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Lyme disease is the most prevalent tick-borne disease in the United States, which humans
acquire from an infected tick of the genus Ixodes (primarily Ixodes scapularis). While
previous studies have provided useful insights into various aspects of Lyme disease, the
tick's host preference in the presence of multiple hosts has not been considered in the
existing models. In this study, we develop a transmission dynamics model that includes
the interactions between the primary vectors involved: blacklegged ticks (I. scapularis),
white-footed mice (Peromyscus leucopus), and white-tailed deer (Odocoileus virginianus).
Our model shows that the presence of multiple vectors may have a significant impact on
the dynamics and spread of Lyme disease. Based on our model, we also calculate the basic
reproduction number, R 0, a threshold value that predicts whether a disease exists or dies
out. Subsequent extensions of the model consider seasonality of the tick's feeding period
and mobility of deer between counties. Our results suggest that a longer tick peak feeding
period results in a higher infection prevalence. Moreover, while the deer mobility may not
be a primary factor for short-term emergence of Lyme disease epidemics, in the long-run it
can significantly contribute to local infectiousness in neighboring counties, which even-
tually reach the endemic steady state.

© 2019 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi
Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Lyme disease is acknowledged as one of the most prevalent tick-borne infections in North America (Levi, Kilpatrick,
Mangel, & Wilmers, 2012a, 2012b), for which approximately 30,000 cases are reported annually to the Centers for Disease
Control and Prevention (CDC), yet data scientists claim that 300,000 may be a more accurate estimate (Kuehn, 2013). An
untreated case of Lyme disease can result in serious joint pain and/or neurological problems, and chronic Lyme disease can
become debilitating causing a tremendous decrease in quality of life. With the growing concern of ticks expanding their range
due to climate change (Lou, Wu, &Wu, 2014; Magnarelli, Anderson, & Cartter, 1993), it is important to understand the details
of the dynamics underlying the spread of Lyme disease. An increase in tick territory may correlate to an increase in Lyme
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disease incidence rates in the United States (Burtiset al., 2016). Investigating the interactions of the vectors associated with
Lyme disease may aid in the efforts toward controlling the spread of the infection, and possible eradication of the disease.

A majority of the previous studies on Lyme disease (Anderson, Johnson, Magnarelli, & Hyde, 1985; Bosler, Ormiston,
Coleman, Hanrahan, & Benach, 1984; Burgdorfer, Hayes, & Corwin, 1989; Falco & Fish, 1992; Glass, Amerasinghe, Morgan,
& Scott, 1994; Magnarelli et al., 1993; Ostfeld, Miller, & Hazler, 1996; Weisbrod & Johnson, 1989) focused on the vectors
involved in the spread of the bacterial agent responsible for the disease, the spirochete Borrelia burgdorferi (Schwan &
Piesman, 2000), and related environmental factors. These earlier studies established that the white-footed mouse (Per-
omyscus leucopus) is one of the main vectors of Lyme disease and a competent reservoir of B. burgdorferi (Ostfeld et al., 1996).
However, other studies (Magnarelli, Denicola, Stafford, & Anderson, 1995) have shown that the white-tailed deer (Odocoileus
virginianus) can also be a principal vector of Lyme disease andmay play a significant role in the ecology of this disease (Jordan,
Schulze,& Jahn, 2007). In fact, fullymatured female blacklegged ticks feed andmate on the deer (Ogden et al., 2007), and then
the adult females detach from the deer and lay a large number of eggs (approximately 2000 eggs on average) shortly before
dying (Randolph & Craine, 1995). Therefore, the white-tailed deer, with larger ranges, and the increasingly warm climate
might allow for Lyme disease to spread to regions previously uninfected. Thus, modeling the role of white-tailed deer as a host
of Lyme disease may be significant for the disease dynamics.

Many mathematical models use a single vector to predict Lyme disease prevalence (Keesing, Holt, & Ostfeld, 2006; Levi
et al., 2012). Despite these progresses in the modeling of Lyme disease, the effects of multiple vector interactions and the
tick's host preference have not been explored well. The main focus of this study is to get insights into the dynamics of the
disease transmission based on the interactions of the tick, the mouse, and the deer; the white-footed mouse plays the role of
the main source of the tick's blood meal at the first two life stages, larvae and nymph, while the white-tailed deer acts as the
adult tick's final blood meal and site of its reproductive stage. We develop a mathematical model that considers the in-
teractions between the key vectors involved in the spread of Lyme disease: blacklegged ticks (I. scapularis), white-footedmice
(Peromyscus leucopus), and white-tailed deer (Odocoileus virginianus). We further extend our basic model to study the effects
of seasonality of tick-feeding and spatial movement of deer on the disease epidemics. Using our models, we evaluate how
vector-interactions, seasonality, and migration contribute to the exacerbation of the Lyme disease epidemics posing potential
devastating impact on human health.
2. Method

2.1. Mathematical models

We first develop a basic mathematical model that incorporates interactions betweenmultiple vectors of Lyme disease. The
model is further extended to include the effects of seasonality of tick feeding and deaths as well as deer mating. Moreover, we
develop a model to study how deer migration affects the spatial spread of Lyme disease.

2.1.1. Basic multiple-vector model
We consider the three separate life stages of the tick vector: larvae (L), nymphs (N), and adults (A). The nymph and adult

tick populations are divided into mutually exclusive susceptible and infected classes, while the larvae have only one class
without infection due to the lack of vertical transmission of the disease from adults to their eggs (Bosler et al., 1984). Similarly,
the primary mammalian hosts, white-footed mice (M) and white-tailed deer (D), are divided into susceptible and infected
classes. Thus, the model consists of five compartments of ticks (Ls, Ns, Ni, As, Ai), two compartments of mice (Ms,Mi) and two
compartments of deer (Ds and Di), where the subscripts s and i stand for susceptible and infected, respectively.

The interaction between the three vectors involved in the transmission dynamics of Lyme disease is complex, which
particularly makes the model unique. Fig. 1 provides a schematic diagram for the fundamental design of the model. In this
model we assume that the mice and the deer populations follow logistic growth with per capita growth rate rM , and rD, and
carrying capacity KM, and KD, respectively. For the growth of the tick population, the adult females first get a blood meal from
the hosts, either mice or deer with a scaling factor bA representing the adult tick's preference to deer compared to mice. KL
represents the carrying capacity of hosts (mice or deer) to provide blood meals to adult ticks, and rL represents the per capita
rate at which eggs are able to hatch from those adults who received a blood meal and become larvae. The larvae interact with
the host, mice or deer, at a contact rate bL to become nymphs, with a scaling factor bL representing the ratio of larvae-deer
interaction to the larvae-mice interaction. We also account for the intraspecies competition between larvae to become
nymphs, which is represented by the εLL

2
s term (Keesing et al., 2006). Similarly, the nymphs interact with the host, mice or

deer, at a contact rate bN and become adults, with a scaling factor bN representing the ratio of nymph-deer interaction to the
nymph-mice interaction. dN and dA represent the natural death rates of nymphs and adults, respectively.

In this transmission dynamics, among the total larvae that infest the infected hosts, bLLsðMi þ bLDiÞ, the proportion jN
becomes infected nymphs, while among the total nymphs that quest the infected hosts, bNNsðMi þ bNDiÞ, the proportion jA
becomes infected adults. Susceptible mice become infected when they interact with infected nymphs and infected adults at a
rate bNM and bAM , respectively. Similarly, susceptible deer become infected when they interact with infected nymphs and
infected adults at a rate bND and bAD, respectively. With these interactions (Fig. 1), the transmission dynamics of Lyme disease
can be described as the following nine-dimensional system of ODEs.



