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Type II diabetes (T2D) and major depressive disorder (MDD)

are often co-morbid. The reasons for this co-morbidity are

unclear. Some studies have highlighted the importance of envi-

ronmental factors and a causal relationship between T2D and

MDDhas also been postulated. In the present study we set out to

investigate the shared aetiology between T2D and MDD using

Mendelian randomization in a population based sample, Gen-

eration Scotland: the Scottish FamilyHealth Study (N¼ 21,516).

Eleven SNPs found to be associated with T2D were tested for

association with MDD and psychological distress (General

Health Questionnaire scores). We also assessed causality and

genetic overlap between T2D and MDD using polygenic risk

scores (PRS) assembled from the largest available GWAS sum-

mary statistics to date. No single T2D risk SNP was associated
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with MDD in the MR analyses and we did not find consistent

evidence of genetic overlap between MDD and T2D in the PRS

analyses. Linkage disequilibrium score regression analyses sup-

ported these findings as no genetic correlation was observed

betweenT2DandMDD(rG¼ 0.0278 (S.E. 0.11),P-value¼ 0.79).

As suggested by previous studies, T2D andMDDcovariancemay

be better explained by environmental factors. Future studies

would benefit from analyses in larger cohorts where stratifying
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by sex and looking more closely at MDD cases demonstrating

metabolic dysregulation is possible.
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chiatric Genetics Published by Wiley Periodicals, Inc.
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INTRODUCTION

Major Depressive Disorder (MDD) is a complex psychiatric dis-

order characterized by persistent low mood, and is the second

leading cause of disability worldwide [Ferrari et al., 2013]. The

precise biological cause ofMDD is unknownbut significant overlap

between MDD and somatic diseases has been noted [Goodwin,

2006]. Type II diabetes (T2D) has significant co-morbidity with

MDD and the odds of developing depression in T2D individuals

are twice that of non-type II diabetics [Anderson et al., 2001].

Bidirectional studies have found that the relative hazard for

developing diabetes is 1.10 for each 5 unit increase in CES-D

scores (self-reported depressive symptoms) and the relative hazard

for MDD was 1.54 for untreated T2D [Golden et al., 2008]. The

cause of this co-morbidity is not fully understood. Shared envi-

ronmental and genetic risk factors have been hypothesized to

underlie MDD and T2D. Furthermore, a causal relationship

may exist whereby the symptoms of diabetes cause depression

in some individuals, and vice-versa. By determining the underlying

factors that promote the co-occurrence of T2D and MDD we may

be able to understandmore about the biological basis of these traits.

Twin studies have traditionally been used to estimate the genetic

contribution to the association betweenMDD and T2D. A study of

male twins found no influence of genetic factors on the co-

expression of T2D and MDD [Scherrer et al., 2011]. Similarly, a

study of Swedish twins found no effect of genetic factors, but that

unique environmental factors significantly contribute toMDD and

T2D [Mezuk et al., 2015]. A recent large study of Swedish and

Danish Twin population registries found evidence of individual-

specific environmental factors in males whereas the correlations in

females were due to genetic factors [Kan et al., 2016].

Large genome-wide association studies (GWAS) of T2D and

MDD have found that a substantial portion of genetic suscepti-

bility is attributable to common genetic variants. A GWAS of

T2D involving 38,840 cases and 114,981 controls found the

proportion of genetic variance attributable to common genetic

variants to be 49% on the liability scale [Morris et al., 2012].

Unlike MDD GWAS, which have only identified two genome-

wide significant loci to be associated with MDD in Chinese

women [CONVERGE, 2015], GWAS of T2D have found 70

loci to be significantly associated with increased risk for T2D.

These 70 loci account for 10.9% of the disease variance of T2D, a

substantial portion of the 49% of variance explained by all

common SNPs [Morris et al., 2012]. GWAS summary data

can be used to test for genetic overlap between traits by creating

polygenic risk scores (PRS). One study used 20 SNPs robustly

associated with T2D and created an unweighted PRS however

this was not significantly associated with depression in a large

sample of �17,000 individuals [Samaan et al., 2015].
There may be a causal relationship between T2D and MDD.

Individuals with depression may be more likely to have a poor diet

[Sharma and Fulton, 2013], may exercise less or smoke; all of which

increase risk for T2D. Conversely,MDDmay arise from the distress

caused by managing the symptoms of T2D. It is difficult to infer

causality from observations alone as confounding factors such as

socio-demographics or education [Kessler and Bromet, 2013] may

influence correlations.

