverages hierarchical architectures to compensate 
for the loss of non-locality. The MaxViT16 allows global-local spatial interactions on arbitrary input resolutions 
with only linear complexity and multi-axis attention.

Due to the CNN drawbacks in image recognition and also inspired by the MaxViT, we present a novel deep 
learning architecture by effectively integrating the multi-axis attention module with convolutional layers based 
on SENet layers17. We propose an end-to-end hierarchical hybrid Chest X-ray image recognition backbone, 
called LungMaxvit, by blending improved convolutional blocks and MaxViT basic blocks on multiple stages. 
This paper selected deep learning models firstly by comparing them with the performance of four classical pre-
trained models (ResNet50, MobileNetv2, ViT, MaxViT) via a transfer learning approach on the Chest X-ray 
images. In our experiments, we choose two classical CNN models and two Vit models to study which type model 
will perform better for predicting Lung diseases from Chest X-ray images. ResNet50 is a classical CNN for vision 
recognition and MobileNet is a dominant model used lung disease detection from Chest X-ray images. Vit and 
MaxViT with self-attention mechanism are used to compare with mobilenet in order to screen the best model 
for lung disease detection. The test results showed that MaxViT model performs the best among the models. 
The improved architecture based on MaxViT can distinguish the COVID-19 and 14 classes of lung disease 
automatically among the Chest X-ray images as an auxiliary measure for clinical treatment. The LungMaxVit 
was pre-trained by transfer learning and fine-tuned by the Chest X-ray datasets, so that the improved model 
shows the better test results in both Chest X-ray image datasets compared with the other classical models.

The contributions of the paper are summarized as follows:

• The proposed fine-tuned LungMaxViT model blends modified CNN layers with multi-axis transformer block 
inspired by MaxViT and achieved the highest disease classification accuracy among five pre-trained models.

• A comprehensive multi-class lung disease classification study is conducted using two different public Chest 
X-ray datasets: COVID-19 data and Chest X-ray14.

• Investigating the well-designed experimental evaluation of the proposed framework with other classical deep 
learning models, the hybrid framework demonstrated effectiveness for predicting the lung diseases while 
distinguishing the COVID-19 from the other lung diseases.

• Medically explainable visuals implemented by Grad-CAM that emphasize the crucial regions relevant to the 
model’s prediction of the input image are proposed based on the LungMaxViT model.

• The images are preprocessed by Gaussian Filter18–20 and CLAHE21,22 technology to improve the consistency 
of the data and reduce noise.The remainder of this paper is arranged as follows: section “Methods” focuses on 
the related works in detail while contributing the study of experiment datasets and the deep learning models, 
providing the proposed training methods. Section “Results” includes experiments setup, environments and 
test results and analysis. Section “Discussion” discusses models and their limitation. Section “Conclusion” 
presents the paper conclusion and future works.

Methods
The proposed framework LungMaxViT in this paper is inspired by MaxViT to combine both deep convolutional 
neural networks with attention mechanisms for predicting the lung diseases. It is well known that the deep 
learning CNN models can be used to analyze the spatial correlation among the neighboring pixels in the 
receptive area determined by the convolutional filter size, ignoring the directional relationships with the distance 
among these pixels. To solve this, transformers based on deep learning attention mechanism have recently been 
presented and proven to be more powerful and robust in considering both spatial pixel correlation and their 
distance relations for visual recognition tasks.

The proposed hybrid deep learning architecture is shown in Fig. 1, where deep learning framework approaches 
multi-classification of lung diseases prediction from Chest X-ray images. The hybrid framework implements the 
following processing steps.
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• Step 1: Preparing the study datasets of multiple Chest X-ray images from typical benchmark datasets.
• Step 2: Data processing including augmentation, resizing, rotation, normalization and data splitting into 

training validation and test sets.
• Step 3: Proper deep learning model selection is made by a comprehensive experimental study that compares 

the performance of the four classical deep learning pre-trained models: ResNet50, MobileNetv2, ViT and 
MaxViT.

• Step 4: The hybrid deep learning model is proposed by combining CNN initial stage block with SE block and 
multi-axis transformer inspired by MaxViT back-bone.

• Step 5: The proposed framework is pre-trained by imagenet1K for the initial training parameters and fine-
tuned by the Chest X-ray datasets.

• Step 6: The final multiple classification prediction is made by the classification layer. The explainable visuali-
zation results were achieved by Grad-CAM using the proposed hybrid model, which determined the disease 
localization well.

Dataset
The proposed deep learning framework was studied by employing two different Chest X-ray datasets, Chest 
X-ray1423 and COVID-QU-Ex (COVID-19)24,25.

COVID-QU-Ex dataset
The COVID-QU-Ex dataset encompasses three distinct classes in Table 1: COVID-19 positive cases, Non-
COVID-19 infections and Normal instances.

Chest X-ray14
The Chest X-ray14 dataset, currently one of the most extensive collections of Chest radiographs available, has 
evolved significantly since its inception. Initially comprising eight distinct pathology categories, the dataset has 
expanded to include a total of fifteen disease states, reflecting a broader spectrum of thoracic pathology. As 
seen in Table 2, these categories now encompass Pneumonia, Cardiomegaly, Edema, Effusion, Consolidation, 
Mass, Pleural Thickening, Nodule, Emphysema, Hernia, Fibrosis, Pneumothorax, Atelectasis, No Finding and 
Infiltration.

Fig. 1. The overview of deep learning framework approaches for multi classification lung diseases prediction 
from Chest X-ray images.
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The digital X-ray images included in Chest X-ray14 are standardized at a resolution of 1024 × 1024 pixels 
in PNG format, ensuring uniformity for computational analysis and model training. Demographic details 
provided with the dataset indicate that the ages of the subjects, both male and female, do not exceed 90 years. 
In conjunction with this dataset expansion, our research endeavors include a comprehensive data analysis to 
assess the distribution, representation and potential biases inherent within the dataset. This examination aims 
to identify limitations and propose methodologies for mitigating potential impacts on deep learning model 
performance and generalization.

