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Abstract: Since 2018, when a process hygiene criterion for Campylobacter in broilers at the
slaughterhouse was implemented across Europe, efforts to reduce Campylobacter at farm level
have increased. Despite numerous studies aiming to reduce Campylobacter colonization in broilers,
no efficient control strategy has been identified so far. The present work assessed first the efficacy of a
commercial litter treatment to reduce Campylobacter colonization in broilers during two in-vivo trials
and second, its impact on cecal microbiota. The treatment does not affect broiler growth and no effect
on Campylobacter counts was observed during the in-vivo trials. Nevertheless, cecal microbiota were
affected by the treatment. Alpha and beta diversity were significantly different for the control and
litter-treated groups on day 35. In addition, several taxa were identified as significantly associated
with the different experimental groups. Further work is needed to find a suitable control measure
combining different strategies in order to reduce Campylobacter.
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1. Introduction

Campylobacteriosis has been the most frequently reported zoonotic disease every year since
2005 [1], representing an annual cost of 2.4 billion euros in the European Union [2]. Poultry constitutes
both the main reservoir for this bacterium and the principal source of human contamination. In 2018,
246,571 confirmed cases were reported in the EU [1], but its incidence is grossly underestimated.
In France, for example, a mean number of 4608 campylobacteriosis cases were reported annually by the
National Reference Center between 2008 and 2013, but it was estimated that the multiplication
factor between cases ascertained by the surveillance system and cases in the community was
115 [3]. The high community incidence of this disease leads to a high human and economic cost.
Source attribution studies have identified chicken as the main host reservoir implicated in human
campylobacteriosis [4–6] and report that the consumption of contaminated poultry is the primary source
of human campylobacteriosis [7,8]. The prevalence of Campylobacter in broiler flocks is generally high
in several European Union Member States, with more than 70% of broiler batches being contaminated;
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France had a high prevalence of Campylobacter in broiler ceca (77.2%) [9]. Moreover, the level of
contamination in broiler ceca is generally high, reaching about 8 log10 CFU/g of cecal content [10,11].
A positive correlation is generally found between the level of contamination in the ceca and the counts
on the chicken meat after slaughtering [10]. In addition, a process hygiene criterion for Campylobacter
in broiler carcasses at the slaughtering step was implemented across Europe in 2018 [12], leading to
greater efforts to reduce Campylobacter on poultry farms. Several control measures have been tested
to reduce Campylobacter among colonized chickens at farm level. While several farm management
practices, such as strict biosecurity and farm hygiene measures, appear to be efficient in reducing
Campylobacter carriage in broilers flocks [13], the use of different feed additives—probiotics, organic
acids or plant extracts, for example [14–19]—showed, in most cases, inconclusive results in terms
of reproducibility. Another target that has not been investigated in depth so far is the litter. Litter
is one of the transmission routes of Campylobacter in the flock [20], so litter treatments to reduce
Campylobacter are a potential solution that should be explored. The objective of this work was to test a
commercial product (COBIOTEX 410 Absorbant®) containing a living bacterial complex, a nutrient
support and absorbent compounds acting together to limit the multiplication of pathogens. The active
substance of this bacterial complex is registered as a biocide (No. 71001/040.03.001) in accordance
with the European Directive 98/8/EC. Its efficacy against Salmonella in particular was demonstrated for
registration purposes, and in this paper we describe its testing on broiler colonization by Campylobacter.
The impact of this treatment on broilers’ cecal microbiota was also explored.

2. Results

2.1. Impact of Litter Treatment on Broilers’ Technical Performances and Their Colonization by Campylobacter

Two independent trials were carried out to test the effect of the litter treatment on cecal colonization
by Campylobacter after an artificial challenge. During these trials, a control group reared on a non-treated
litter was compared with a group reared on the treated litter; the treatment was the same in both trials,
but the method used for the Campylobacter challenge was different.

Results showed that the treatment did not affect broiler growth, as there was no difference in
mean body weight between the control and treated groups (p > 0.05) during the whole rearing period
for both trials (Table 1).

Table 1. Body weight (mean ± SD in g) of broilers during Campylobacter colonization trials. The number
of broilers (n) per group is in brackets.