Mendelian randomization (MR) is a technique that uses genetic

factors as proxies for an environmental exposure of interest. MR

assumes no pleiotropy; genetic factors should only be associated

with the phenotype of interest via the environmental exposure.

According to the laws of Mendelian inheritance regarding segre-

gation and independent assortment, genetic variants will not be

associatedwith confounding factors and therefore can help provide

evidence of causal relationships [Smith and Ebrahim, 2003].

Individual SNPs can be weak instruments to investigate causality

as they typically have small effects on phenotype expression and

require large sample sizes to robustly detect associations. Polygenic

risk scores (PRS), which aggregate the effect of thousands of SNPs

into a score representing the overall burden of risk alleles an

individual carries, have greater power to detect association between

traits of interest. One limitation of using PRS to explore causal

relationships is the risk of pleiotropy: associations may arise from

causality or pleiotropy, particularly when thousands of SNPs

comprise the PRS. Another technique, linkage disequilibrium

(LD) score regression uses the LD information from SNPs to

compute genetic correlations between traits of interest from

GWAS summary statistics [Bulik-Sullivan et al., 2015]. This

method is typically better powered to detect genetic correlations

compared to PRS and provides more reliable estimates of the

magnitude of genetic overlap between traits.

The aim of this study was to investigate causal relationships and

genetic overlap between T2D and MDD in the population based

cohort, Generation Scotland: the Scottish Family Health Study

(GS:SFHS) (N¼ 21,516) [Smith et al., 2006; Lee et al., 2013]. Using

three techniques; MR, PRS, and LD score regression we aim to

build evidence to explore the relationship between T2D and MDD

with the hope of understanding more about the biological basis of

these traits which will inform treatment of co-morbid cases of T2D

and MDD.
MATERIALS AND METHODS

Sample Description
Generation Scotland. The Scottish Family Health Study (GS:

SFHS) is a family and population-based study that recruited from

the lists of General Practitioners throughout Scotland; the protocol

for recruitment is described in detail elsewhere [Smith et al., 2006;

Lee et al., 2013]. All components of GS:SFHS have received ethical

approval from the NHS Tayside Committee on Medical Research

Ethics (RECReferenceNumber: 05/S1401/89).Written consent for

the use of data was obtained from all participants. GS:SFHS

consists of 23,690 individuals over the age of 18 of whom

21,516 attended the research clinic. Genome-wide genotype data

were available for 19,858 individuals.
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Phenotype Definition
Depression and psychological distress phenotypes. The pres-

ence or absence of MDD was determined using the structured

clinical interview for the Diagnostic and Statistical Manual of

Mental Disorders (SCID) [First et al., 1997]. A brief screening

questionnaire initially asked participants, “Have you ever seen

anybody for emotional or psychiatric problems?” and “Was there

ever a time when you, or someone else, thought you should see

someone because of the way you were feeling or acting?” 21.7% of

participants who answered yes to either of these questions went on

to complete the SCID [First et al., 1997]. If they answered no to

both of these questions, they were assigned control status. Individ-

uals with a diagnosis of bipolar disorder were removed from this

study. The General Health Questionnaire (GHQ-28) was com-

pleted by 21,201 of participants providing a measure of current

psychological distress [Goldberg and Hillier, 1979]. The GHQ-28

consists of four subscales designed to assess: (A) somatic symp-

toms, (B) anxiety and insomnia, (C) social dysfunction and (D)

“severe depression.” Total scores across subscales were used to

provide a measure of current psychological distress using the GHQ

scoring method. Scores were transformed towards normality using

the BoxCox transformation procedure implemented in the MASS

package in R. Continuous variables were scaled to have a mean of

0 and a standard deviation of one such that the reported beta-

coefficients are standardized.

Diabetes phenotype. Diabetes andmedication use in GS:SFHS

were self-reported. The Scottish Diabetes Research Network

(SDRN) provided information about T2D diagnoses which was

linked to the Generation Scotland database [Anwar et al., 2011].

915 individuals in GS:SFHS were assigned T2D status using self-

report data, SRDN diagnosis and sufficient medication informa-

tion to distinguish between T1D and T2D (individuals using

insulin were likely to be T1D). Individuals whose diabetes status

(T1D vs T2D) was unclear or were confirmed as T1D using SDRN

data were excluded from the analysis. Control individuals were

those with no self-reported diabetes, no evidence of diabetic

medication use and no diagnosis from SDRN.