For the purpose of enhancing the dataset’s variability while improving the robustness of the deep learning 
models, we implement data augmentation techniques specifically tailored to this domain. These techniques 
include the application of Gaussian blur, which simulates variations in image focus and can mimic the effect 
of different imaging equipment, and Contrast Limited Adaptive Histogram Equalization (CLAHE), which 
is employed to improve the visibility of important features in the images by enhancing their contrast. These 
augmentation strategies are selectively applied to ensure the preservation of crucial diagnostic features while 
augmenting the dataset.

CLAHE: The CLAHE enhances the contrast of X-ray images by performing histogram equalization on the 
local areas of X-ray films. It divides the image into multiple small regions, calculates the histograms and performs 
equalization within each region, respectively, and then combines the processed regions through methods such as 
bilinear interpolation to obtain the final results. In this way, it improves the visibility of areas with low contrast 
in the lung region, and can highlight the details of the lung region, such as lung textures, nodules, shadows, etc. 
Besides, it makes these features more prominent in the image, which helps the deep learning model to learn and 
extract key features better, thus improving the recognition accuracy of lung diseases.

Flipping: During the data preprocessing stage, random horizontal or vertical flipping operations are 
conducted on X-ray films to enhance data diversity. By expanding the training data set, the model can learn lung 
features from different perspectives. This not only enhances the model’s generalization ability but also reduces its 
sensitivity to image orientation and improves the robustness of lung disease recognition.

Denoising: Denoising methods, such as mean filtering, median filtering, and Gaussian filtering, are operated 
by applying smoothing techniques to the pixels within the image or leveraging pre-learned noise patterns to 
eliminate noise, thereby enhancing the image quality. This reduction of noise interference renders the actual 
anatomical structures and pathological features of the lungs more discernible. It facilitates the model’s more 
precise learning and identification of the characteristics associated with lung diseases, consequently augmenting 
the recognition accuracy and stability. Nevertheless, in the process of denoising, certain minute details of the 
image might be forfeited. Particularly for some subtle lesion characteristics, they could potentially be smeared 
or obliterated during the denoising procedure, which would subsequently undermine the model’s recognition 

Class Data

Infiltration 9547

Atelectasis 4215

Effusion 3955

Nodule 2705

Pneumothorax 2194

Mass 2139

Consolidation 1310

Pleural Thickening 1126

Cardiomegaly 1093

Emphysema 892

Fibrosis 727

Edema 628

Pneumonia 322

Hernia 110

No Finding 60,361

Table 2. The distribution quantities of chest X-ray radiographs in the Fifteen classifications of the Chest 
X-ray14 dataset.

 

Class Data

Covid 19 11,956

Non COVID infections 11,263

Normal 10,701

Table 1. The distribution quantities of chest X-ray radiographs in the three classifications of the COVID-QU-
Ex dataset.
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performance. In this study, Gaussian filtering is predominantly employed to attenuate the noise in the image. The 
noise sources might encompass imaging artifacts, which could be caused by factors like equipment malfunctions 
or improper calibration, and low-quality scans that occlude crucial features. By diminishing the influence of 
noise on the model, the classification accuracy can be effectively elevated.

In the domain of medical image classification, the quality of images serves as a pivotal factor influencing the 
accuracy and reliability of diagnosis. Preprocessing constitutes an essential phase in the data preparation pipeline, 
substantially contributing to the enhancement of the intrinsic quality of standard medical images. Through 
the application of targeted preprocessing techniques, we aim to address and rectify specific imperfections and 
variability inherent in raw medical images. These techniques encompass a range of operations designed to 
improve various crucial aspects of image quality, such as contrast normalization, noise reduction, and geometric 
transformations. By optimizing these aspects, the preprocessing phase ensures that the resultant images are more 
conducive to the accurate classification by deep learning models.

Preprocessing and selection of optimum deep learning model
The Chest X-ray images employed in this study have varied width and height values, thus they were resized to 
224 × 224 pixels before the training process. The reshape size of 224 × 224 pixels was selected to allow us to do 
some data augmentation. Each deep learning model could internally resize the input images to fit its structure. 
Since deep learning models require a massive quantity of data to increase their performance, data augmentation 
is one solution for dealing with imbalanced data in the training sets. Under our preprocessing phase, the Chest 
X-ray images in the training set were rescaled (i.e., image magnification or reduction) using the ratio of 5/6 to 
1/6, Zoom range of 0.75 to 0.95, rotation range equal to 1 and horizontal flip. The rotation range specifies the 
span under which the images were spontaneously rotated throughout training.

The first step of this study was to select a neural network model from some classical models to obtain an 
appropriate model with high classification accuracy on the Chest X-ray dataset by employing transfer learning 
methods. The four pre-trained classical deep learning models, ResNet5026, MobileNetV227, ViT14 and MaxViT16, 
were analyzed to find the optimum effective deep learning approach for the lung lesion classification task. Then 
we managed to improve the selected optimum model structure to improve the prediction classification accuracy 
and find the robustness model for the chest X-ray images.

MobileNetV227

The architecture of MobileNetV2 consists of several key components: convolutional blocks (Conv Blocks), 
inverted residual blocks and linear bottlenecks. At the core of this design lies depth-wise separable convolution, 
which comprises two distinct processes: depth-wise convolution and point-wise convolution. In the depth-
wise convolution, each channel of the input feature map undergoes independent convolution with different 
3 × 3 filters, enabling the extraction of diverse feature representations within the same receptive field, thereby 
enriching the model’s parameterization. Following the depth-wise convolution, point-wise convolution serves 
as a feature integration mechanism, employing 1 × 1 convolutional kernels to merge channel information, 
facilitating information fusion. This process simplifies the network architecture while preserving the integrity of 
information flow through residual connections.