Trial 1 Trial 2

Day 20 Day 35 Day 21 Day 35

Control 824 ± 72 (n = 23) 2444 ± 286 (n = 14) 878 ± 145 (n = 29) 2350 ± 286 (n = 15)
Litter treatment 856 ± 71 (n = 30) 2497 ± 229 (n = 14) 880 ± 160 (n = 25) 2341 ± 345 (n = 15)

During both trials, chicks were free of Campylobacter on day 1. Campylobacter was not detected in
the litter on day 10 (before broilers’ inoculation by Campylobacter) but was detected in the litter from
control and litter-treated groups on days 20/21 or 35 (data not shown). During the first trial, every bird
in the control and litter-treated groups was challenged with Campylobacter. On day 20, three days
after inoculation, high levels of Campylobacter over 6 log10 CFU/g were found in broilers without any
significant impact of the litter treatment (p > 0.05) (Figure 1). On day 35, a higher variability was
observed in the control group, with Campylobacter loads ranging from 4.18 to 8.62 log10 CFU/g, whereas
Campylobacter loads in the treated group ranged from 6.28 to 8.42 log10 CFU/g. However, this difference
was not significant (p > 0.05).
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Figure 1. Effect of litter treatment on Campylobacter colonization of broiler ceca during experimental 

trial 1. Each bird from the control group (gray dots) and the litter-treated group (blue dots) was 

inoculated with C. jejuni C97ANSES640 at 18 days of age. (a) Campylobacter colonization on day 20; 

(b) Campylobacter colonization on day 35. No statistical difference was observed between control and 

litter-treated groups on days 21 and 35. 

A second trial was carried out in order to test whether the treatment could reduce horizontal 

transmission. During this second trial, only one third of the birds were orally challenged with 4 log10 

CFU/g of Campylobacter. Cecal enumeration of Campylobacter (Figure 2) did not reveal a significant 

difference between the two groups (p > 0.05) on day 21, five days after inoculation of only one third 

of the broilers. Campylobacter was found in them all. The same trend was observed on day 35 (Figure 

2). Moreover, no statistical difference in Campylobacter counts was observed between inoculated and 

non-inoculated broilers on days 21 and 35. 

 

Figure 2. Effect of litter treatment on Campylobacter colonization of broiler ceca during experimental 

trial 2. Purple dots represent Campylobacter counts in broilers inoculated with C. jejuni C97ANSES640 

at 16 days of age. Gray dots represent Campylobacter counts in individual cecal content from non-

inoculated broilers in the control group. Blue dots represent Campylobacter counts in individual cecal 

content from non-inoculated broilers in the litter-treated group. (a) Campylobacter colonization on day 

Figure 1. Effect of litter treatment on Campylobacter colonization of broiler ceca during experimental
trial 1. Each bird from the control group (gray dots) and the litter-treated group (blue dots) was
inoculated with C. jejuni C97ANSES640 at 18 days of age. (a) Campylobacter colonization on day 20;
(b) Campylobacter colonization on day 35. No statistical difference was observed between control and
litter-treated groups on days 21 and 35.

A second trial was carried out in order to test whether the treatment could reduce horizontal
transmission. During this second trial, only one third of the birds were orally challenged with 4 log10

CFU/g of Campylobacter. Cecal enumeration of Campylobacter (Figure 2) did not reveal a significant
difference between the two groups (p > 0.05) on day 21, five days after inoculation of only one third of
the broilers. Campylobacter was found in them all. The same trend was observed on day 35 (Figure 2).
Moreover, no statistical difference in Campylobacter counts was observed between inoculated and
non-inoculated broilers on days 21 and 35.
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Figure 2. Effect of litter treatment on Campylobacter colonization of broiler ceca during experimental
trial 2. Purple dots represent Campylobacter counts in broilers inoculated with C. jejuni C97ANSES640 at
16 days of age. Gray dots represent Campylobacter counts in individual cecal content from non-inoculated
broilers in the control group. Blue dots represent Campylobacter counts in individual cecal content
from non-inoculated broilers in the litter-treated group. (a) Campylobacter colonization on day 21
(b) Campylobacter colonization on day 35. No statistical difference was observed between control and
litter-treated groups on days 21 and 35.
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2.2. Effect of Litter Treatment on the Composition of Broilers’ Cecal Microbiota