Fig. 1. Schematic diagram, which outlines the vector and host interactions between the five tick compartments (Ls , Ns , Ni , As , Ai) and the four host compartments
(Ms , Mi , Ds , Di). The dashed arrows represent tick and host interactions, resulting in tick maturation, and they also represent infectious ticks spreading B.
burgdorferi to hosts. The solid arrows represent transitions between compartments and natural loss from a compartment.
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dLs
dt

¼ rLðAs þ AiÞððMs þMiÞ þ bAðDs þ DiÞÞ
�
1� ðAs þ AiÞ

KLððMs þMiÞ þ bAðDs þ DiÞÞ
�

�bLLsððMs þMiÞ þ bLðDs þ DiÞÞ � εLL
2
s ;

dNs

dt
¼ bLLsðMs þ bLDsÞ þ ð1� jNÞbLLsðMi þ bLDiÞ

�bNNsððMs þMiÞ þ bNðDs þ DiÞÞ � dNNs;

dNi

dt
¼ jNbLLsðMi þ bLDiÞ � bNNiððMs þMiÞ þ bNðDs þ DiÞÞ � dNNi;

dAs

dt
¼ bNNsðMs þ bNDsÞ þ ð1� jAÞbNNsðMi þ bNDiÞ � dAAs;

dAi

dt
¼ jAbNNsðMi þ bNDiÞ þ bNNiððMs þMiÞ þ bNðDs þ DiÞÞ � dAAi;

dMs

dt
¼ rMðMs þMiÞ

�
1� Ms

KM

�
� bN MMsNi � bA MMsAi;

dMi

dt
¼ bN MMsNi þ bAMMsAi � rMðMs þMiÞ

�
Mi

KM

�
;

dDs

dt
¼ rDðDs þ DiÞ

�
1� Ds

KD

�
� bN DDsNi � bADDsAi;

dDi

dt
¼ bN DDsNi þ bADDsAi � rDðDs þ DiÞ

�
Di

KD

�
:

(1)
2.1.2. Seasonality model
The basic multiple-vector model developed above assumes that each of the parameters is constant. However, some pa-

rameters can be time-varying due to seasonal effects, including seasonal tick-feeding behaviors. In particular, the interactions
between nymphal ticks and the two vertebrate hosts are largest during the months of June and July (Randolph, Miklisov�a,
Lysy, Rogers, & Labuda, 1999), indicating the time-dependence of bNM and bND. Similarly, the peak feeding period for adult
ticks (Randolph et al., 1999) is throughout October and November, implying the time-dependency of bAM and bAD. Also, the
white-tailed deer mate during what is often called the rut, which takes place in the fall (Green et al., 2017). After a gestation
period of seven months, deer give birth to fawns in the months of May and June (Sparrowe & Springer, 1970). This behavior
can be modeled by letting rD be time-dependent. Moreover, the death rates dN and dA can be time-varying as a higher death
rate for each tick compartment occurs during the winter months (Ghosh & Pugliese, 2004).

To study how the seasonal variation impacts Lyme disease dynamics, we extend our basic multiple-vector model to a
seasonality model by taking parameters bN M , bN D, bAM , bAD, rD, dN , and dA as time-dependent periodic functions of a period t,
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usually taken as 1 year. Since tick-host interactions, tick feeding and deer birthing take place in a short period of the year, we
take bNMðtÞ, bNDðtÞ, bAMðtÞ, bADðtÞ, and rDðtÞ as a step function for each period. However, a higher tick death occurs for a longer
period of a year. Therefore, we use cosine functions to represent seasonal death rates of nymphal and tick adults. We use the
following formula for the seasonality model.

bjðtÞ ¼
(
bj; ntþ taj � t � ntþ tbj ;
0; otherwise;

n ¼ 0;1;2;…; (2)

for each j ¼ NM;ND;AM;AD.

rDðtÞ ¼
�
rD; ntþ taD � t � ntþ tbD;
0; otherwise;

n ¼ 0;1; 2;…; (3)

djðtÞ ¼ dj þ ujcos
2p
t

ðt þ fÞ; (4)

for each j ¼ N;A.

2.1.3. Migration model
The growing spatial spread of Lyme disease has been a serious concern to public health. It is known that both ticks and

mice are not able to travel long distances, while deer travel between two neighboring counties (Glass et al., 1994). To study
how the mobility of dear can have an impact on the spatial spread of Lyme disease, we develop a migration model, which
incorporates mobility of deer between two neighboring counties. We initialize the dynamics with County-1 in an endemic
state and County-2 in a disease free state (Fig. 2), and observe how Lyme disease spreads from the county with the endemic
state to the disease free county.

Deer move from County-1 to County-2 with a migration rate m12 and from County-2 to County-1 with a migration rate
m21. Since ticks and mice have very limited mobility, we assume these populations do not move between counties. The
equations representing their dynamics in each county remain the same as the basic multiple-vector model. The only hosts
that are mobile between counties are deer, and their population in County-1 (Ds1, Di1) and in County-2 (Ds2, Di2) are modeled
using the following differential equations.

dDs1

dt
¼ rDðDs1 þ Di1Þ

�
1� Ds1

KD

�
� bNDDs1Ni1 � bADDs1Ai1 �m12Ds1 þm21Ds2;

dDi1
dt

¼ bNDDs1Ni1 þ bADDs1Ai1 � rDðDs1 þ Di1Þ
�
Di1
KD

�
�m12Di1 þm21Di2;

dDs2

dt
¼ rDðDs2 þ Di2Þ

�
1� Ds2

KD

�
� bNDDs2Ni2 � bADDs2Ai2 �m21Ds2 þm12Ds1;

dDi2
dt

¼ bNDDs2Ni2 þ bADDs2Ai2 � rDðDs2 þ Di2Þ
�
Di2
KD

�
�m21Di2 þm12Di1:

(5)
2.2. Parameter estimation

We estimated model parameters using the information from literature sources (Batzli, 1977; Bosler et al., 1984; Daniels,
Falco, & Fish, 2000; Goodwin, Ostfeld, & Schauber, 2001; Keesing et al., 2006; Lindsay et al., 1995; LoGiudice, Ostfeld,
Schmidt, & Keesing, 2003; Madhav, Brownstein, Tsao, & Fish, 2004; Verme, 1969). The populations presented are in units
of per hectare (ha). The basic multiple-vector model contains 18 kinetic parameters. The parameters associated with the
population dynamics, such as growth and carrying capacity, are found directly from the literature. However, contact rates are
estimated from the known infected populations of deer and mice, where Lyme disease is endemic (Daniels et al., 2000;
Madhav et al., 2004).

The growth rates of P. leucopus and O. virginianus are known to be rM ¼ 0:05 mice/ha/day (Batzli, 1977) and rD ¼ 0:00548
deer/ha/day (Verme, 1969). The estimated growth rate, rM ¼ 0:05 mice/ha/day, was calculated using the ratio of the average
number of offspring each mouse is able to produce per 100 days, while the growth rate, rD ¼ 0:0056 deer/ha/day, was
estimated using the ratio of the number of fawns each doe is able to produce per 365 days. The growth rate rL, for the larval
tick, was calculated by taking the ratio of the number of eggs that survive to the larval stage to the number of eggs that a
female I. scapularis lays (Lindsay et al., 1995), and dividing this value by 730 days (two years based on the tick life-cycle). As a
result, we obtained rLz0:0012 larvae/ha/day.