Genotype Acquisition
Blood samples were obtained using standard operating procedures

and were stored at the Wellcome Trust Clinical Research Facility

Genetics Core (www.wtcrf.ed.ac.uk). Genotyping was carried out

using the Illumina HumanOmniExpressExome-8v1.0 BeadChip

and Infinum chemistry24 and processed using the IlluminaGeno-

meStudio Analysis software v2011.1 (Illumina, San Diego, CA).

Quality control removed SNPs with <98% call rate, SNPs with a

Hardy–Weinberg P-value �1� 10�6 and a minor allele frequency

greater than 1%. After quality control, 561,125 SNPs were available

for analyses. The details of blood collection andDNA extraction are

provided elsewhere [Smith et al., 2006].
Mendelian Randomisation
The list of T2D risk SNPs selected for MR was made based on

evidence for prior association with T2D. Single nucleotide poly-

morphisms (SNPs) found to be associated (P� 5� 10�8) with
T2D in two GWAS (comprising 38,840 cases and 114,981 controls

[Morris et al., 2012] and 47,979 cases and 139,611 controls

comprising a trans-ancestry GWAS [Mahajan et al., 2014]) were

used to performMR by testing for their association withMDD and

current psychological distress. The list consisted of 10 indepen-

dently associated SNPs from DIAGRAM GWAS that were signifi-

cant at a genome-wide level [Morris et al., 2012], and seven further

independent loci identified in the DIAGRAM trans-ancestry T2D

GWAS [Mahajan et al., 2014]. 11/17 SNPs were directly genotyped

in GS:SFHS and these were the SNPs used in this study (Table II).

These SNPs have been validated for their association with T2D

using a two-stage meta-analyses replication within the original

GWAS studies. All SNPs have been found to be associated in

European populations and are therefore suitable proxies for

T2D in the present study. Using a Bonferroni correction for

multiple testing we calculated the threshold for statistical signifi-

cance for theMR analyses to be (P< 0.0045 [0.05/11]). PLINKwas

used to calculate the number ofminor alleles to create a variable for

association testing [Purcell et al., 2007]. Depression-associated

SNPs were not tested for association with T2D as the only two

robustly associated MDD SNPs were identified in a sample of

Chinese women, and do not replicate in the largestMDDGWAS of

European descent [CONVERGE, 2015].

SNPs were tested for their association with MDD and GHQ-28

scores in GS:SFHS using mixed linear models implemented in AS-

Reml-R (www.vsni.co.uk/software/asreml) software package. Age,

sex and SNP allele count were fixed effects. To control for related-

ness between individuals family structure was fitted as a random

effect by creating an inverse relationship matrix using pedigree

kinship information. Wald’s conditional F-test was used to calcu-

late the significance of fixed effects. If T2D SNPs are associatedwith

MDD via a causal pathway involving diabetes then the association

should only be present in diabetic individuals. A sensitivity analysis

was carried out to determine these effects by testing for SNP

association in diabetic and control individuals separately. As there

were only 130 individuals in GS:SFHS with both diabetes and

depression the sensitivity analysis was only performed for GHQ

scores. If an association is observed in non-diabetics then the SNPs

may affect diabetes and depression independently (pleiotropy) and

the assumptions of MR are violated.
PRS Analysis
T2D and MDD PRS were computed for 19,858 genotyped indi-

viduals in GS:SFHS. T2D scores were created based on the DIA-

GRAM T2D GWAS summary data comprising 12,171 cases and

56,862 controls individuals [Morris et al., 2012] and MDD scores

were computed based on the largest most recent MDD GWAS

(N¼ 18,759) [Ripke et al., 2012]. Briefly, PRS were created in

PLINK according to previously described protocols [Purcell et al.,

2009]. Prior to creating scores, all strand-ambiguous SNPs were

removed from the GS:SFHS genotypes and SNPs were linkage

disequilibrium pruned using clump-based pruning (r2¼ 0.25,

300 kb window). Five PRS were created for each trait using P-value

cut-off thresholds of P� 0.01, 0.05, 0.1, 0.5 and 1 for association in

the original T2D andMDDGWAS. The association analyses of PRS

with T2D/MDD were performed in AS-REML-R fitting family as a

http://www.wtcrf.ed.ac.uk
http://www.vsni.co.uk/software/asreml


TABLE I. Comparison of Diabetic Individuals and Control Individuals for Measures of Depression and Psychological Distress in
Generation Scotland