To assess the impact of litter treatment on cecal microbiota, the cecal content of the 54 broilers
sampled during trial 2, and all colonized by Campylobacter, was analyzed using 16S metabarcoding.
A total of 1,014,459 sequences were obtained from 54 samples after read demultiplexing, assembly and
cleaning steps, with a median of 18,084 sequences per sample (min: 8451; max: 37,059). These sequences
were then classified into 374 operational taxonomic units (OTUs) with a median of 232 OTUs per sample
(min: 50; max: 285). Within samples from the control group (n = 29), medians of 177 and 258 OTUs
were observed on days 21 (n = 14) and 35 (n = 15) respectively, while in the litter-treated group (n = 25),
medians were 156 and 246 on days 21 (n = 10) and 35 (n = 15) respectively. No statistical difference in
richness was observed between control and treated birds on day 21 (p > 0.05), but the litter-treated
group’s microbiota on day 35 harbored less OTUs than those of the control group (p < 0.01) (Figure 3).
Richness significantly increased (p < 0.0001) over time in both experimental groups (Figure 3). Shannon
(evenness) and inverse Simpson indices were also calculated to assess the α-diversity within samples.
Both indices increased over time only in the litter-treated group. On day 35, it was significantly higher
in the group with treated litter than in the control group. These results suggest that the microbiota of
broilers on treated litter contained fewer species with a more even distribution of relative abundance
than in the control group, resulting in higher bacterial diversity due to the litter treatment by day 35.
All the values of alpha diversity indices are shown for each cecal sample in Table S1.
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Figure 3. Representation of α-diversity indices for broilers’ cecal microbiota for the control and
litter-treated groups on days 21 and 35. Statistical differences (p < 0.05) are shown by an asterisk *.

The taxonomic composition of broilers’ cecal microbiota revealed a predominance of the Firmicutes
phylum, followed by Bacteroidetes, Proteobacteria, Epsilonbacteraeota and Actinobacteria phyla, regardless
of the birds’ age and experimental group (Figure 4). Three families—Lachnospiraceae, Ruminococcaceae
and Bacteroidaceae—predominated in the bacterial populations, with different relative abundance
depending on experimental conditions (Figure 4). The complete taxonomic composition of cecal
microbiota in each sample, including the relative abundance of OTUs, is presented in Table S2.
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Figure 4. Taxonomic composition represented by relative abundance of bacterial communities from the
cecal microbiota of broilers from the control or litter-treated groups on days 21 and 35. (a) Relative
abundance of the five phyla identified in cecal microbiota represented by a bar for each sample.
(b) Relative abundance of the 12 main families represented by a bar for each sample.

A principal coordinate analysis (PCoA) using UniFrac and weighted UniFrac (wUniFrac) distances
was performed to visualize differences in microbial population structures among samples depending on
treatment and age (Figure 5). A multivariate ANOVA (performed with Adonis) revealed a significant
difference in microbial population structure among samples regarding age (p = 0.0001 for UniFrac
and wUniFrac distance), experimental group (p = 0.0001 for UniFrac and wUniFrac distance), and the
interaction of both variables (p = 0.0002 and p = 0.0001 for UniFrac and wUniFrac distance respectively).
The broilers’ age explained about 29% and 33% of the total variance (for UniFrac and wUniFrac distance
respectively). The litter treatment explained 19% and 12% of the total variance (for UniFrac and
wUniFrac distance respectively), while the interaction of both variables explained 6% and 10% of the
total variation (for UniFrac and wUniFrac distance respectively). Lastly, a higher segregation of samples
according to their experimental group was observed using UniFrac distance than with wUniFrac
distance (Figure 5), suggesting that the most abundant OTUs in cecal samples are phylogenetically
closely related.