Although mice are considered the primary reservoirs for the disease, it is known that other rodents contribute to the
spread of the disease (Salkeld & Lane, 2010). Assuming mice make up roughly 40% of the rodent population, we scaled the



Fig. 2. Schematic diagram of deer migration between Counties 1 and 2.
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average number of mice per hectare by 2.5. On average, there are 20 P. leucopus per hectare (Madhav et al., 2004); thus, we
assume a steady-state rodent population to be 50. In addition, Madhav et al. (Madhav et al., 2004) found that there are 0.25 O.
virginianus per hectare, which we assumed to be the steady-state deer population. These steady-state values were used as the
estimates for carrying capacities, i.e., KM ¼ 50 mice/ha and KD ¼ 0:25 deer/ha, for our logistic growth dynamics. Madhav et al.
(Madhav et al., 2004) found the annual mortality rates of 81% and 98% for nymphs and adults, respectively, which imply the
death rates of the nymphs and adult ticks to be dN ¼ 0:0022 number of nymphs/ha/day and dA ¼ 0:0027 number of adults/ha/
day, respectively. The parameter εL ¼ 1:241� 10�8 Larvae/ha/day, which accounts for the intraspecies competition between
larvae causing deaths of those who are unable to obtain a blood meal, was taken from Keesing et al. (Keesing et al., 2006).

Note that the parameters bL, bN , and bA represent ratios of tick-mice interactions to tick-deer interaction, thereby quan-
tifying the I. scapularis host preference. In order to estimate these values, we take the ratio of the number of successful tick
blood meals that come from deer versus those that come from mice. Daniels et al. (2000) found that, per hectare, there are
approximately 115,000 larval I. scapularis, 13,000 nymphs, and 3300 adults. Also, Madhav et al. (2004) found that approxi-
mately 9.45 larval ticks are present on eachmouse, whereas 169.32 larvae are found on one deer. We scale 9.45 by 50 in order
to find 472.5 larval ticks on rodents per hectare. Since there are 0.25 deer per hectare, we scale the number of larvae found on
deer, resulting in 42.33 larvae on deer per hectare. This implies that the total number of larvae found per hectare is 514.83. In
order to find the number of successful larval bloodmeals that come frommice, we take the expected number of nymphal ticks
per hectare and multiply this by the percentage of larvae feeding on rodents. We do the same calculation for deer and then
compute the ratio of the two values (deer/mice) in order to obtain bL ¼ 0:089. With the calculation in a similar fashion, we
obtain bN ¼ 0:003 and bA ¼ 3:983.

While a large number of the parameters are based on literature values, there are some parameters, especially contact rates
and infection rates, which are not available. To estimate these rates, we use the steady-states of our model combined with
field survey data containing the steady state population and disease endemic states. We discuss the estimates of contact rates
and infection rates in Section 3. All the model parameters are provided in Table 1.
3. Results

3.1. Vector-host interaction and Lyme disease infection

In our model, vector-host interactions are represented by parameters bL and bN , while the disease infection is determined
by jN, jA, bNM , bAM , bND, and bAD. To understand these important parameters better, we use steady state formulation of our
model along with field survey data (Table 2) and compute these rates properly. According to previous studies (Caraco et al.,
2002; Wang & Zhao, 2017), the larvae and nymphs, which become nymphs and adults, respectively, after successful inter-
action with infected mice or infected deer, have an extremely high likelihood of becoming infected (more than 90%). With
these levels of probability, our model predicted negligible effects on the biological conclusions when jN <1 and jA <1 were
used instead of jN ¼ 1 and jA ¼ 1. Therefore, we consider jN ¼ 1 and jA ¼ 1 in the model analyses and simulations pre-
sented below.

Using Ni ¼ Ai ¼ Mi ¼ Di ¼ 0 in the model, we obtain the disease free equilibrium (DFE) as follows:



Table 1
Parameter values for basic model, System (1).

Parameter Value Units Source(s)

bL 0.089 Unitless (Daniels et al., 2000; Madhav et al., 2004)
bN 0.003 Unitless (Daniels et al., 2000; Madhav et al., 2004)
bA 3.982 Unitless (Daniels et al., 2000; Madhav et al., 2004)
rL 0.0012 Larvae/ha/Day Lindsay et al. (1995)
rM 0.05 Mice/ha/Day Batzli (1977)
rD 0.0055 Deer/ha/Day Verme (1969)
bL 6.55 � 10�6 Larvae/ha/(Hosts Day) Computed
bN 1.36 � 10�5 Nymphs/ha/(Hosts Day) Computed
εL 1:24� 10�8 Larvae/ha/Day Keesing et al. (2006)
bN M 2.25 � 10�6 Nymphs/ha/(Mice Day) Computed
bAM 9.03 � 10�6 Adults/ha/(Mice Day) Computed
bN D 3.04 � 10�7 Nymphs/ha/(Deer Day) Computed
bA D 3.38 � 10�7 Adults/ha/(Deer Day) Computed
dN 0.0022 Nymphs/ha/Day Madhav et al. (2004)
dA 0.0027 Adults/ha/Day Madhav et al. (2004)
KL 115,000 Larvae/ha Daniels et al. (2000)
KM 50 Mice/ha LoGiudice et al. (2003)
KD 0.25 Deer/ha LoGiudice et al. (2003)
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LE0 ¼ �bLKLðKM þ bLKDÞ þ
ffiffiffiffiffi
c1

p
2εLKL

;

NE0 ¼ bLLE0ðKM þ bLKDÞ
bNðKM þ bNKDÞ þ dN

;

AE0 ¼ bNNE0ðKM þ bNKDÞ
dA

;

ME0 ¼ KM ;

DE0 ¼ KD;

(6)

where
c1 ¼ ðbLbLKLKDÞ2 þ 4rLbAεLK
2
LKDAE0 þ 2bLb

2
LK

2
LKMKD

þ4rLεLK
2
LKMAE0 þ ðbLKLKMÞ2 � 4rLεLKLA

2
E0:

(7)
Now, substituting the parameter values estimated from the literature (Table 1) and the DFE values of larvae, nymph, and
adult population obtained from the field survey (Table 2) in Eq. (6), we obtain a value of bN ¼ 1:36� 10�5 nymphs/ha/hosts/
day and a value of bL ¼ 6:56� 10�6 larvae/ha/hosts/day. These estimates show that the interactions between ticks and hosts
are higher during the nymphal stage than the larval stage of the tick's life cycle.

Next, we formulate the endemic state equilibrium to calculate the infection rates, bNM , bND, bAM , and bAD. From our model
equations, we find that the mice and deer populations at the disease endemic state, MES, MEI , DES, and DEI , are obtained by
solving the following nonlinear system of four algebraic equations:
Table 2
Equilibria for compartment population values for basic model. Populations for both the disease-free equilibrium and endemic equilibrium are given with
references.

Compartment DFE Endemic Reference

LES 115,000 115,000 Daniels et al. (2000)
NES 13,000 8,320 (Daniels et al., 2000; Goodwin et al., 2001)
NEI 0 4,680 (Daniels et al., 2000; Goodwin et al., 2001)
AES 3,300 1,155 (Daniels et al., 2000; Goodwin et al., 2001)
AEI 0 2,145 (Daniels et al., 2000; Goodwin et al., 2001)
MES 50 31.5 (Bosler et al., 1984; LoGiudice et al., 2003)
MEI 0 18.5 (Bosler et al., 1984; LoGiudice et al., 2003)
DES 0.25 0.18 (Bosler et al., 1984; LoGiudice et al., 2003)
DEI 0 0.07 (Bosler et al., 1984; LoGiudice et al., 2003)
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MES ¼
�bAMKMAEI � bNMKMNEI þ rMKM � rMMEI þ

ffiffiffiffiffi
c2

p
2rM

;

MEI ¼
�rMMES þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rMMESð4KMðbNMNEI þ bAMAEIÞ þ rMMESÞ

q
2rM

;

