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Calcium entry mediates hyperglycemia-induced apoptosis
through Ca“/calmodulin-dependent Kinase 1l in retinal capillary
endothelial cells
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Purpose: Hyperglycemia-induced vascular cell apoptosis is a seminal early event in diabetic retinopathy. Prolonged
hyperglycemia is known to increase intracellular cytosolic free calcium ([Ca2f]i) in retinal vascular endothelial cells
(RECs), suggesting that [Ca?*]i is a critical trigger for microvascular degeneration. This study aims to elucidate Ca2*-
dependent signaling mechanisms that mediate hyperglycemia-induced apoptosis in RECs.

Methods: A cultured macaque choroid-retinal endothelial cell line (RF/6A) was incubated in normal glucose (NG), NG
plus the Ca2* entry blocker 2-aminoethoxydiphenyl borate (2-APB), high glucose (HG), or HG plus either 2-APB, the
c-jun N-terminal kinase (JNK) inhibitor SP600125, or the calcium/calmodulin-dependent protein kinase II (CaMKII)
inhibitor KN93. Changes in [CaZ"]i evoked by adenosine 5'-triphosphate (ATP) were measured in fluo-3/AM-loaded
RF/6A cells by confocal microscopy. The mitochondrial membrane potential (A¥m) and apoptosis were assessed by
flow cytometry. Expression levels of CaMKII, phosphorylated CaMKII (p-CaMKII), c-Jun N-terminal kinase (JNK),
phosphorylated JNK (p-JNK), the death receptor (Fas), and cytochrome ¢ were detected by western blotting analysis.
Results: Prolonged exposure to HG (96 h) potentiated ATP-evoked Ca?* entry as well as CaMKII phosphorylation and
RF/6A cell apoptosis. Enhanced apoptosis was blocked by 2-APB and KN93. Furthermore, HG increased JNK
phosphorylation and Fas expression, and both responses were partially blocked by 2-APB and KN93, while the JNK
inhibitor SP600125 partially reduced HG-induced Fas expression. In addition, HG depolarized the A¥Ym and triggered
the release of mitochondrial cytochrome c. These early signs of mitochondria-dependent apoptosis were partially
reversed by 2-APB and KN93.

Conclusions: HG-induced apoptosis in RF/6A cells depends on Ca?* entry and CaMKII activation, leading to the
activation of both Fas-dependent and mitochondria-dependent apoptosis pathways. The CaMKII-JNK—Fas pathway is
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involved in HG-evoked apoptosis of RECs.

Diabetic retinopathy (DR) is the leading cause of new-
onset blindness among the working-age population in
developed countries [1]. DR is characterized by early loss of
vascular endothelial cells, leading to retinal microvascular
dysfunction. High ambient glucose has been shown to
promote apoptosis in cultured retinal endothelial cells in
vitro [2], and significant apoptosis of retinal endothelial
cells has also been detected in a rat model of DR [3].
Therefore, a major focus in the development of new DR
treatments is on the inhibition of hyperglycemia-induced
retinal capillary endothelial cell apoptosis.

Ca?* is a major trigger of endothelial cell apoptosis [4].
Indeed, hyperglycemia-induced apoptosis in human
umbilical vein endothelial cells (HUVECs) requires
cytoplasmic Ca*" influx through store-operated channels
(SOC) [5]. Recent studies have identified members of the
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canonical transient receptor potential (TRPC) subfamily of
cation channels as the most likely mediators of
hyperglycemia-induced Ca?* influx in endothelial cells [6].
However, the downstream signaling pathways through
which Ca?" triggers apoptosis under hyperglycemia have not
been fully elucidated.