MaxVit16

The MaxVit architecture can be conceptualized as a comprehensive framework that integrates the advantages of 
CNNs by accommodating both local and global spatial correlations. It effectively mitigates the computational 
burden from quadratic to linear complexity through the strategic decomposition of the spatial dimensions. 
This architecture is structured hierarchically, comprising distinct layers: the convolutional layer, the hybrid 
transformer Layer, the multi-scale feature fusion layer, and the classification head.

The heart of the MaxVit model lies in the hybrid transformer layer, which is pivotal due to its incorporation 
of dual attention mechanisms: local attention and global attention. The local attention mechanism is akin to the 
selective focus observed in human perception, concentrating on particular segments of a comprehensive scene 
to distill crucial visual details, thereby enhancing differentiation capabilities. This process confines the attention 
scope to local data segments, allowing the model to prioritize regional attributes more effectively. Conversely, the 
global attention mechanism transcends spatial constraints, capturing interrelations between disparate locations 
across the axis, independent of their spatial separation. This facilitates a more nuanced extraction of local details 
while fostering the synthesis of local and global features, thus augmenting the informational breadth accessible 
to the model.

Transfer learning
In our experimental setup, we employed a hybrid training methodology, which involves utilizing pre-trained 
models widely recognized within the medical domain alongside our improved algorithms for comparative 
analysis. Traditional deep learning paradigms typically need initiating training from an absolute baseline, a 
process that inherently requires a substantial volume of domain-specific data to achieve model convergence. 
To circumvent these limitations, our approach leveraged transfer learning techniques which facilitate the 
development of resilient models even under data scarcity constraints.

Transfer learning not only enables our models to inherit and refine complex features from extensive, 
preexisting datasets but also enhances the models’ adaptability and generalization capabilities across diverse 
medical scenarios. This strategy is particularly beneficial in the medical imaging sphere, where data privacy 
concerns and the high costs associated with dataset compilation pose significant challenges. By leveraging 
transfer learning, our models initially assimilate knowledge from publicly available datasets, thereafter 
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undergoing specialized refinement to cater to specific medical applications, thereby streamlining the training 
process and mitigating associated costs.

The proposed model: LungMaxVit
In the traditional domain of computer vision, convolution has become the cornerstone for feature extraction. A 
variety of convolution layers have emerged, with different convolutional modules leading to diverse outcomes 
in deep learning. These modules assist models in varying capacities, such as the Inception module, depthwise 
separable convolution, and dilated convolution. The inception module parallelizes different sizes of convolution 
kernels and pooling layers to capture multi-scale feature information within the same layer, significantly 
enhancing model performance. Depthwise separable convolution improves performance by integrating 
information across channels. Dilated convolution introduces additional “holes” to increase the receptive field, 
thereby boosting performance. Despite the continuous innovation and enhancement of convolution modules, 
they possess inherent structural limitations. By utilizing the attention mechanism, we aim to address the 
shortcomings in global information interaction.

Inspired by the MaxVit framework, we proposed an improved solution by enhancing its convolutional 
modules and optimizing the receptive field and information extraction capabilities. We noted that while the 
transformer sufficiently extracts global information in the MaxVit model, there should be have some room 
for improvement in convolutional information extraction to enhance model performance. We observed that 
traditional feature extraction in Chest X-ray images may not capture critical features, as they tend to be more 
concealed compared to features in standard classification tasks. We managed to refine the original model for 
better adaptation to Chest X-ray lung disease detection by improving initial convolutional layers to enhance 
feature extraction and representation.

The architecture of the proposed LungMaxVit model is shown in Fig. 2, we introduced an improved backbone 
model, LungMaxVit, which combines extra initial CNN with SE module and MaxVit backbone to implement 
better detection of lung disease in the medical field. By extracting deeper features through conv2d, followed 
by BatchNorm2d and Gelu activation, our network pays closer attention to image details. The inclusion of a 
squeeze-and-excitation (SE) module for spatial attention helps to capture detailed spatial features of the images, 
allowing the model to adjust inter-channel relationships adaptively to enhance performance. In the SE module, 
reducing the number of channels from 64 to 16 amplifies important weights in detail features. By reinforcing 
feature extraction with subsequent conv2d layers, our model undergoes an artful change in content extraction 
at the initial stages, which is more suited to medical image classification and requires more detailed feature 
extraction to adapt to medical classification tasks significantly.

Initial state block
In the overall architecture of our model, we particularly emphasize the initial state block and the SE block to 
extract the features from Chest X-ray images. The initial state block primarily consists of three convolutional 
segments where the first convolutional segment can extract features from the Chest X-ray image. We compute 
the matrix of outputs of one of three CNN module as Eq. (6).

 Fout = (Fin − kernel + 2padding) /stride + 1 (1)

 where Fout is the output matrix of a convolution module while Fin is its input matrix. The kernel is a neural 
network filter that moves through a picture, scanning each pixel and turning the data into a smaller or bigger 
format. Padding is added to the medical image to aid the kernel in processing the image by providing more room 
for the kernel to cover the image. Stride determines how the filter convolves over the input matrix. In our study, 
the stride is set to 2.