DES ¼
�bADKDAEI � bNDKDNEI þ rDKD � rDDEI þ

ffiffiffiffiffi
c3

p
2rD

;

DEI ¼
�rDDES þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rDDESð4KDðbNDNEI þ bADAEIÞ þ rDDESÞ

q
2rD

;

(8)
where

c2 ¼ ðbAMKMAEI þ bNMKMNEIÞ2 þ 2bAMrMKMAEIð � 2KM þMEIÞ
þ2bNMrMKMNEIð � 2KM þMEIÞ þ ðrMKM þ rMMEIÞ2;

c3 ¼ ðbADKDAEI þ bNDKDNEIÞ2 þ 2bADrDKDAEIð � 2KD þ DEIÞ
þ2bNDrDKDNEIð � 2KD þ DEIÞ þ ðrDKD þ rDDEIÞ2:
We now use the parameter values estimated from the literature (Table 1) and the disease endemic values of nymph and
adult populations obtained from the field survey (Table 2), and solve the System (8) using iterative methods in Maple. Our
computations result in the values of host-specific Lyme disease infection rates to be bNM ¼ 2:25� 10�6 Nymphs/ha/
(Mice.Day), bND ¼ 3:04� 10�7 Nymphs/ha/(Dear.Day), bAM ¼ 9:03� 10�6 Adults/ha/(Mice.Day), and bAD ¼ 3:38� 10�7

Adults/ha/(Mice.Day) (Table 1). From these estimates, we found that the hosts have a higher rate of being infected from adult
ticks than nymphs. Also, these rates are higher for mice than deer.

3.2. Basic reproduction number

In epidemiology, the basic reproduction number, R 0, is an extremely important threshold value as it can predict whether
epidemics can occur. R 0 is defined as the average number of secondary cases that is caused by an infected individual,
introduced into an entirely susceptible population, during the infectious period (Baca€er, 2007). If R 0 <1, then the disease
stops spreading and eventually dies out, and if R 0 >1, then there is an outbreak of the disease (Diekmann, Heesterbeek, &
Roberts, 2010; van den Driessche &Watmough, 2002). R 0 may be affected by several different factors, including the contact
rates among the host populations, the probability of infection through contact, and the period of infectiousness.

We compute R 0 of our model using the next-generation operator method (NGM) ((Diekmann et al., 2010; van den
Driessche & Watmough, 2002)). In order to find the R 0 of an epidemiological model, by using the NGM, we need to
consider only the equations pertaining to the infectious states, x!i ¼ ðNi;Ai;Mi;DiÞT . These equations from System (1),
linearized about the DFE, results in the following system:

d
dt

x!i ¼ Ji x
!

i; (9)
where the Jacobian matrix Ji is given by

Ji ¼

0
BB@

�bNðKM þ bNKDÞ � dN 0 bLLS0 bLbLLS0
bNðKM þ bNKDÞ �dA bNNS0 bNbNNS0

bNMKM bAMKM �rM 0
bNDKD bADKD 0 �rD

1
CCA: (10)
Now, we define Ji ¼ F - V, where F is the transmission matrix and V is the transition matrix. The transmission matrix
describes the births of new infections, while the transitionmatrix describes the changes of state of the individuals (e.g., death/
removal from the system).

F ¼

0
BB@

0 0 bLLS0 bLbLLS0
bNðKM þ bNKDÞ 0 bNNS0 bNbNNS0

bNMKM bAMKM 0 0
bNDKD bADKD 0 0

1
CCA; (11)
and
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V ¼

0
BB@

bNðKM þ bNKDÞ þ dN 0 0 0
0 dA 0 0
0 0 rM 0
0 0 0 rD

1
CCA: (12)
These matrices give

FV�1 ¼

0
BBBBBBBBBBBBB@

0 0
bLLS0
rM

bLbLLS0
rD

bNðKM þ bNKDÞ
bNðKM þ bNKDÞ þ dN

0
bNNS0

rM

bNbNNS0

rD

bNMKM

bNðKM þ bNKDÞ þ dN

bAMKM

dA
0 0

bNDKD

bNðKM þ bNKDÞ þ dN

bADKD

dA
0 0

1
CCCCCCCCCCCCCA
: (13)
The basic reproduction number is given by the spectral radius of the matrix in Eq. (13), i.e., R 0 ¼ rðFV�1Þ.
Using the parameter values given in Table 1, we estimate the basic reproduction number of Lyme disease to beR 0 ¼ 1:28.

Considering our parameters are based on an endemic steady state, it is expected that R 0 >1. Our estimate is consistent with
the range of R 0 values estimated in previous studies (Hartemink, Randolph, Davis, & Heesterbeek, 2008), where 0 � R 0 <5,
depending on the fraction of blood meals on competent hosts.

To better understandR 0 and related stability of the two equilibria, endemic and disease-free, we now introduce a scaling
factor f on the host-specific infection rates bNM , bND, bAM , and bAD. Note that the scaling factor f can be used to study control
measures that alter these infection rates. Applying bNM/fbNM , bND/fbND, bAM/fbAM , and bAD/fbAD to our model, we
computed the basic reproduction numberR 0 for the values of f from 0 to 1.We found thatR 0 is less than 1when f is less than
0.56; otherwise, R 0 is greater than 1 (Fig. 3, left). For these values of f, we performed local stability analysis of equilibria
numerically. As presented in a bifurcation diagram for infected nymph populations (Fig. 3, right), we found that for a value of
f <0:56 (i.e.,R 0 <1), the only equilibrium that exists is the DFE, and it is stable. For f >0:56 (i.e.,R 0 >1), two equilibria exist,
with the DFE being unstable and the endemic equilibrium being stable. This behavior, which is typical of a transcritical
bifurcation, confirms R 0 to be a threshold for the disease outbreak. The results suggest that one control measure for Lyme
disease may involve limiting the contact of ticks and hosts to less than 56%.

3.3. Long-term disease outcomes: base case

We investigate the long-term disease outcome predicted by the basic multiple-vector model (System (1)) using the pa-
rameters given in Table 1. We set the initial conditions to reflect 5% of the infected population for each of the nymphal and
adult ticks, mice, and deer compartments, which are all scaled per hectare. The long-term dynamics of each compartment
(Fig. 4) indicate that the system eventually reaches an endemic steady state at the values consistent with field studies (Table
2). Themodel predicts that the number of larvae does not change over time, remaining constant at 115,000 per ha. The nymph
population changes over time, with the susceptible population decreasing to 8,322 per ha and the infected population
increasing to 4,678 per ha. The nymph compartments eventually reach the endemic equilibrium after approximately 20 years,
with the infected individuals higher than the initial number. The adult, mice, and deer compartments exhibit similar patterns,
with the gradual increase of the initial infected numbers, which converge to an endemic state in the long run. The susceptible
populations decrease to 1352, 32, and 0.18 per ha for the adults, mice, and deer, respectively, while the infected populations
increase to 1948, 18, and 0.07 per ha for the adults, mice, and deer, respectively. Similar to the nymph compartments, the
adults, mice, and deer compartments approach the endemic steady state after approximately 20 years.

With these dynamics, we calculate the infection prevalences of nymphs, adult ticks, mice, and deer, which is defined as the
percentage of the number of infected individuals out of the total number of individuals. The evolution of the infection
prevalence for each of the four compartments is shown in Fig. 5, which all exhibit similar patterns to the infected population
curves in Fig. 4. The infection prevalences are initially at 5%, and once the system reaches the endemic steady state, the
infection prevalence of nymphs, adults, mice, and deer are approximately 35.6%, 58.7%, 35.8%, and 27.3%, respectively. These
levels of infection prevalence are consistent with previous studies (Bosler et al., 1984; Goodwin et al., 2001).