A LEfSe analysis [21] was performed to identify OTUs showing a statistically different
relative abundance between litter-treated and control groups at the end of the trial on day 35
(Figure 6). Taxa explaining the greatest statistical and biological differences between the two
communities were identified in the histogram. Bacteroidaceae, Bacillaceae and Lachnospiracea families
were significantly (p < 0.05) more abundant in broilers from the litter-treated group by day 35,
while the Ruminococcaceae family was significantly (p < 0.05) more abundant in the control birds.
Three genera—Bacteroides, RuminococcaceaeUCG_004, and Tyzzerella3—were significantly (p < 0.05)
more abundant in litter-treated birds. In contrast, nine genera—including Faecalibacterium, Enterobacter,
Proteus, RuminococcaceaeUCG_013, and Escherichia_Shigella—were significantly (p < 0.05) more abundant
in control broilers on day 35.
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Figure 5. Representation of β-diversity of broilers’ cecal microbiota for the control and litter-treated
groups on days 21 and 35. Principal coordinate analysis (PCoA) on samples from treated and control
groups on days 21 and 35. (a) PCoA based on UniFrac distance (b) PCoA based on weighted UniFrac
distance. (c) Community structure represented by a heatmap. The color scale represents the relative
abundance of OTUs, yellow being the least and red the most abundant.

Pathogens 2020, 9, 333 7 of 14 

 

 

Figure 6. Bacterial taxa significantly differentiated broilers’ cecal communities from the litter-treated 

or control groups, identified by linear discrimination analysis coupled with effect size (LefSE). (a) 

Histogram of the LDA scores computed for taxa with different relative abundance depending on 

whether the ceca examined are from the litter-treated or the control group. Only taxa with a LDA 

threshold value > 3 are reported. (b) Cladogram presenting LefSE results of the identified taxa 

according to their phylogenetic characteristics. 

3. Discussion 

Numerous previous studies have focused on whether feed additives affect the colonization of 

broilers by Campylobacter [14,18,22]. However, fewer studies have explored the role of litter in 

Campylobacter perpetuation and transmission in broiler flocks, which was first investigated more than 

30 years ago [23]. As Campylobacter contamination of broiler flocks is still a major issue in 2020, it is 

necessary to explore new control strategies to reduce the contamination level in broiler intestines, 

and applying a litter treatment could be a practical solution. In this study, the effect of a commercially 

marketed live bacterial complex registered as a biocide (No. 71001/040.03.001) in accordance with the 

European Directive 98/8/EC was tested on artificially inoculated broilers. Previous laboratory work 

demonstrated that culture supernatants of bacteria constituting the product were able to inhibit 

Campylobacter growth in vitro (data not shown). Moreover, Newell and Fearnley [24] reported that 

the dryness of fresh litter is considered lethal to Campylobacter, and there is an absorbent compound 

in the product tested. The bactericidal and absorbent properties of this commercial product are what 

led us to test it in vivo. 

No effect of the litter treatment on Campylobacter counts was observed during the first trial, when 

each broiler was orally inoculated with 4 log10 CFU/g of Campylobacter. At the end of the trial, the 

Campylobacter counts in the ceca of broilers with treated litter were similar to those for the control 

group (on untreated litter). To check whether this challenge condition was too stringent and could 

have limited the effect of the litter treatment, another trial was performed to see whether 

Campylobacter transmission among broilers could be reduced in the litter-treated group by orally 

inoculating only one-third of the birds. This second trial highlighted the quick spread of 

Campylobacter among broilers, as they were all contaminated within five days. This finding is in 

Figure 6. Bacterial taxa significantly differentiated broilers’ cecal communities from the litter-treated or
control groups, identified by linear discrimination analysis coupled with effect size (LefSE). (a) Histogram
of the LDA scores computed for taxa with different relative abundance depending on whether the
ceca examined are from the litter-treated or the control group. Only taxa with a LDA threshold value
> 3 are reported. (b) Cladogram presenting LefSE results of the identified taxa according to their
phylogenetic characteristics.
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3. Discussion