The Ca?/calmodulin-dependent protein kinase 1I
(CaMKII), a multifunctional enzyme that catalyzes the
phosphorylation of a myriad of eukaryotic proteins, is
activated upon both sustained intracellular cytosolic free
calcium ([Ca*']i) increases and [Ca?']i oscillations, and
serves to translate these [Ca?]i signals into cellular
responses [7]. Activated CaMKII is an important mediator
of retinal cell apoptosis in diabetes [8,9]. Recently, it was
demonstrated that CaMKII is essential for both endoplasmic
reticulum (ER) stress-induced apoptosis through the death
receptor Fas, and for mitochondria-dependent apoptosis.
Mitochondrial apoptosis involves the activation of the c-jun
N-terminal kinase (JNK), which leads to outer
mitochondrial membrane permeabilization, cytochrome c
release, and the activation of the -caspase-dependent
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apoptotic cascade [10]. ER stress is a central feature of type
2 diabetes and its chronic complications, such as DR
[11,12].

Based on these results, we proposed that CaMKII is a
central mediator of hyperglycemia-induced apoptosis in
retinal capillary endothelial cells. This study aimed to test
this possibility, and we measured ATP-stimulated Ca?
release in a cultured macaque choroid-retinal endothelial
cell line (RF/6A) in normal and high glucose concentrations,
and investigated the downstream signaling mechanisms
involved in Ca?" entry and CaMKII activation in RF/6A
cells stimulated with high glucose (HG). We demonstrated
that CaMKII contributes to hyperglycemia-induced RF/6A
cells apoptosis by activating both Fas-dependent and
mitochondrial apoptosis pathways, suggesting that CaMKII
is an important therapeutic target for DR.

METHODS

Cell culture and materials: A macaque choroid-retinal
endothelial cell line (RF/6A) was obtained from the cell
bank of the Chinese Academy of Science (CAS, Shanghai,
China) and cultured as described previously [13]. Briefly,
RF/6A cells were cultured in Dulbecco’s modified Eagle’s
medium (DMEM; Invitrogen, Carlsbad, CA) supplemented
with 10% fetal bovine serum (FBS; ScienceCell, San Diego,
CA), 100 U/ml penicillin (Invitrogen), 100 mg/ml
streptomycin (Invitrogen) at 37 °C in a humidified
atmosphere containing 5% CO, and 95% humidified air.
Cultured RF/6A cells at passages 3 or 4 were used in the
experiments that follow. Confluent RF/6A cells were
maintained in DMEM and supplemented with 0.4% BSA.
The cells were incubated for 96 h in normal D-glucose
(5.5 mM; NG), NG plus 24.5 mM D-mannitol (NG+D-
mannitol), NG plus 100 uM 2-APB (a Ca?" entry blocker),
high D-glucose (HG, 30 mM), or HG in the presence of
100 uM 2-APB, 10 uM SP600125 (a JNK inhibitor), or
10 uM KNO93 (a CaMKII inhibitor) as indicated. All
chemicals were of reagent grade and purchased from Sigma
Chemicals (St. Louis, MO) unless stated otherwise.

Determination of [Ca’']i: The RF/6A cells were loaded
with 5 uM fluo-3 AM (Invitrogen) for 30 min at 37 °C.
After they were rinsed, the cells were viewed using a Zeiss
confocal microscope (400% oil immersion objective; Leica
Microsystems, Heidelberg, Germany). Furo-3 fluorescence
was produced by excitation from a 75-W xenon arc lamp
with appropriate filter sets (excitation 488 nm; emission
510/530 nm; Sutter Instruments, Novato, CA). After
baseline images were acquired, the cells were stimulated
with 200 uM ATP (with or without extracellular Ca?").
Image acquisition continued for 10 min and the intensities
of the intracellular fluorescence were measured by software
Image-Pro Plus 5.1. Briefly, regions of interest were defined
by drawing an outline around each cell body, and the mean
fluorescence was extracted across the time-lapse sequence
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of images to obtain fluorescence versus time plots for each
cell. Background fluorescence was obtained from a region
with no cells for every field examined and subtracted from
the mean fluorescence. The mean fluorescence was also
corrected for the mean baseline fluorescence determined
before the stimulation of the cells. For each treatment
condition, 30-35 cells within a single field of view were
analyzed.