We also compute the rate of new infections generated for each of the four infected types (Fig. 6). We calculate these values
by considering only the positive terms in each of the four ODEs in System (1) that correspond to the infected classes (Ni, Ai,Mi,
and Di), as the positive terms represent the new infections. After the system reaches the endemic steady state after 20 years,
the annual rate of new infections increases from 1.89 to 13.43, 0.87 to 5.2, 0.14 to 0.895, and 0.00006 to 0.00037 per ha for
nymphs, adults, mice, and deer, respectively. Furthermore, the total number of new infections starting at time, t0, generated in
a year is given by System (14):



Fig. 3. (Left) The variation of the R 0 value as the host-specific infection rates bNM , bND , bAM , and bAD are scaled by a factor f, which ranges from 0 to 1. The dotted
line represents the threshold value for the existence of the disease (i.e., R 0 ¼ 1). For f <0:56, R 0 is less than 1, and when f >0:56, R 0 is greater than 1. (Right)
Bifurcation diagram with the scaling factor f as a bifurcation parameter. For f <0:56, Ni ¼ 0 is the only equilibrium value for infected nymph population and this
DFE is stable. For f >0:56, two equilibria Ni ¼ 0 and Ni ¼ N�

i >0 exist with Ni ¼ 0 being stable and Ni ¼ N�
i being unstable, showing a shift of stability from the DFE

to the endemic equilibrium.
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Total No: of Nymphs ¼
Zt0þ365

t0

bLLsðtÞðMiðtÞ þ bLDiðtÞÞdt;

Total No: of Adults ¼
Zt0þ365

t0

ðbNNsðtÞðMiðtÞ þ bNDiðtÞÞ

þbNNiðtÞððMsðtÞ þMiðtÞÞ þ bNðDsðtÞ þ DiðtÞÞÞÞdt;

Total No: of Mice ¼
Zt0þ365

t0

ðbNMMsðtÞNiðtÞ þ bAMMsðtÞAiðtÞÞdt;

Total No: of Deer ¼
Zt0þ365

t0

ðbNDDsðtÞNiðtÞ þ bADDsðtÞAiðtÞÞdt:

(14)
When System (14) uses the parameter values from Table 1 and the endemic equilibrium compartmental values, we are
simply integrating a constant. The calculated annual total number of new infections at the endemic steady state are
approximately 4902, 1898, 327, and 0.14 per ha for nymphs, adults, mice, and deer, respectively.

3.4. Effect of seasonality

In this section we examine the effects of seasonality on Lyme disease dynamics using our seasonality model in which
some parameters are introduced as time-dependent periodic functions (Eqs. (2)e(4)). Since the peak feeding period for
nymphal ticks is during the months of June and July, which comprise days 152 through 212 of each year, we take taj ¼ 152;
tbj ¼ 212; j ¼ NM; ND. Similarly, corresponding to the peak feeding period of adult ticks, which is between the months of
October and November, we take taj ¼ 274;tbj ¼ 335; j ¼ AM;AD. The growth rate of deer rDðtÞ is also a step function, which
accounts for the high birth rates of deer between the months of May and June, i.e., taD ¼ 121;tbD ¼ 181. For a fair comparison,
we took the magnitude of the infection rate during feeding period, bj, in such away that the areas under the bjðtÞ curve for a
period t ¼ 365 days remain the same as that for the basic multiple-vector model. For example,
bNM ¼ bNMt=61 ¼ 1:35� 10�5 Nymphs/ha/(Mice-Day). In the cosine functions representing the time-dependent tick death
rates, dNðtÞ and dAðtÞ, we used the parameters by setting the peak death rate on the first day of January, due to a large
percentage of tick deaths in the winter. Since the ticks feed primarily in the summer and fall, the death rates are lowest at
these times. The amplitudes of each functionwere adjusted to match the average levels at the endemic stage with the levels
predicted by the basic model.

Similar to the base case, we set the initial conditions for the nymphs, adults, mice, and deer each at an infection level of 5%.
Due to the periodicity of the time-dependent parameters, we observe oscillations in the overall dynamics of each
compartment as expected (Fig. 7), and each compartment eventually reaches a time-varying endemic state with sustained
periodic solutions. As expected, the larvae population does not display extreme fluctuations. We observe larger oscillations in
the nymph compartments and the adult compartments, while the largest amplitude variation appears in the mice com-
partments. This great variation inmice population range is likely due to the relatively short lifespan of the P. leucopus, which is



Fig. 4. The long-term dynamics of the populations in each compartment predicted by the base model, which converges to an endemic steady state after
approximately 20 years. The larval tick population of 115,000 does not change over time, but each of the other populations do. The susceptible compartments for
the nymphs, adults, mice, and deer decrease to 8322, 1352, 32, and 0.18, respectively. The infected compartments for the nymphs, adults, mice, and deer increase
to 4678, 1948, 18, and 0.07, respectively.

Fig. 5. Infection prevalences of nymphs, adults, mice, and deer predicted by the basic multiple-vector model, which converges to an endemic steady state. The
percent of infected individuals increases from 5% to approximately 35.6%, 58.7%, 35.8%, and 27.3% for nymphs, adults, mice, and deer, respectively.
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Fig. 6. Rate of new infections generated of nymphs, adults, mice, and deer as the system converges to an endemic steady state. After the system reaches the
endemic equilibrium, approximately 20 years, the rate of new infections for nymphs, adults, mice, and deer increase from 1.89 to 13.43, 0.87 to 5.2, 0.14 to 0.895,
and 0.00006 to 0.00037 for nymphs, adults, mice, and deer, respectively.
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about one year (Batzli, 1977). The deer lifespan is longer than that of the mice, which may explain why the oscillations in the
deer dynamics are not as extreme as those seen in the mice compartments.

At endemic state, the annual average infection prevalence predicted by the model are 35%, 58%, 36%, and 25% for nymphs,
adults, mice, and deer, respectively. Note that these averages are consistent with the infection prevalences observed in the
base model, which are 35.6%, 58.7%, 35.8%, and 27.3% for nymphs, adults, mice, and deer, respectively. While the annual
average level is not affected by the seasonal variation of the parameters, the disease dynamics during a single period is quite
different due to seasonality (Fig. 8). The dynamics during one period exhibits two peaks, where each peak can be associated
with the two different questing periods of the nymph and adult stages of the I. scapularis. The solution curves of the nymphs
and adults have similar shapes, with large prevalences in January (42% and 62% for nymphs and adults, respectively), but due
to high tick death rates, the infection levels decline until themonth of June (27% and 51% for nymphs and adults, respectively).
Since the peak feeding period of nymphal ticks takes place in June and July, the infection prevalences start increasing at this
point (up to 38% and 62% for nymphs and adults, respectively). After this peak period, the prevalences decrease to 35% and
61%, for nymphs and deer, respectively, until the adult ticks start feeding between October and November, after which the
second peaks appear toward the end of the year. The infection prevalences of nymphs and adults increase to 43% and 64% and
start decreasing in December.

The infection prevalence of mice exhibits the pattern similar to the tick compartments, with an initial infection level of
19%. The prevalence of mice decreases to almost 0% in June, increases to 83% in August due to the nymphal questing period,
decreases to 4% in October, increases to 90% in December due to the adult questing period, and then declines at the end of the
year. The deer population starts with a high infection prevalence of 34%, which lasts throughout the winter, followed by a
rapid decline to 7% betweenMay and June, due to the births of uninfected fawns. Once nymphs start their peak feeding period
between June and July, the prevalence increases to approximately 22% and remains constant until the adult ticks peak feeding
period starts in October, where the infection level rises to 34%.