Fig. 2. The architecture of the proposed LungMaxViT model for multi-classification lung disease prediction 
from Chest X-ray images.
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SE block
Following the initial convolutions, we utilize a series of kernels sized 3 × 3, 1 × 1, and 3 × 3 in succession to 
enhance the model’s early receptive field and its extraction of fine details from images. The SE block supplements 
the prior module by addressing the need for both an expanded receptive field and improved feature extraction. 
It compacts global information into a single channel through global average pooling. As demonstrated in Eq. (7), 
zc refers to the size reduction of the channel uc, serving as a guide for the feature map uc, which is derived from 
a global statistical vector calculated using Eq. (7). This vector consolidates global information over the channels.

 
zc = Fsq (uc) = 1

H × W

H∑
i=1

W∑
j=1

uc (i, j) (2)

MaxViT block
Self-attention allows for spatial mixing of entire spatial locations while also benefiting from content-dependent 
weights based on normalized pair-wise similarity. The attention function is the mapping to an output of a set of 
keys, value pairs and a query. We refer to scaled dot-product Attention shown as Eq. (8). The input consists of 
queries and keys of dimension dk , and values of dimension dv . We compute the dot products of the 

√
dk  query 

with all keys, divide each by dk , and apply a softmax function to obtain the weights on the values. The attention 
matrix contains the set of queries (Q), the keys (K) and values (V), which are used to compute the attention 
function simultaneously.

 
Attention(Q, K, V ) = softmax

(
Q × KT

√
dk

)
× V  (3)

 Multi-head attention presented by Eqs.  (9) and (10) allows the model to jointly attend to information from 
different representation subspace at different positions.

 MultiHead(Q, K, V ) = Concat (head 1, . . . , head h) W 0 (4)

 head i = Attention
(
QW Q

i , KW K
i , V W V

i

)
 (5)

where the projections are parameter matrices W Q
i ∈ Rd model ∗dk , W K

i ∈ Rd model ∗dk  , 
W V

I ∈ Rd model ∗dv and W 0
i ∈ Rhdv∗d model .

However, the original self-attention described above is location-unaware so that relative self-attention has 
been improved by introducing a relative learned bias added to the attention weights, which has been shown to 
consistently outperform original attention on many vision tasks. Relative attention has been explored in several 
previous studies for both NLP and vision. In our study, we used the relative attention mechanism described in 
Eq. (11).

 RelAttention(Q, K, V ) = softmax
(
QKT /

√
d + B

)
V  (6)

 where Q, K, V ∈ R(H×W )×C  are the query, key, and value matrices, and d is the hidden dimension. The 
attention weights are co-decided by a learned static location-aware matrix B and the scaled input-adaptive 
attention QKT

√
d

. Considering the differences in 2D coordinates, the relative position bias B is parameterized by 
a matrix B ∈ R(2H−1)×(2W −1).

MaxViT block unified MBConv and Multi-axis attention layers. MBConv layers prior to the attention block, 
which can be regarded as conditional position encoding, make a model free of explicit positional encoding 
layers. The Multi-axis attention we leveraged here can be implemented without modification to the self-attention 
operation. The Multi-axis attention can be implemented by block and grid operator descried as Eqs. (12) and 
(13), respectively, to extract Chest X-ray image feature in a spatially-local small window. The unblock ( ) 
operation is denoted as the reverse of the above block partition procedure. These elements can be easily plugged 
into many vision architectures, especially on high-resolution tasks that can benefit by global interactions with 
affordable computation.

 
Block: (H, W, C) →

(
H

P
× P,

W

P
× P, C

)
→

(
HW

P 2 , P 2, C
)

.  (7)

 

Grid: (H, W, C) →
(

G × H

G
, G × W

G
, C

)
→

(
G2,

HW

G2 , C
)

→
(

HW

G2 , G2, C
)

︸ ︷︷ ︸
swapaxes(axis1=-2,axis2=-3)

 (8)
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To this end, we manage to explain hybrid CNN and multi-axis attention architecture as following. Assume x to be 
the input feature, given an input tensor x ∈ RH×W ×C , the whole pipeline of the LungMaxVit model processing 
can be described from Eqs. (14)–(17), X1 is denoted as matrix output of initial state block and SE block.

 X1 ← Proj(Pool2D(Initial state Block (x))) + Proj(SE( Initial state Block (x)) (9)

 SE is the squeeze-excitation layer17, while Proj is the shrink Conv1x1 to down-project the number of channels. 
Pool2d that 2D max pooling over an input signal composed of several input planes is used to simplify CNN 
parameters.

The local Block Attention can be expressed as follows:

 X2 ← MBConv(X1) + Unblock(RelAttention(Block(LN(X1))) (10)

 LN denotes the Layer Normalization, where MLP is a standard MLP network consisting of two linear layers.

 X2 ← X2 + MLP(LN(X 2)) (11)

 The global, dilated Grid Attention module is formulated as:

 X3 ← X2 + UnGrid(RelAttention(Grid(LN(X2))) (12)

 where we apply the RelAttention operation in Eqs. (15) and (17) for simplicity instead of Eq. (11).

 Xoutput ← Unblock(X3 + MLP(LN(X 3))) (13)

 LN denotes the Layer Normalization2, where MLP is a standard MLP network consisting of two linear layers: x 
? W2GELU(W1x). Xoutput is output of lung disease classification prediction by LungMaxVit.

Results
In our comprehensive experiment, we utilized two datasets across four classic models alongside our improved 
model. We conducted transfer learning for each model, utilizing pre-trained weights provided by the official 
PyTorch website. These models were then applied to two specific datasets: ChestX-ray14 and COVID-QU-Ex 
(COVID-19) for ablation studies. We assessed the performance using key metrics prevalent in deep learning to 
determine their effectiveness. Additionally, we employed heat maps to present the explainable model, focusing 
on the lung lesion area.

Experimental environment
All experiments were performed on a Nvidia A100 server with the following hardware specifications: Intel Xeon 
Gold 5218 CPU @ 2.3 GHz (base frequency) with a maximum turbo frequency of 3.9 GHz, comprising a total 
of 64 cores (4 CPUs, each with 16 cores and 32 threads), 512.0 GB RAM, and supporting 5 NVIDIA A100 GPUs 
with 40 GB memory each.