Diabetic cases (N¼ 915) Controls (N¼ 22,582) P-value

Age (S.E.) 59.4 (0.41) 47.3 (0.102) 6.05� 10�125

Female 468 (51.2%) 13,412 (59.3%) 2.2� 10�10

MDD 130 (14.2%) 2567 (11.4%) 2.6� 10�6

MDD episode count 12.2 (1.49) 7.7 (0.27) 0.00012

GHQ total (S.E.) 2.93 (0.175) 2.3 (0.028) 7.9� 10�8

MDD age of onset (S.E.) 36.6 (1.13) 31.2 (0.26) 0.74
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random effect as previously described. When T2D PRS was tested

for association with GHQ or depression status, diabetes status was

fit as a fixed effect covariate. Similarly, when MDD PRS was tested

for association with diabetes status, depression status was fit as a

fixed effect covariate. All models were controlled for age, sex,

and four multidimensional scaling components to control for

population stratification. The proportion of phenotypic variance

explained by polygenic risk score was calculated bymultiplying the

profile score by its corresponding regression coefficient and esti-

mating its variance. This value was then divided by the variance of

the observed phenotype to yield a coefficient of determination

between 0 and 1 [Nakawaga and Schielzeth, 2013]. Using a

Bonferroni correction formultiple testingwe calculated the thresh-

old for statistical significance for the PRS analyses to be (P< 0.0017

[0.05/30]).
TABLE II. Mendelian Randomisation Analyses of T2D associated

SNPs With MDD Status in GS Controlling for Age and Sex
LD Score Regression
GWAS summary statistics for the DIAGRAM T2D GWAS and the

PGCMDDGWAS were used to perform LD score regression. This

method uses the correlational nature of SNPs such that SNPs with

high LD will have higher average x2 statistics than those with low

LD. To estimate genetic correlations the product of two z-scores

from GWAS of two traits can be regressed onto the LD score and

the slope of the regression used to estimate genetic covariance

[Bulik-Sullivan et al., 2015]. The interceptwas left unconstrained as

the degree of sample overlap between DIAGRAM T2D and PGC

MDD cohorts was unknown.
SNP Beta (S.E.) Z-ratio P-value

rs10401969 0.007 (0.007) 0.97 0.33

rs10842994 0.003 (0.005) 0.57 0.57

rs12970134 0.003 (0.004) 0.79 0.43

rs2796441 0.0009 (0.004) 0.25 0.80

rs3130501 0.007 (0.004) 1.68 0.09

rs4275659 �0.001 (0.004) �0.26 0.79

rs516946 �0.003 (0.004) �0.50 0.56

rs6808574 �0.008 (0.003) �2.29 0.02

rs702634 0.001 (0.004) 0.33 0.74

rs7177055 �0.003 (0.004) �0.66 0.51

rs7202877 0.0009 (0.006) 0.15 0.88

Nominally significant SNPs are highlighted in bold.
RESULTS

Nine hundred and fifteen individuals in Generation Scotland were

classed as Type II diabetics and 2,714 individuals met the criteria

for a lifetime diagnosis of MDD. There was a significantly greater

prevalence of MDD amongst T2D individuals in GS:SFHS (14.2%

in T2D cases vs. 11.4% in T2D controls) and those with T2D had

significantly higher GHQ scores (2.93 vs. 2.30) (Table I).

Of the 11 SNPs previously identified as demonstrating associa-

tion with T2D, only one was nominally associated with MDD in

GS:SFHS. The A allele of rs6808574 was found to be negatively

associated with MDD in GS:SFHS (beta¼�0.008, P¼ 0.02)

(Table II). This is the same allele found to be associated with

decreased risk for T2D in the trans-ancestry GWAS of T2D. No
other SNPs were found to be associated with MDD in the MR

analysis. Only one SNPwas nominally associatedwith GHQ scores,

rs3130501. The A allele of this SNP was associated with lower GHQ

scores (beta¼�0.025, P-value¼ 0.03) (Table III) in GS:SFHS and

with decreased risk for T2D in the trans-ancestry GWAS of T2D.