Although the average peak feeding periods of both the nymphal and adult ticks are twomonths long, these periodsmay vary
depending on the climate. To study how the length of the feeding period affects the dynamics, we performed the model
simulations by varying the feeding period, tbj � taj , from one month to three months, while keeping the infection rates, bj, the
same (Eq. (2)). We see that the infection prevalence of each vector increases as the peak feeding period is elongated (Fig. 9).
Starting with a feeding period of one month and progressing to three months, the infection prevalences increase from 13% to
25%, 22%e41%, 6%e22%, and 21%e33% for nymphs, adults, mice, and deer, respectively. This increase in infected populations
suggests that if ticks are able to feed for a longer portion of the year, this may result in escalated Lyme disease incidence reports.
Therefore, a possible method of Lyme disease control involves processes that aim to shorten the tick's peak feeding periods.



Fig. 7. The long-term dynamics of each compartment under the seasonality effect. The larvae compartment shows small oscillations, with a constant average
population value of 115,360. Despite the periodic behavior of each compartment, the average population values are consistent with those seen in the base model.
At the endemic steady state, the average susceptible population values decrease to 8484, 1391, 32, and 0.19 for the nymphs, adults, mice, and deer, respectively.
The average infected population values increase to 4582, 1928, 18, and 0.06 for the nymphs, adults, mice, and deer, respectively.

Fig. 8. The infection prevalences of nymphs, adults, mice, and deer during a period of sustained oscillation of an epidemic. The infection prevalence of each
compartment starts increasing in June, due to the beginning of the nymphal tick feeding period. Since the nymphal questing period is not sustained past July, the
infection prevalence of each compartment starts to decrease between August and September. The infection prevalences increase again, once the adult tick feeding
period begins in October. Since the adult feeding period is not sustained past November, the prevalences will start to decrease in December. This explains the
presence of the two peaks observed in each compartment, where one starts in June, and the other one starts in October.
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3.5. Effects of deer mobility

As mentioned earlier, we study how the deer migration could influence the spread of Lyme disease between two
neighboring counties, where County-1 is at an endemic state and County-2 is at a disease-free state. For our base case
computations, we set the rates of dear mobility between counties as m12 ¼ m21 ¼ 10�3.

The long-term disease prevalence in County-2 predicted by the model is shown in Fig. 10. While the deer population show
some prevalence, the prevalence among other populations remain almost 0% for about 10 years. The initial small increase in
only deer prevalence (0%e3.8%) is because only deer are mobile between counties. After about 10 years, each prevalence
begins to increase, and in about 25 years, the disease free county eventually reaches equilibrium values of 36%, 59%, 36% and
27% for nymphs, adults, mice, and deer, respectively. These infection prevalences at the endemic state are consistent with
those predicted by the base model. This results show that the deer mobility may not be responsible for the spatial spread of
Lyme disease for a short period of time. However, in the long-run, the deer mobility between counties can be an important
contributor to the spread of Lyme disease.



Fig. 9. The variation of the infection prevalences of nymphs, adults, mice, and deer, with varying tick feeding periods. The nymph infection prevalence is 13% for a
feeding period of one month, 19% for a two-month period, and 25% for a three-month period. The adult has infection prevalences of 22%, 32%, and 41% for
questing periods of one, two, and three months, respectively. The mice infection prevalence values are 6%, 11%, and 22% for questing periods of one, two, and three
months, respectively. The deer infection prevalence values are 21%, 28%, and 33% for feeding periods of one, two, and three months, respectively.
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Considering a migration rate ofm12 ¼ m21 ¼ 10�3 for the base computation, the results imply that it takes approximately
10 years until the local infectiousness is large enough to drive the DFE to the endemic steady state. The migration rates are
some of the most difficult parameters to estimate, and we do not have the proper knowledge about their values in reality.
Therefore, we assess the sensitivity of themigration rate on the time it takes for the infected nymph population in County-2 to
reach 50% of the endemic equilibrium value (Fig. 11). As the migration rate varies between 0 and 0.01, the time it takes for the
infected nymph population in County-2 to reach a value of 2,339 (50% of the endemic equilibriumvalue) decreases from 27.79
years to approximately 17.27 years. Note that the base case migration rate, m12 ¼ 10�3, allows the system to reach this value
in approximately 19.61 years. This result shows that a high migration rate of deer can generate a high rate of infectivity in a
shorter time period.
4. Discussion

In recent years, Lyme disease has expanded its global range, particularly in the Northeastern and Midwestern regions of
the U.S. (Kugeler, Farley, Forrester, &Mead, 2015). This expansion is attributable to several factors, such as the environmental
variation and B. burgdorferi reservoir migration (Kugeler et al., 2015). While Lyme disease with the white-footedmouse as the
primary host has been well studied, the role of the secondary large-sized host, namely the white-tailed deer, in the disease
spread is poorly understood. In this study, we developed Lyme transmission dynamics models, which incorporate the in-
teractions between the blacklegged tick (larval, nymphal, and adult) and two vertebrate hosts (white-footed mouse and
white-tailed deer). We further expanded our basic multiple-vector model to study the effects of seasonal variation of tick
feeding and migration of deer on the disease epidemics.



Fig. 10. The infection prevalences of nymphs, adults, mice, and deer as predicted by the migration model. The infection levels of the nymphs, adults, and mice are
initially 0%, and remain constant until the 10th year, after which the prevalences increase to 36%, 59%, and 36%, respectively. The deer infection prevalence rises
from 0% to approximately 3.8% within the first two years, remains constant until the 10th year, then increases to 27%.
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The model predicts the Lyme disease dynamics with an increase in the infected populations of all compartments except
larvae and a decrease in the susceptible populations, until the system reaches an endemic steady state level comparable to the
field studies. Consistent with these dynamics implying convergence to the stable endemic steady state, our model estimates
the basic reproduction number of Lyme disease to be R 0 ¼ 1:28>1. The predicted value of R 0 indicates that by scaling the
infection rates by a factor of f <0:56, R 0 can be brought down to less than one, resulting in the instability of the endemic
steady state and the stability of the disease free equilibrium. Hence, for the control of Lyme disease via strategies that focus on
reducing transmission, the infection rate of both hosts needs to be reduced to at most 56%.

Using our models, we have found several interesting results that may be useful for the control of Lyme disease. First, we
found that the dynamics did not greatly differ from the base case with different values of bL, bN , and bA. This indicates that a
tick's host preference may not be a significant factor in the spread of Lyme disease, even though the presence of two different
kinds of host may have significant roles in the disease dynamics due to the difference in their size, birth rate, and death rate.

Second, our model predicts that a tick feeding period is positively correlated with the total number of infected individuals.
Note that a study by Brownstein et al. (Brownstein, Holford, & Fish, 2003) revealed that the feeding periods may have grown
in length due to an increase in warmer weather during the spring and summer months, which is possibly due to global
climate change. Combined with this result, our model indicates that a rise in tick epidemics could be due to an increase of
feeding period, as a result of climate change. Implementing control measures focusedmainly during the tick's feeding periods
may aid in the regulation of the spread of Lyme disease. Another effect of seasonality in our model comes from the sinusoidal
tick death rates affected by climate change. Low temperatures during the winter months result in reduced death rates,
implying higher tick survival rates during winter, which suggests that more ticks are able to attain successful blood meals,
thereby increasing Lyme disease incidence.