Evaluation methods
To evaluate the transfer learning models, various evaluation metrics have been employed to evaluate the 
performance of the proposed hybrid deep learning framework, including Accuracy (ACC), Specificity, Sensitivity/
Recall, Precision and F1-score. The parameters are calculated by applying a confusion matrix generated for each 
individual model. Accuracy is calculated to determine the percentage of correct predictions, while precision 
is calculated to determine the probability of positive classifications. Specificity determines the percentage of 
correctly predicted negative classifications from all performance parameters. Contrasting specificity, the recall is 
employed to determine the percentage of correctly predicted positive classes. The F1 score is used to determine 
the balance between specificity and recall. The performance parameters are expressed in the following: Eqs. (1)–
(5).

 
Accuracy = T P + T N

T P + T N + F P + F N
 (14)

 
Precision = T P

T P + F P
 (15)

 
Sensitivity /Recall = T P

T P + F N
 (16)

 
Specificity = T N

T N + F P
 (17)

 
F 1-Score = 2

( Precision × Recall
Precision + Recall

)
 (18)
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Accuracy: The accuracy intuitively reflects the overall correct detection level of the model and enables us to 
quickly understand the general performance of the model in the detection of lung diseases. A high accuracy rate 
means that the model can accurately determine whether patients have lung disease in most cases, and whether 
patients can be diagnosed as sick or healthy. The model can provide relatively reliable references for doctors and 
patients and reduce the possibility of misdiagnosis and missed diagnosis.

AUC: The AUC (Area Under the Curve) comprehensively takes into account the true positive rate and the false 
positive rate of the model under different thresholds, and can fully evaluate the model’s discriminative ability 
for lung diseases. In the detection of lung diseases, as the distribution of diseased and non-diseased samples 
may overlap, the model needs to accurately identify the diseased samples while minimizing misjudgments of 
the non-diseased samples as much as possible. The higher the AUC value is, the stronger the model’s ability to 
distinguish between diseased and non-diseased samples will be. It can maintain better detection performance 
under different disease risk thresholds and provide doctors with more accurate diagnostic bases.

F1-Score: In the detection of lung diseases, both precision and recall are of great importance. High precision 
indicates that when the model judges that a patient has lung disease, the result has a relatively high credibility, 
which reduces unnecessary further examinations and the psychological burden on patients. High recall ensures 
that most patients with diseases can be detected by the model, reducing the risk of missed diagnoses. The F1-
score combines the advantages of precision and recall and can evaluate the performance of the model in lung 
disease detection more comprehensively. When the F1-score is high, it means that the model can accurately 
detect patients with diseases while also ensuring the reliability of the detection results. In the classification of 
lung diseases, problems caused by under-reporting (false negatives) and false positives can be avoided.

In unbalanced data sets, traditional metrics like accuracy might not be the best indicators. The confusion 
matrix allows for a more nuanced model evaluation and helps improve understanding and performance in 
underrepresented classes, especially crucial in medical domains where precise categorization is vital.

In the study of the model on the 14 chest radiograph dataset, shown in Fig. 3, even though LungMaxVit 
exhibited superior performance compared to other models while identifying a more significant number of 
diseases with substantial precision, the model also encountered challenges due to an imbalanced data set with 
fifteen categories, resulting in subpar performance in those classes with underrepresented features such as ‘No 
Finding’ and ‘Effusion.’ The analysis reveals that the LungMaxVit model has learned a good representation of 
the majority of lung diseases from Chest X-ray images, where feature extraction and disease identification are 
inherently more challenging in multi-classification.

As seen in Fig. 4, the confusion matrix reveals significant accuracy across the entire test dataset: 2346 out 
of 2352 cases were correctly identified for COVID-19, only identified wrong with 2 cases for Non-COVID and 
4 cases for Normal category, 2169 out of 2265 for Non-COVID, and 2053 out of 2171 for Normal category, 
highlighting the model’s effectiveness in accurate disease classification, especially for COVID-19 prediction. 
Normal classification performance is not as good enough as that of the other cases due to similar feature 
representation among the mild lung disease cases and normal cases.

Each disease exhibits distinct common pathological locations, and since the scope involves pulmonary 
diseases, pathological manifestations can occur anywhere within the lungs, significantly complicating model 
classification tasks. Despite these challenges, LungMaxVit stands out across various metrics in ablation studies, 
providing it to be the most effective model among the study models.

Comparative analysis of LungMaxVit and other pre-trained models
Accuracy (ACC), Area Under the Curve (AUC) and F1-score were employed to evaluate the performance of 
the proposed LungMaxViT model and other pre-trained models. As seen in Fig. 5, LungMaxVit surpassed all 
the other models in all metrics on the COVID-QU-Ex dataset, achieving 96.8% accuracy which is higher than 
others by margins up, AUC of 98.3%, which surpassed other models by up and F1-score of 96.7%, which exceed 
all other competitors. Overall, LungMaxVit demonstrated superior performance across all key metrics among 
the five neural network models.

In our comprehensive disease comparison, particularly for multi-class disease classification, we managed 
to find a solution for lung disease feature extraction in imbalanced Chest X-ray datasets by contrasting the 
performance metrics of various models for each disease category. For the COVID-19 category in our COVID-
QU-Ex test set, we evaluated the models using precision, recall, and F1-score. Precision assesses the ratio of 
true positives to the total predicted positives while recall complements it by measuring the proportion of actual 
positives correctly identified. LungMaxVit outperformed the performance of the other models in the COVID-19 
category evaluation in precision, recall and F1-score. From Table 3, the precision of the three categories evaluated 
by LungMaxVit are 1.00, 0.96, 0.95, outperforming one percent of the other models by COVID-19 category and 
Normal category, while one percent less than MaxVit by Non-COVID. The F1 scores evaluated by LungMaxVit 
all exceed or are all equal the other models by the three categories. The recalls evaluated by the LungMaxVit are 
0.98, 0.96 and 0.96, exceeding five percent over the ResNet model by Normal, while one percent less than Maxvit 
on COVID-19 and Normal. In summary, the LungMaxvit shows prominent robustness and feature presentation 
over the other models.