Further analyses of rs3130501 and GHQ scores show it was

associatedwithGHQ score in non-diabetic controls (beta¼�0.03,

P-value¼ 0.01). However, although diabetic cases showed a stron-

ger correlationwithGHQ score (beta¼�0.04) this associationwas

not significant (P¼ 0.56) as only 915 diabetic cases were available

for analysis in GS:SFHS (Table III). This sensitivity analysis sug-

gests that any relationship between this SNP and GHQ arises

via pleiotropic effects rather than a causal relationship between

diabetes and psychological distress. None of the associations

between T2D SNPs and MDD or GHQ remained significant after

correction for multiple testing. Thus, MR analysis provided no

evidence for a causal relationship between T2D and MDD.

PRS analyses found the T2D PRS to be associated with T2D in

GS:SFHS at 5 out of 5 P-value thresholds with the P� 0.05

threshold explaining most of the variance in T2D status (beta¼
0.013, r2¼ 0.004, P-value¼ 1� 10�18), indicating that the T2D

PRS is a valid instrument for use in GS:SFHS. MDD PRS was

associated with MDD at 4 out of 5 P-value thresholds in GS:SFHS

with the P-value threshold explaining most of the variance being



TABLE III. Association of T2D Associated SNPs With GHQ Total Scores in GS Full Cohort, Diabetics Only and Controls Only

Full Sample Diabetics only Controls only

SNP Beta (S.E.) Z-ratio P-value Beta (S.E.) Z-ratio P-value Beta (S.E.) Z-ratio P-value

rs10401969 0.014 (0.02) 0.66 0.51 0.10 (0.1) 1.03 0.30 0.009 (0.02) 0.44 0.66

rs10842994 �0.0019 (0.01) �0.15 0.88 0.002 (0.07) 0.03 0.98 �0.004 (0.01) �0.31 0.75

rs12970134 0.013 (0.01) 1.12 0.26 0.07 (0.06) 1.19 0.24 0.013 (0.01) 1.08 0.27

rs2796441 0.016 (0.01) 1.55 0.12 0.07 (0.05) 1.30 0.20 0.013 (0.01) 1.29 0.20

rs3130501 �0.025 (0.01) �2.17 0.03 �0.04(0.07) �0.59 0.56 �0.03 (0.01) �2.56 0.01

rs4275659 �0.018 (0.01) �1.62 0.11 �0.053 (0.06) �0.84 0.40 �0.02 (0.01) �1.65 0.10

rs516946 �0.017 (0.01) �1.37 0.17 0.054 (0.07) 0.81 0.42 �0.02 (0.01) �1.85 0.06

rs6808574 0.014 (0.01) 1.31 0.19 �0.014 (0.06) �0.24 0.81 0.02 (0.01) 1.39 0.16

rs702634 �0.009 (0.01) �0.78 0.43 0.001 (0.06) 0.02 0.98 �0.006 (0.01) �0.56 0.57

rs7177055 �0.009 (0.01) �0.79 0.43 �0.12 (0.06) �2.09 0.04 �0.005 (0.01) �0.43 0.66

rs7202877 �0.014 (0.02) �0.82 0.41 �0.03 (0.10) �0.29 0.77 �0.01 (0.02) �0.60 0.55

Controlled for age and sex. Nominally significant SNPs highlighted in bold.
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P� 1 (beta¼ 0.011, r2¼ 0.003, P-value¼ 3� 10�5). Similarly, this

MDD PRS explained most of the variance in GHQ scores in GS:

SFHS (beta¼ 0.046, r2¼ 0.053, P-value¼ 6� 10�10) (Table IV).

Cross association analyses found the T2D PRS to be nominally

associated with MDD status at 3 out of 5 p-value thresholds,

the most strongly associated at P� 1 (beta¼ 0.007, r2¼ 0.001,

P-value¼ 0.015), after controlling for diabetes status, however

this was not significant after correction for multiple testing.

No association between T2D PRS and GHQ scores were found.

MDD PRS were not significantly associated with T2D status in

GS:SFHS (Table V).

LD score regression using DIAGRAM T2D and PGC-MDD

GWAS summary statistics found no evidence to suggest shared

genetic effects between T2D and MDD (Genetic Correlation

(rG)¼ 0.0278 (S.E. 0.11), P-value¼ 0.79).
DISCUSSION

Using genetic factors to analyse the relationship between T2D and

MDD we find little evidence that T2D is causally related to

depression or psychological distress among GS:SFHS individuals.