Numerous previous studies have focused on whether feed additives affect the colonization
of broilers by Campylobacter [14,18,22]. However, fewer studies have explored the role of litter in
Campylobacter perpetuation and transmission in broiler flocks, which was first investigated more than
30 years ago [23]. As Campylobacter contamination of broiler flocks is still a major issue in 2020, it is
necessary to explore new control strategies to reduce the contamination level in broiler intestines,
and applying a litter treatment could be a practical solution. In this study, the effect of a commercially
marketed live bacterial complex registered as a biocide (No. 71001/040.03.001) in accordance with
the European Directive 98/8/EC was tested on artificially inoculated broilers. Previous laboratory
work demonstrated that culture supernatants of bacteria constituting the product were able to inhibit
Campylobacter growth in vitro (data not shown). Moreover, Newell and Fearnley [24] reported that the
dryness of fresh litter is considered lethal to Campylobacter, and there is an absorbent compound in the
product tested. The bactericidal and absorbent properties of this commercial product are what led us
to test it in vivo.

No effect of the litter treatment on Campylobacter counts was observed during the first trial,
when each broiler was orally inoculated with 4 log10 CFU/g of Campylobacter. At the end of the trial,
the Campylobacter counts in the ceca of broilers with treated litter were similar to those for the control
group (on untreated litter). To check whether this challenge condition was too stringent and could
have limited the effect of the litter treatment, another trial was performed to see whether Campylobacter
transmission among broilers could be reduced in the litter-treated group by orally inoculating only
one-third of the birds. This second trial highlighted the quick spread of Campylobacter among broilers,
as they were all contaminated within five days. This finding is in agreement with the high transmission
rate of Campylobacter in colonized flocks demonstrated in previous studies [25,26]. Despite application
of the litter treatment every week since the beginning of rearing and the bactericidal activity of the
product, it did not impact Campylobacter spread.

Gut microbiota in broilers develop immediately after hatching and are impacted by many factors
related to the host and its environment [27]. Litter has been identified as an influencing factor,
since broilers continuously ingest litter material and microorganisms [27]. Litter treatment did not
affect broilers’ colonization by C. jejuni in this study. To check whether the litter treatment affected other
bacterial taxa from broilers’ cecal microbiota, a 16S metabarcoding approach was used. Both alpha and
beta diversity were affected by the litter treatment. In fact, a higher genetic diversity and lower richness
were observed in broilers on treated litter on day 35 compared with control birds, suggesting fewer
species with more evenly distributed relative abundance in the cecal microbiota of broilers on treated
litter. While the treatment explained 12% to 19% of the total variations in microbial population structure,
the age of broilers explained 29% and 33%, suggesting that broiler age had a higher impact on cecal
microbial communities than the treatment of litter. While the impact of broiler age on cecal microbiota
has already been reported [28,29], modifications to cecal microbiota due to the litter treatment could be
the result of several phenomena. Indeed, the product could have a direct effect on cecal microbiota after
the ingestion of litter material by broilers through the action of living bacteria included in the treatment
(i.e., bacterial competition and gut colonization of the host). The treatment could also have an indirect
effect through the modification of litter microbiota due to the action of absorbent compounds and the
presence/development of living bacteria from the product in the litter itself, which is then ingested
by the broilers. Indeed, the microbiota of the litter, which is frequently inoculated by poultry feces
during the rearing period, are known to be influenced by environmental factors including pH, diet and
moisture [30,31], so litter intake could in turn modify the composition of cecal microbiota.

Different taxa explaining the greatest difference between microbial communities of litter-treated
and control birds were identified. For example, the Bacilli class and the Bacillaceae family were
discriminative for treated broilers. This could be the result of colonization of the broiler gut by
Bacillus amyloliquefaciens, which is one of the bacterial species contained in the litter treatment product
used during the in-vivo trial. However, the discriminatory power of 16S RNA metabarcoding is not
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sufficient to confirm this hypothesis, since the taxonomic affiliation of OTUs from the Bacilli class
ended at family or genus level. It is also interesting to note that the Escherichia_Shigella genus and
Clostridia class characterized the cecal microbiota of broilers from the control group. As several broiler
pathogens belong to this genus or class (e.g., Clostridium perfringens, Escherichia coli), the impact of the
litter treatment on these pathogens could be further investigated. In previous studies, the presence of
Faecalibacterium [32] or increased abundance of the Clostridiales regrouping members of the Clostridiaceae,
Lachnospiraceae and Ruminococcacea [33] have been associated to Campylobacter colonization. In our
study, Faecalibacterium, Clostridiales and Ruminococcacea were strongly associated to the control group.
Based on these results, it would have been expected that the control group harbored significantly more
Campylobacter counts in ceca than the treated group, but this trend was not observed. On the other
hand, Thibodeau et al. (2017) observed only slight modifications of the microbiota in response to
C. jejuni infection and suggest that it acts as a super-colonizer due to its potential commensal lifestyle.
Therefore, the modifications of the microbiota caused by the litter treatment could not be sufficient to
reduce the colonization by Campylobacter.