In the Chest X-ray14 dataset, we evaluated our model’s performance by using metrics such as AUC and F1 
scores. The AUC and F1 score of the LungMaxVit are 0.932 and 0.707, respectively, which outperforms all other 
models, especially exceeding ResNet model by by 5.9 percent using AUC, as shown in Fig. 6.

In Table 4, we compare the AUC and F1-score for all 14 lung diseases and normal (no Finding case) with 
5 models. The AUC of LungMaxVit exceeds or equals all the other models for the 15 classification, especially 
over 10 percent Nodule. In the context of multi-class classification, it is crucial to examine the metrics for 
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Fig. 4. Confusion matrix of LungMaxViT model for COVID-19 datasets.

 

Fig. 3. Confusion matrix of LungMaxViT model for Chest X-ray14 datasets.
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each category to accurately gauge the model’s classification capabilities. Notably, the model showed subpar 
performance in the ‘Infiltration’ and ‘No Finding’ and ‘Atelectasis’ categories. However, achieving exemplary 
classification across all categories in a multi-class context faces several challenges, especially when dealing with 
issues such as imbalanced data distribution and limited dataset size. Despite these challenges, LingMaxVit 
showed the superior performance on this dataset among the five study models.

Discussion
In the comparative experiments, all models were trained using SGD with a learning rate of 0.001 and momentum 
of 0.9, throughout the training and validation process. LungMaxVit leverages advanced convolutional networks 
for feature extraction using initial state block and integrating transformer mechanisms to avoid saturation with 
the two datasets, demonstrating robust performance compared to conventional convolutional networks and 
purely ViT.

As seen in Figs. 7 and 8, the training loss of LungMaxVit on the COVID-19 dataset is the lowest among all 
five models as well as the accuracy is much higher than that of Vit, Resnet and Mobilenet models despite much 
less distinction with MaxVit. On the other hand, the AUCs of LungMaxVit on the Chest X-ray 14 dataset are 
the highest level among all the five pretraining models, as seen in Fig. 9. Although the loss of the LungMaxVit 
is not the lowest among all the models, the loss dropped dramatically among the five models, as seen in Fig. 10.

Table 5 shows the comparison between our LungMaxVit model and the existing works in the literature on 
the COVID dataset. The study paper reference, datasets, study models and reported accuracy are presented 

Class Evaluation metrics

Transfer learning models Our method

MaxVit Vit MobileNetV2 ResNet LungMaxVit

COVID-19

Precision 0.99 0.99 0.99 0.99 1.00

Recall 0.99 0.97 0.98 0.97 0.98

F1-score 0.99 0.98 0.98 0.98 0.99

Non-COVID

Precision 0.97 0.92 0.96 0.91 0.96

Recall 0.94 0.94 0.93 0.95 0.96

F1-score 0.96 0.93 0.95 0.93 0.96

Normal

Precision 0.94 0.93 0.92 0.93 0.95

Recall 0.97 0.92 0.96 0.91 0.96

F1-score 0.95 0.93 0.94 0.92 0.95

Table 3. The comparative evaluation results of the five deep learning models on COVID-19 datasets.

 

Fig. 5. Comparative analysis of all models for COVID-19 dataset.
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Class/models Evaluation metrics

Transfer learning models Proposed

MaxVit Vit MobileNetV2 ResNet LungMaxVit

Atelectasis
auc 0.86 0.82 0.82 0.82 0.86

F1-score 0.53 0.42 0.45 0.44 0.54

Cardiomegaly
auc 0.98 0.96 0.96 0.96 0.99

F1-score 0.84 0.74 0.74 0.72 0.86

Consolidation
auc 0.95 0.89 0.89 0.89 0.95

F1-score 0.77 0.62 0.63 0.63 0.80

Edema
auc 0.99 0.96 0.96 0.96 0.99

F1-score 0.88 0.75 0.77 0.77 0.88

Effusion
auc 0.89 0.87 0.87 0.88 0.90

F1-score 0.56 0.50 0.51 0.50 0.55

Emphysema
auc 0.98 0.94 0.95 0.94 0.99

F1-score 0.83 0.70 0.73 0.72 0.86

Fibrosis
auc 0.98 0.93 0.94 0.93 0.99

F1-score 0.84 0.66 0.69 0.67 0.84

Hernia
auc 0.99 0.97 0.96 0.96 0.99

F1-score 0.89 0.71 0.73 0.70 0.88

Infiltration
auc 0.81 0.75 0.73 0.74 0.81

F1-score 0.44 0.32 0.32 0.33 0.45

Mass
auc 0.92 0.85 0.85 0.86 0.92

F1-score 0.67 0.54 0.54 0.56 0.71

No finding
auc 0.81 0.73 0.73 0.73 0.82

F1-score 0.44 0.32 0.34 0.33 0.46

Nodule
auc 0.87 0.78 0.80 0.78 0.88

F1-score 0.55 0.38 0.41 0.40 0.56

Pleural thickening
auc 0.93 0.86 0.86 0.85 0.94

F1-score 0.71 0.50 0.54 0.51 0.71

Pneumonia
auc 0.98 0.91 0.90 0.88 0.99

F1-score 0.81 0.59 0.62 0.60 0.84

Pneumothorax
auc 0.90 0.83 0.85 0.85 0.91

F1-score 0.64 0.46 0.48 0.50 0.66

Table 4. Graphs illustrating the quantities of various diseases.