One SNP, rs6808574, was nominally associated with MDD and

another, rs3130501, with GHQ. However, the association between

rs3130501 and GHQ scores was found in non-diabetic individuals

indicating that the association arises from genetic pleiotropy rather

than a causal relationship between T2D and psychological distress

as these individuals are not self-reporting T2D or registered in the

SDRNas being diabetic. As nine out of elevenT2D-associated SNPs

failed to show any association with MDD or GHQ scores it would

suggest that T2D is not causally related to depression or psycho-

logical distress. There was little evidence of genetic association

between MDD and T2D when we applied a PRS analysis. T2D PRS

showed some nominal association with MDD status at the less

stringent inclusion thresholds of P� 0.1. The MDD PRS was not

associated with T2D status in GS:SFHS at any of the five p-value

thresholds. LD score regression found no evidence of genetic

overlap between T2D and MDD using DIAGRAM and PGC
summary statistics. These findings suggest there is little genetic

overlap between T2D and MDD.

Our results are partially supported by other studies utilizing twin

registries to examine the genetic contribution to MDD and T2D

covariance. A study of Swedish twins found that non-shared

environmental factors are responsible for the majority of the

association between T2D and MDD [Mezuk et al., 2015]. Another

study of Swedish and Danish twins found a genetic contribution to

the covariance in T2D and MDD amongst females in the Swedish

sample whereas unique environmental effects were more influen-

tial in male twins. Genetic effects were contributing to T2D and

MDD in males and females separately in the Danish sample,

however, they found differences in the genetic effects between

males and females in both samples, suggesting that future studies

may benefit from stratifying by sex [Kan et al., 2016]. Similar to our

study, a PRS analysis in a large sample including>3000MDD cases

found no association between a T2D PRS comprising 20 SNPs and

MDD [Samaan et al., 2015].

We were not able to find consistent evidence for genetic overlap

between T2D andMDDor evidence of a causal relationship leading

from T2D toMDD. There are a number of limitations to our study

which may have reduced our ability to detect an association

between T2D and MDD. We were constrained by the number

of diabetic individuals in GS:SFHS, only 915. Furthermore, we had

to distinguish between T1D andT2Dbased onmedication data and

links to the SRDN database. Individuals with an ambiguous T1D/

T2D status were removed but it is remains a possibility that there is

some clinical heterogeneity unaccounted for in our sample. The

SNPs used in the MR analyses had, individually, a small effect on

risk for T2D in the original GWAS (OR¼ 1.06–1.13). Such small

effects require large sample sizes to detect association and therefore

a sample with more MDD cases should be used to test for a causal

relationship between T2D and MDD in future studies.

Another limitation was the sensitivity of the MDD PRS com-

pared to the T2D PRS due to the number of individuals in the

original GWAS (MDD N¼ 18,759 vs. T2D N¼ 149,821). With a

larger MDDGWAS and more T2D cases we may have uncovered a
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genetic overlap using PRS. We did find a nominal association

between T2D PRS and MDD at higher p-value thresholds and

therefore this should be investigated further using a larger sample.

However, LD score regression using the same GWAS summary

statistics use to create PRS in this study found no genetic overlap

between T2D and MDD. Another limitation is that although we

used medication data and linkage to the SDRN to assign T2D case

status, for some individuals self-report was the only measure

available and this may have led to some individuals being

misclassified.

A recent study of depressive symptoms and T2D risk in 2525

Canadian individuals found that the risk for T2D was only in-

creased in those reporting depressive symptoms and presenting

with metabolic dysregulation, characterized by obesity, high blood

pressure, elevated blood sugar andhigh triglycerides [Schmitz et al.,

2016]. It may be that there is a sub-type of MDD characterized by

metabolic dysregulation which has genetic overlap with T2D.

Future studies of larger cohorts may benefit from stratifying

depression according to metabolic profile and looking at the

sources of covariance with T2D. Future MR studies would also

benefit from investigating the association betweenMDDassociated

SNPs and T2D. We were unable to study this, as no robustly

associated genome-wide significant SNPs are associatedwithMDD

in individuals of European ancestry. As sample sizes for MDD

GWAS become larger and more loci are identified these analyses

can be carried out to determine whether a causal relationship

leading from MDD to T2D exists. Future studies of larger cohorts

would benefit from stratifying by sex and byMDD subtypes such as

metabolic dysregulation to understand the co-morbidity between

T2D and MDD.

We conclude that there is little evidence for genetic overlap

between T2D and MDD or a causal relationship leading from

T2D to MDD. As suggested by other studies, the co-expression of

T2D and MDD is likely to be influenced by unique environmental

factors.
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