Third, we evaluated how deer mobility between two adjoining counties, initially one at an endemic steady state and
another at a disease free state, will lead to the emergence of Lyme disease in the second county. The model predicts that there
is a long delay for infected vector populations to appear in the second county (Fig. 10). These results from our model indicate
that the primary reservoir of the disease is P. leucopus and theminor role of deer in Lyme disease transmission should result in
long delays in establishing endemic levels. Perhaps the migration of other vectors or seasonality acts as one of the driving
forces behind Lyme disease emergence in a short time. These ideas should be tested in future models and compared to data.
After this initial delay however, the local infectiousness becomes large enough, eventually driving this initially disease-free
county to an endemic steady state. We also observe that an increase in the deer migration rate can cause the emergence of
disease in the neighboring county in a shorter time-period. This result suggests that deer mobility between counties can have
a significant impact on the infectiousness of nymphs in the second county over a long period of time. Thus, while deer may



Fig. 11. The time, in years, it takes for the infected nymph population of Compartment 2 to reach 50% of the infected nymph population predicted by the base
model at the endemic equilibrium. As the migration rate increases from 0 to 0.01, the time it takes the infected nymph population to reach a value of 2,339
decreases from 27.79 years to approximately 17.27 years.
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not be the sole vector responsible for the spread of Lyme disease in a single county, as previous studies have considered
(Bosler et al., 1984; Glass et al., 1994; Magnarelli et al., 1995), their migration can be an important contributor to the spatial
spread of the disease in the long run.

There are several limitations and possible future directions of our study. Most of the effort centered on the model pa-
rameters estimated from the existing literature with limited data. Future studies of this model should analyze the thorough
parameter sensitivity and explore avenues to most effectively reduce the prevalence of the disease. Ideally, this model should
be tested against detailed biological data from a single region, such as Martha's Vineyard, where Lyme disease is a very
significant health problem (Heller et al., 2010). Our modeling efforts with the nonautonomous model demonstrated that
seasonal effects are very significant and could play a major role in attempts to control the disease. However, this nonau-
tonomous periodic model needs further analysis, including computation of thresholds for outbreak, such as infection invasion
threshold. Such analysis may require sophisticated mathematical techniques and high performing computations, as in the
previous studies with similar nonautonomous models (Liu, Zhao, & Zhou, 2010; Vaidya & Wahl, 2015; Wang & Zhao, 2008).
Future studies should also explore more details of the population dynamics of all species and life cycles in this model.
Particular attention in an improved model would be linking the time-varying parameters to climate elements, like tem-
perature and precipitation. However, such a study would require a collaboration with field biologists collecting detailed
population studies of species. In this study, we have not performed a detailed analysis of the model with vector mobility, and
we have not considered migrating birds as another potential vector in our model. In addition to rodents and deer, birds are
believed to play an important role in Lyme disease expansion (Reed, Meece, Henkel, & Shukla, 2003; Weisbrod & Johnson,
1989). A future extension of our model may include additional compartments that represent bird populations or combine
birds in the small animal compartment with an added contribution to disease migration.

The Lyme disease model in this study provides greater detail andmore flexibility than previous models. We havemanaged
to match our model to existing data on this pervasive disease, identifying key parameters and adding time-varying elements
lacking inmany epidemiological models. We believe this model could be invaluable in studies of the spread or control of Lyme
disease if done in conjunction with detailed work of biologists in the field.
Conflict of interest

Authors declare no conflict of interest.
Acknowledgements

This work was partially supported by NSF, United States, grants DMS-1836647 (NV), DMS-1616299 (NV) and the start-up
fund (NV) from San Diego State University, United States.



A. Nguyen et al. / Infectious Disease Modelling 4 (2019) 28e43 43
References

Anderson, J. F., Johnson, R. C., Magnarelli, L. A., & Hyde, F. W. (1985). Identification of endemic foci of lyme disease: Isolation of Borrelia burgdorferi from feral
rodents and ticks (Dermacentor variabilis). Journal of Clinical Microbiology, 22, 36e38.

Baca€er, N. (2007). Approximation of the basic reproduction number R0 for vector-borne diseases with a periodic vector population. Bulletin of Mathematical
Biology, 69, 1067e1091.

Batzli, G. O. (1977). Population dynamics of the white-footed mouse in floodplain and upland forests. The American Midland Naturalist, 97, 18e32.
Bosler, E. M., Ormiston, B. G., Coleman, J. L., Hanrahan, J. P., & Benach, J. L. (1984). Prevalence of the lyme disease spirochete in populations of white-tailed

deer and white-footed mice. Yale Journal of Biology & Medicine, 57, 651e659.
Brownstein, J. S., Holford, T. R., & Fish, D. (2003). A climate-based model predicts the spatial distribution of the lyme disease vector Ixodes scapularis in the

United States. Environmental Health Perspectives, 111, 1152e1157.
Burgdorfer, W., Hayes, S. F., & Corwin, D. (1989). Pathophysiology of the lyme disease spriochete, Borrelia burgdorferi, in ixodid ticks. Reviews of Infectious

Diseases, 11, S1442eS1450.
Burtis, J. C., Sullivan, P., Levi, T., Oggenfuss, K., Fahey, T. J., & Ostfeld, R. S. (2016). The impact of temperature and precipitation on blacklegged tick activity and

Lyme disease incidence in endemic and emerging regions. Parasites & Vectors, 9, 1e10.
Caraco, T., Glavanakov, S., Chen, G., Flaherty, J. E., Ohsumi, T. K., & Szymanski, B. K. (2002). Stage-structured infection transmission and a spatial epidemic: A

model for lyme disease. The American Naturalist, 160, 348e359.
Daniels, T. J., Falco, R. C., & Fish, D. (2000). Estimating population size and drag sampling efficiency for the blacklegged tick (Acari:ixodidae). Journal of

Medical Entomology, 37, 357e363.
Diekmann, O., Heesterbeek, J. A. P., & Roberts, M. G. (2010). The construction of next-generation matrices for compartmental epidemic models. Journal of The

Royal Society Interface, 7, 873e885.
van den Driessche, P., & Watmough, J. (2002). Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease trans-

mission. Mathematical Biosciences, 180, 29e48.
Falco, R. C., & Fish, D. (1992). A comparison of methods for sampling the deer tick, Ixodes dammini, in a lyme disease endemic area. Experimental & Applied

Acarology, 14, 165e173.
Ghosh, M., & Pugliese, A. (2004). Seasonal population dynamics of ticks, and its influence on infection transmission: A semi-discrete approach. Bulletin of

Mathematical Biology, 66, 1659e1684.
Glass, G. E., Amerasinghe, F. P., Morgan, J. M., & Scott, T. W. (1994). Predicting Ixodes scapularis abundance onwhite-tailed deer using geographic information

systems. The American Journal of Tropical Medicine and Hygiene, 51, 538e544.
Goodwin, B. J., Ostfeld, R. S., & Schauber, E. M. (2001). Spatiotemperal variation in a lyme disease host and vector: Black-legged ticks on white-footed mice.