 

Fig. 6. Comparative analysis of all models for Chest X-rays 14 dataset.
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in the table. Seen from Datasets, we compared with are three classes, including Normal, Pneumonia and 
COVID-19. In this study, we achieved 96.8% accuracy with our proposed model across the three classes. The 
accuracy of our model is higher than Bunyodbek Ibrokhimov with the same datasets. Even though the accuracy 
of Apostolopoulos is 98.0%, which is the highest of all relative models, they used small samples of test images 
to evaluate their model performance on COVID-19 datasets, having only have 224 samples in the three classes. 
Even though our model did not achieve the highest performance in terms of classification accuracy, we believe 
the proposed methodology in this study has substantially better accuracy. This is because we used the largest 
datasets with over 33,900 X-ray images. By the way, we find that the increase in the normal categories of data in 
the dataset will introduce the interference factor in the ability to distinguish between these three categories of 
data.

Fig. 8. The comparative analysis among the LungMaxViT and the other pre-training models of validation loss 
of 150 epochs with COVID-19 dataset.

 

Fig. 7. The comparative analysis among the LungMaxViT and the other pre-training models of validation 
accuracy of 150 epochs with COVID-19 dataset.
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Table 6 contains the related AUC values. The quantitative analysis presents that LungMaxVit achieved the 
best results compared to other models. The Mean AUC of our model is 93.2% while the Z-Net Mean AUC 
is 85.8% as the second good results. The AUC value of every disease of our model exceeds that of all other 
relative models. The “Edema” (AUC = 0.994), “Emphysema” (AUC = 0.989), “Cardiomegaly” (AUC = 0.990), 
“Hernia” (AUC = 0.997) and “Pneumonia” (AUC = 0.988) are perfectly classified by the proposed approach 
when compared to other diseases. Especially, “Hernia” has a high performance (AUC = 0.997 as compared to 
others) due to data pre-processing through data augmentations.

The successful neural networks and artificial intelligence models are usually applied in a black box manner 
where no information is provided about what exactly makes them arrive at their predictions. Since lack of 

Fig. 10. The comparative analysis among the LungMaxViT and the other pre-training models of validation 
loss of 150 epochs with Chest X-ray 14 dataset.

 

Fig. 9. The comparative analysis among the LungMaxViT and the other pretraining models of validation AUC 
of 150 epochs with Chest X-ray 14 dataset.
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transparency can be a major drawback in medical applications, the development of methods for visualizing, 
explaining and interpreting deep learning models has recently attracted increasing attention37.

LIME, a model-agnostic interpretation approach, hinges on performing linear approximation on a model 
within local areas to elucidate its prediction outcomes. Due to the necessity of generating a substantial number 
of perturbed samples and conducting model predictions, LIME can be rather time-consuming when handling 
complex models and large-scale datasets.

SHAPE is predominantly applicable to medical data with time-series characteristics, such as physiological 
signals of patients under dynamic monitoring (e.g., electrocardiogram, electroencephalogram, respiratory 
signals, etc.). For non-time-series data types, like static medical images (e.g., X-ray films, MRI, etc.) or medical 
records in textual format, this method has relatively limited applicability.

Class Activation Mapping (CAM) is primarily based on the feature maps output by the last convolutional 
layer of a convolutional neural network. CAM calculates the weights of each feature map channel and generates a 
heatmap via weighted averaging to display the regions where the model focuses on during classification. Moreover, 
it relies on the fully connected layers immediately following the last convolutional layer. Gradient-weighted Class 
Activation Mapping (Grad-CAM)38 is an extension of CAM which generates class activation maps (CAM) based 
on the gradient information of the target category with respect to the last convolutional layer. It can effectively 
leverage the structural characteristics of CNNs, particularly the information of convolutional layers. In the study 
such as X-ray film disease diagnosis, CNN is a mainly employed model architecture. Grad-CAM can efficiently 
mine the image regions related to disease diagnosis in the CNN model. Through the generated class activation 
maps, one can directly identify on the image which regions play a crucial role in the model’s specific category 

Pathology Wang et al.32 CheXNet33 Thorax-Net34 Guan et al.35 Z-Net36 Proposed LungMaxVit

Atelectasis 0.706 0.779 0.750 0.785 0.821 0.866

Consolidation 0.708 0.754 0.741 0.763 0.746 0.958

Infiltration 0.613 0.689 0.681 0.699 0.722 0.816

Pneumothorax 0.789 0.851 0.825 0.871 0.898 0.910

Edema 0.835 0.849 0.835 0.850 0.864 0.994

Emphysema 0.815 0.924 0.842 0.924 0.923 0.989

Fibrosis 0.769 0.821 0.804 0.831 0.764 0.987

Effusion 0.736 0.826 0.818 0.835 0.889 0.904

Pneumonia 0.633 0.735 0.693 0.738 0.755 0.988

Pleural Thickening 0.708 0.792 0.776 0.746 0.784 0.945

Cardiomegaly 0.814 0.881 0.871 0.899 0.872 0.990

Nodule 0.716 0.781 0.714 0.775 0.744 0.881

Mass 0.560 0.830 0.799 0.838 0.840 0.928

Hernia 0.767 0.932 0.902 0.922 0.768 0.997

Mean AUC 0.813 0.818 0.787 0.822 0.858 0.932

Table 6. Comparison of AUC scores of LungMaxVit with latest research on the ChestX-ray14 dataset.