To conclude, the litter treatment did not reduce Campylobacter loads in broilers’ ceca as expected
during these in-vivo trials. However, this study was conducted in a level 2 facility under strictly
controlled conditions, which does not reflect the rearing environment of commercial flocks. As a
consequence, a field study should be performed to test the product in poultry farm conditions.
Although, in this study, the litter treatment was not successful in reducing Campylobacter colonization
in broilers, it did modify the broilers’ cecal microbiota. Combining it with other products (feed or water
additives) acting together synergistically could improve the reduction of broilers’ cecal colonization
by Campylobacter.

4. Materials and Methods

4.1. In-Vivo Experimental Design

4.1.1. C. jejuni Culture Condition

The strain used for the broiler challenge, C. jejuni C97Anses640, was isolated from a poultry
product and characterized by multilocus sequence typing [34] as belonging to the ST-45 complex.
The strain was stored at −70 ◦C in peptone broth containing 20% (v/v) glycerol. Five days before the
birds were challenged, the strain was recovered from frozen stock after plating on mCCDA (selective
modified charcoal cefoperazone deoxycholate agar) (Thermo Fisher Diagnostics, Dardilly, France) at
41.5 ◦C for 48 h under a microaerobic atmosphere (85% N2, 10% CO2 and 5% O2). One colony was
used to inoculate 10 mL of brucella broth (BD Biosciences, San Jose, CA, USA). After 24 h at 41.5 ◦C in
a microaerobic atmosphere, the bacterial suspension was diluted to 105 CFU/mL in tryptone salt broth
(BioMérieux, Bruz, France).

4.1.2. Poultry and Housing Conditions

Two independent trials were carried out at the Animal Biosafety Level 2 facilities of ANSES’s
Ploufragan Laboratory in northwest France, an approved establishment for animal experimentation
(No. C-22-745-1). It was conducted in accordance with the principles and specific guidelines presented
in the Guide for the Care and Use of Agricultural Animals in Research and Teaching [35], and the
protocol was approved by ethical committee ComEth Anses/ENVA/UPEC (11/06/13-3). Before the
trial began, the experimental facilities (rooms, pens, feeding and drinking systems) were cleaned
and disinfected. A total of 108 day-of-hatch Ross PM3 broilers (males and females) were included in
the study for the two trials. Chicks vaccinated against infectious bronchitis were purchased from a
commercial hatchery. Trials lasted 35 days from reception of the chicks to the last sampling procedure.
Birds were kept in 3.42 m2 (1.85 × 1.85 m) floor pens. Litter was composed of unused wood shavings.
The facilities have programmable electric lights, automated electric heating and forced ventilation.
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There were eighteen hours of lighting per day throughout the experiment apart from for days 1 to 7,
when there were 23 h of lighting per day. The environmental temperature was gradually reduced
from 32 ◦C on day 1 to 18 ◦C on day 35. Chicks were randomly assigned to the two experimental
groups (control and litter-treated) (cf. Section 4.1.3). Feed was weighed and manually distributed.
The experimental diets were formulated and manufactured by a commercial feed meal company.
They were fairly standard diets for broilers. The starter diet was offered to birds from day 1 to day 21,
and the finisher diet from day 22 to day 35. Feed was presented as granulated crumbs. Feed and water
were available ad libitum throughout the rearing period. On day 1 and at each sampling time, each bird
was individually weighed, and feed intake per pen was recorded. Environmental swabs were taken
from the facilities and transport crates and five randomly selected chicks were humanely euthanized
(electronarcosis followed by bleeding) upon arrival in order to check the absence of Campylobacter
colonization. Microbial analyses were carried out according to the ISO 10272–1:2017 standard [36].