Vector Borne and Zoonotic Diseases, 1, 129e138.
Green, M. L., Kelly, A. C., Satterthwaite-Phillips, D., Manjerovic, M., Shelton, P., Novakofski, J., et al. (2017). Reproductive characteristics of female white-tailed

deer (Odocoileus virginianus) in the Midwestern USA. Theriogenology, 94, 71e78.
Hartemink, N. A., Randolph, S. E., Davis, S. A., & Heesterbeek, J. A. P. (2008). The basic reproduction number for complex disease systems: Defining R0 for

tick-borne infections. The American Naturalist, 171, 743e754.
Heller, J. E., Benito-Garcia, E., Maher, N. E., Chibnik, L. B., Maher, C. P., & Shadick, N. A. (2010). Behavioral and attitudes survey about lyme disease among a

Brazilian population in the endemic area of Martha's vineyard, Massachusetts. Journal of Immigrant and Minority Health, 12, 377e383.
Jordan, R. A., Schulze, T. L., & Jahn, M. B. (2007). Effects of reduced deer density on the abundance of Ixodes scapularis (Acari: Ixodidae) and lyme disease

incidence in a Northern New Jersey endemic area. Journal of Medical Entomology, 44, 752e757.
Keesing, F., Holt, R. D., & Ostfeld, R. S. (2006). Effects of species diversity on disease risk. Ecology Letters, 9, 485e498.
Kuehn, B. (2013). CDC estimates 300000 us cases of lyme disease annually. Journal of the American Medical Association, 310, 1110.
Kugeler, K. J., Farley, G. M., Forrester, J. D., & Mead, P. S. (2015). Geographic distribution and expansion of human lyme disease, United States. Emerging

Infectious Diseases, 21, 1455e1457.
Levi, T., Kilpatrick, A. M., Mangel, M., & Wilmers, C. C. (2012). Deer, predators, and the emergence of lyme disease. Proceedings of the National Academy of

Sciences, 109(27), 10942e10947. https://doi.org/10.1073/pnas.1204536109.
Lindsay, L. R., Barker, I. K., Surgeoner, G. A., McEwen, S. A., Gillespie, T. J., & Robinson, J. T. (1995). Survival and development of Ixodes scapularis (Acari:

ixodidae) under various climatic conditions in Ontario, Canada. Journal of Medical Entomology, 32, 143e152.
Liu, L., Zhao, X.-Q., & Zhou, Y. (2010). A tuberculosis model with seasonality. Bulletin of Mathematical Biology, 72, 931e952.
LoGiudice, K., Ostfeld, R. S., Schmidt, K. A., & Keesing, F. (2003). The ecology of infectious disease: Effects of host diversity and community composition on

lyme disease risk. Proceedings of the National Academy of Sciences, 100, 567e571.
Lou, Y., Wu, J., & Wu, X. (2014). Impact of biodiversity and seasonality on Lyme-pathogen transmission. Theoretical Biology and Medical Modelling, 11, 1e25.
Madhav, N. K., Brownstein, J. S., Tsao, J. I., & Fish, D. (2004). A dispersal model for the range expansion of blacklegged tick (Acardi:Ixodidae). Journal of

Medical Entomology, 41, 842e852.
Magnarelli, L. A., Anderson, J. F., & Cartter, M. L. (1993). Geographic distribution of white-tailed deer with ticks and antibodies to Borrelia burgdorferi in

Connecticut. Yale Journal of Biology & Medicine, 66, 19e26.
Magnarelli, L. A., Denicola, A., Stafford, K. C., & Anderson, J. F. (1995). Borrelia burgdorferi in an urban environment: White-tailed deer with infected ticks and

antibodies. Journal of Clinical Microbiology, 33, 541e544.
Ogden, N. H., Bigras-Poulin, M., O'Callaghan, C. J., Barker, I. K., Kurtenbach, K., Lindsay, L. R., et al. (2007). Vector seasonality, host infection dynamics and

fitness of pathogens transmitted by the tick Ixodes scapularis. Parasitology, 134, 209e227.
Ostfeld, R. S., Miller, M. C., & Hazler, K. R. (1996). Causes and consequences of tick (Ixodes scapularis) burdens on white-footed mice (Peromyscus leucopus).

Journal of Mammalogy, 77, 266e273.
Randolph, S. E., & Craine, N. G. (1995). General framework for comparative quantitative studies on transmission of tick-borne diseases using lyme borreliosis

in europe as an example. Journal of Medical Entomology, 32, 765e777.
Randolph, S. E., Miklisov�a, D., Lysy, J., Rogers, D. J., & Labuda, M. (1999). Incidence from coincidence: Patterns of tick infestations on rodents facilitate

transmission of tick-borne encephalitis virus. Parasitology, 118, 177e186.
Reed, K. D., Meece, J. K., Henkel, J. S., & Shukla, S. K. (2003). Birds, migration, and emerging zoonoses: West nile virus, lyme disease, influenza a and

enteropathogens. Clinical Medicine and Research, 1, 5e12.
Salkeld, D. J., & Lane, R. S. (2010). Community ecology and disease risk: Lizards, squirrels, and the lyme disease spirochete in California, USA. Ecology, 91,

293e298.
Schwan, R. G., & Piesman, J. (2000). Temporal changes in outer surface proteins A and C of the lyme disease-associated spriochete, Borrelia burgdorferi,

during the chain of infection in ticks and mice. Journal of Clinical Microbiology, 38, 382e388.
Sparrowe, R. D., & Springer, P. F. (1970). Seasonal activity patterns of white-tailed deer in eastern south Dakota. Journal of Wildlife Management, 34, 420e431.
Vaidya, N., & Wahl, L. M. (2015). Avian influenza dynamics under periodic environmental conditions. SIAM Journal on Applied Mathematics, 75, 443e467.
Verme, L. J. (1969). Reproductive patterns of white-tailed deer related to nutritional plane. Journal of Wildlife Management, 33, 881e887.
Wang, X., & Zhao, X.-Q. (2008). Threshold dynamics for compartmental epidemic models in periodic environments. Journal of Dynamics and Differential

Equations, 20, 699e717.
Wang, X., & Zhao, X.-Q. (2017). Dynamics of a time-delayed lyme disease model with seasonality. SIAM Journal on Applied Dynamical Systems, 16, 853e881.
Weisbrod, A. R., & Johnson, R. C. (1989). Lyme disease and migrating birds in the saint croix river valley. Applied and Environmental Microbiology, 55,

1921e1924.

http://refhub.elsevier.com/S2468-0427(18)30053-8/sref1
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref1
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref1
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref2
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref2
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref2
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref2
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref2
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref3
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref3
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref4
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref4
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref4
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref4
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref5
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref5
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref5
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref6
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref6
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref6
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref7
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref7
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref7
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref7
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref8
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref8
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref8
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref9
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref9
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref9
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref10
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref10
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref10
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref11
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref11
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref11
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref12
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref12
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref12
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref12
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref13
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref13
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref13
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref14
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref14
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref14
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref15
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref15
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref15
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref16
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref16
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref16
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref17
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref17
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref17
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref17
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref18
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref18
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref18
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref19
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref19
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref19
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref20
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref20
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref21
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref22
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref22
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref22
https://doi.org/10.1073/pnas.1204536109
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref24
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref24
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref24
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref25
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref25
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref26
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref26
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref26
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref27
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref27
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref28
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref28
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref28
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref29
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref29
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref29
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref29
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref30
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref30
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref30
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref31
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref31
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref31
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref32
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref32
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref32
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref33
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref33
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref33
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref34
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref34
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref34
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref34
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref35
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref35
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref35
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref36
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref36
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref36
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref37
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref37
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref37
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref38
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref38
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref39
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref39
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref40
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref40
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref41
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref41
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref41
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref42
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref42
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref43
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref43
http://refhub.elsevier.com/S2468-0427(18)30053-8/sref43

	Modeling transmission dynamics of lyme disease: Multiple vectors, seasonality, and vector mobility
	1. Introduction
	2. Method
	2.1. Mathematical models
	2.1.1. Basic multiple-vector model
	2.1.2. Seasonality model
	2.1.3. Migration model

	2.2. Parameter estimation

	3. Results
	3.1. Vector-host interaction and Lyme disease infection
	3.2. Basic reproduction number
	3.3. Long-term disease outcomes: base case
	3.4. Effect of seasonality
	3.5. Effects of deer mobility

	4. Discussion
	Conflict of interest
	Acknowledgements
	References