 

Study paper Datasets Study models Accuracy

Ozturk et al.28

1000 Normal

500 Pneumonia DarkCovidNet 0.870

125 COVID-19

Wang et al.29

8066 Normal COVIDNet

5538 Pneumonia VGG19 0.933

358 COVID-19 ResNet50

Apostolopoulos et al.30

504 Normal

714 Pneumonia VGG19, Inception, 0.980

224 COVID-19 Xception, MobileNet

Bunyodbek Ibrokhimov et al.31

10,701 Normal

11,263 Pneumonia VGG19, ResNet50 0.966

11,956 COVID-19

Proposed LungMaxVit

10,701 Normal

11,263 Pneumonia LungMaxVit 0.968

11,956 COVID-19

Table 5. Comparison of the improved methodology with the related methods on the COVID dataset.
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prediction (e.g., pneumonia diagnosis). These regions are typically highlighted in the maps, enabling doctors or 
researchers to intuitively comprehend the decision-making basis of the model.

In the field of medical imaging for image recognition, the application of Grad-CAM is particularly 
significant. It can be employed in the analysis of X-rays, CT scans, and other medical images to assist in disease 
diagnosis, while also highlighting the affected areas. This aids medical professionals in making educated 
decisions by providing insights into the visual features associated with diseases. Furthermore, it enables a deeper 
understanding of whether deep learning models are correctly identifying relevant features, thereby informing 
algorithm design and performance enhancement.

The Grad-CAM model as explanation method used in this study are not much different from previous 
studies. As a popular deep learning CNN model visual explanation method, it demonstrates that our proposed 
model architecture with attention mechanism focus on the chest lesions without identify some wrong feature 
patterns through Figs. 11, 12 and 13.

Figure 11 displays the heatmap of COVID-19. Notably, the dataset did not furnish any information regarding 
the lesion sites. Nevertheless, it is evident that the model’s focus predominantly lies within the lung region. It can 
be reasonably inferred that, for a lung disease model, when its attention is chiefly centered on the lung area, it 
can provide valuable assistance to doctors in the pursuit of locating lesion sites.

Turning to Fig.  12, this showcases the heatmap of an 8-class subset derived from Chest X-rays14, and it 
incorporates detailed information about the lesion sites corresponding to eight distinct disease categories. As 
can be clearly seen, the model’s attention is almost entirely concentrated within the areas of the lesion sites. 
This convincingly validates that the classification rationale underpinning our trained model, LungMaxViT, is 
accurate.

Finally, Fig. 13 represents a heatmap covering various classes of Chest X-rays14. Similar to Fig. 11, its primary 
purpose is to offer auxiliary support to doctors during the process of identifying and localizing lesion sites.

In summary, Grad-CAM is an important diagnostic tool in the realms of deep learning and medical imaging. 
It can also be applied to evaluate the effectiveness of models, such as the two discussed previously. By focusing on 
the lung areas, Grad-CAM can discriminate between classes more accurately, better expose the trustworthiness 
of our model and help identify biases in datasets, providing valuable insights into their operational efficacy and 
areas of focus.

Fig. 11. Visualization of lung infections in X-ray images using Grad-CAM on LungMaxViT model with 
COVID-19 dataset.
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Fig. 13. Visualization of lung infections in X-ray images using Grad-CAM on LungMaxViT model with Chest 
X-rays14 dataset.

 

Fig. 12. Visualization of lung infections in X-ray images using Grad-CAM on LungMaxViT model with Chest 
X-rays14 dataset.
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Conclusion
It is well known that lung disease is a major cause of mortality worldwide. This paper proposes a novel approach 
to predict the lung diseases from Chest X-ray images by blending the backbone of CNN with a multi-axis 
transformer for better accuracy and robust performance. In this study, Chest X-ray14 and COVID-19 datasets 
are examined to demonstrate the proposed model’s effectiveness and generalization for various lung diseases. 
After image preprocessing, the LungMaxViT framework is pre-trained by imagenet-1k to obtain the appropriate 
initial parameters. Then, four transfer learning models and LungMaxViT are applied to the two datasets. The 
deep learning models, including ResNet50, MobileNetV2, ViT, Maxvit and lungMaxViT show the prediction 
accuracy results of 94.5%, 95.7%, 94.6%, 96.5% and 96.8%, respectively, for COVID-19 as well as AUC results 
of 87.3% , 87.6%, 87.4%, 92.6% and 93.2% for Chest X-ray14. F1-score outperforms all other models for the 
two datasets, demonstrating that the proposed model performs with much improved efficiency over the other 
models. The proposed LungMaxViT does not only predict COVID-19 from the other lung lesions but also has 
better performance than the other models for 14 classifications of lung diseases. The proposed model has better 
multi-class classification results than the other classical deep learning methods based on the used evaluation 
metrics, showing its superiority and efficiency in the early identification of COVID-19 and other lung diseases 
from Chest X-ray images. Furthermore, the proposed hybrid model shows its capability to provide more 
reasonable and accurate explainable identification results in terms of heat maps.

Medical foundation models, exhibiting considerable generalization and adaptability, have immense potential 
in solving a wide range of downstream tasks, as they can help to accelerate the development of accurate and robust 
models, reduce the dependence on large amounts of labeled data, and preserve the privacy and confidentiality of 
patient data. For future work, we will study the novel fine-tuned medical foundation model and various multi-
modal self-supervised models to classify various medical image datasets, containing other types of diseases that 
may be detectable using medical imaging.

Data availability
The COVID-19 datasets generated during and analysed during the current study are available in the kaggle re-
pository,  h t t p s :  / / w w w .  k a g g l e  . c o m / d  a t a s e  t s / a n a  s m o h a m  m e d t a h  i r / c o v i d q u. The Chest X-rays14 datasets  g e n e r a t 
e d during and/or analysed during the current study are available in the nihcc repository,  h t t p s :  / / w w w .  k a g g l e  . c o 
m / d  a t a s e  t s / n i h  - c h e s t  - x r a y s  / d a t a / d a t a.
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