4.1.3. Chick Colonization Assay

A similar protocol was carried out for the two trials, but several specifications regarding the
number of birds per group, the day of interventions and the way the broilers were challenged were
applied (Figure 7). Two groups of chicks were used for each trial: one for the control group and the
other one for the litter-treated group. The litter treatment in powder form was spread manually on the
litter in order to cover the whole surface of the pen before the chicks’ arrival (200 g per pen), and then
once a week (100 g per pen) according to the manufacturer’s recommendations. On day 17 for the first
trial (day 16 for the second one), all the birds in each group were orally challenged with 1 × 104 CFU of
C. jejuni C97ANSES640 in a 100 µL suspension of tryptone salt broth by oral gavage during the first trial.
For the second trial, only one-third of the birds per group were challenged. For sampling purposes,
the broilers were anesthetized by electronarcosis before being ethically euthanized by exsanguination
for both trials. They were sampled on day 20 for the first trial (21 for the second one) and day 35 for
both trials. During the second trial, four challenged birds were randomly selected from those sampled
on day 21. Ceca were recovered for Campylobacter and microbiota analysis. During both trials, litter
was sampled and tested for Campylobacter detection on days 10 (to check the absence of Campylobacter
in chicks before inoculation), 20 or 21, and 35, according to the ISO 10272–1:2017 standard [36].
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4.1.4. Cecal Enumeration of Campylobacter spp.

Campylobacter enumerations were assessed in cecal contents after direct plating according to the
decimal dilution method. Ceca were weighed and diluted 1:10 (w/v) in tryptone salt broth. After 1 min
of homogenization in a stomacher (Interscience, Saint-Nom-la-Bretèche, France), 10-fold dilution
series were carried out in tryptone salt broth and 50 µL of the dilutions was spread on mCCDA
plates using an automatic easySpiral Dilute® plater (Interscience, Saint-Nom-la-Bretèche, France).
After 48 h of incubation at 41.5 ◦C under microaerobic conditions, colonies showing the morphology of
Campylobacter were counted. The detection limit for enumeration of Campylobacter was 1 × 102 CFU/g
(2 log10 CFU/g) of cecal content. To conduct microbiota analyses, 1 mL of the first dilution of cecal
content was centrifuged at 10,000× g for 10 min, then the supernatant was discarded and the remaining
pellet was stored at −20 ◦C.

4.1.5. Statistical Analyses

The body weight and Campylobacter count in the ceca of broilers from the control and litter-treated
groups on each sampling date were compared. Student’s parametric test was used when the
normality and homogeneity criteria of the variances were validated; otherwise, the non-parametric
Mann–Whitney test was used. A p-value < 0.05 (p < 0.05) was used to indicate whether differences
were statistically significant.

4.2. Cecal Microbiota Analyses

4.2.1. DNA Extraction

Genomic DNA was extracted from frozen cecal pellets, obtained after centrifugation of 1 mL
of diluted cecal content (1:10), using a NucleoMag Tissue Kit (Macherey-Nagel, Hoerdt, France).
Briefly, pellets were resuspended with 500 µL of T1 lysis buffer (NucleoMag Tissue kit) then 100 mg
of 0.1 mm Zirconia/Silica Beads (BioSpec, Bartlesville, CA, USA) was added to the suspensions.
Mechanical lysis was next performed at a maximum intensity of 30 m/s for 3 min using the Star
Beater (VWR, Fontenay-sous-Bois, France), followed by chemical lysis: the lysates were supplemented
with 25 µL of Proteinase K (NucleoMag Tissue kit) then incubated at 70 ◦C for 30 min with regular
vortexing. After centrifuging the samples for 2 min at 13,000× g, 225 µL of lysate supernatants
was transferred into a standard 12-well plate and used for DNA extraction with a KingFisher Duo
Prime instrument (Thermofisher Scientific, Illkirch-Graffenstaden, France). DNA concentrations were
assessed using a Qubit 2.0 Fluorometer and Qubit dsDNA HS Assay Kit or Qubit dsDNA BR Assay
Kit (Thermofisher Scientific, Illkirch-Graffenstaden, France). DNA extracts were stored at −20 ◦C until
microbiota analyses.

4.2.2. PCR Amplification of Bacterial 16S Ribosomal Genes and MiSeq Illumina Sequencing

To assess the microbial composition of broilers’ ceca, hypervariable region V3-V4 of the 16S rDNA
was sequenced using Illumina technology. The V3-V4 region was amplified from genomic DNA using
F343 and R784 primers (F343: CTTTCCCTACACGACGCTCTTCC GATCTTACGGRAGGCAGCAG;
R784: GGAGTTCAGACGTGTGCTCTTCCGATCTTA CCAGGGTATCTAATCCT) and 30 PCR cycles
with an annealing temperature of 65 ◦C. A second PCR of 12 cycles was performed with 6-bp
homemade index sequences added to the reverse primer for single multiplexing. The resulting PCR
amplicons were purified and loaded onto the Illumina MiSeq cartridge according to the manufacturer’s
recommendations (Illumina Inc., San Diego, CA, USA). Pair-end sequences were assembled using
Flash software [37] with an overlap of at least 10 bp between the forward and reverse sequences and a
mismatch no greater than 10%. The quality of sequences was checked using four bacterial samples
that were run routinely in the sequencing facility at the same time as the current samples, and the
run quality was internally checked using control libraries generated from the PhiX virus (Illumina
PhiX control; Illumina Inc., San Diego, CA, USA). Paired sequences were assigned to their sample by
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the GeT-PlaGE platform (Toulouse, France), based on the previously integrated index. Sequencing
reads were deposited in the National Center for Biotechnology Information’s Sequence Read Archive
(Bioproject accession number: PRJNA625431).

4.2.3. Sequence Analyses

Sequences were processed using FROGS, a galaxy-supported pipeline [38]. Briefly, sequences
were cleaned by removing sequences with ambiguous bases, of an unexpected length (<380 or
>500 nucleotides), or those without a primer sequence at both 3′- and 5′-ends (no mismatch allowed)
before dereplication. After the sequences were clustered into OTUs using SWARM [39], and following
FROGS guidelines [38], chimeras were removed using VSEARCH [40] combined with a cross-sample
validation step [38]. OTUs were then filtered according to their size (OTUs with an abundance below
5 × 10−5 were removed) and the BLAST algorithm [41] was used for taxonomic assignment against the
SILVA 16S database (version 132 filtered at a pintail score of 80) [42]. A phyloseq R package [43] object
was generated to perform further statistical analysis.

4.2.4. Statistical Analyses

Descriptive statistical analyses on the diversity and structure of cecal microbiota were performed
using the phyloseq R package implemented in FROGS [38]. Shannon and InvSimpson diversity
indices were calculated as well as the Chao1 richness estimator (Table S1) to describe microbiota
diversity and richness. The effect of the litter treatment on these indices was investigated using
ANOVA followed by Tukey tests, or a Kruskal–Wallis test followed by Mann–Whitney tests for data
not satisfying parametric assumptions. Since broilers’ microbiota are known to be affected by their
age [28,29], we also looked at the impact of the birds’ age and the interaction between treatment and
age on microbiota diversity and structure. A UniFrac or wUniFrac distance matrix was calculated after
data rarefaction, and plotted using multidimensional scaling (MDS) to investigate the structure of the
bacterial community. An ADONIS pairwise test was used to check significance. To identify OTUs
whose relative abundance were statistically different between litter-treated and control birds, the linear
discriminant analysis (LDA) effect size (LEfSe) [21] was performed, and only OTUs with a LDA score
over 3 were reported.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-0817/9/5/333/s1,
Table S1: Values of alpha diversity indices for all the broilers’ cecal samples; Table S2: Table of OTUs relative
abundance and their taxonomic affiliation in broilers’ cecal samples.
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