Measurement of apoptosis: Apoptosis was assessed by an
Annexin V-FITC/propidium iodide (PI) dual staining kit
according to the manufacturer’s instructions (Bender Med
Systems, Vienna, Austria). Briefly, RF/6A cells were
harvested after 96 h exposure to NG or HG (with or without
pharmacological inhibitors), washed in cold phosphate-
buffered saline (PBS; 130 mM NacCl, 2.5 mM KCIl, 8 mM
Na,HPO,, and 1.5 mM KH,PO,, pH 7.4), and resuspended
at 1x10° cells/ml in a binding buffer containing 0.01 M
HEPES pH 7.4; 0.14 M NaCl; and 2.5 mM CaCl,. Annexin
V-FITC (5 pl) and PI (10 pl) were added to the cell
suspension (100 pl), vortexed, and incubated for 15 min in
the dark at room temperature. Stained cells from each
treatment group were analyzed by flow cytometry (FACS
Caliber; Becton Dickinson, Heidelberg, Germany). For each
sample, data from 10,000 cells was recorded in list mode on
logarithmic scales. Analysis was performed with Cell Quest
software (BD Biosciences, San Jose, CA) on cells
characterized by their forward/side scatter (FSC/SSC)
parameters. Cells analyzed included living cells with normal
FSC/SSC parameters and dying cells with altered FSC/SSC.
Cell debris characterized by a low FSC/SSC and an
Annexin V/PI phenotype was excluded from the analysis.

Measurement of mitochondrial membrane potential:
Changes in the mitochondrial membrane potential (A¥m)
associated with apoptosis were analyzed with the cationic
lipophilic fluorescent probe 5,5',6,6’-Tetrachlorol,1’,3,3'-
tetraethyl-benzimidazolylcarbocyanine iodide (JC-1;
Molecular Probes). The AYm measurement was performed
using flow cytometry (FACS Caliber, Becton Dickinson,
Heidelberg, Germany) as described previously [13]. The
fluorescent emission of JC-1 shifted reversibly from red
(measured at 590 nm) to green (measured at 530 nm) with
decreasing A¥Ym when excited at 488 nm, and the red/green
emission ratio provided an estimate of the A¥m.

Western blotting analysis: Approximately 3x10° RF/6A
cells were harvested and lysed in a buffer containing 1%
Nonidet P40, 10 mM Tris, 200 mM NaCl, 5 mM EDTA,
and 10% glycerol plus protease inhibitors (pH 7.0). Lysates
from the treated cells were centrifuged at 12,000 x g for 20
min at 4 °C, and the cleared supernatants were collected.
Protein concentrations in the supernatants were measured
using the Bio-Rad DC protein assay (Bio-Rad, Hercules,
CA). To analyze cytochrome c¢ in different subcellular
fractions, separated mitochondrial and cytosolic fractions
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were obtained using a cytochrome c releasing apoptosis
assay kit.

Fifty micrograms of protein from each sample was

subjected to 7.5% sodium dodecyl sulfate-PAGE (SDS-
PAGE) using a Bio-Rad miniature slab gel apparatus.
Separated proteins were electrophoretically transferred onto
nitrocellulose membranes. The membranes were blocked
with 5% nonfat dried milk solution and incubated overnight
with either partially purified rabbit anti-CaMKII and an
phospho-CaMKII polyclonal antibody targeting p-Thr286
(Abcam, Cambridge, MA; 1:500), a rabbit anti-INK and
mouse phospho-JNK polyclonal antibody targeting p-
Thr183/p-Tyr185 (Abcam; 1:500), a rabbit anti-Fas
polyclonal antibody (Santa Cruz Biotechnology, Santa Cruz,
CA; 1:500), or a rabbit anti-cytochrome c polyclonal
antibody (Cell Signaling Technology, Danvers, MA; 1:500).
Expression of B-actin (monoclonal anti-B-actin; Santa Cruz;
1:1000) was used as an internal control to confirm
equivalent protein loading per gel lane. After incubation
with a horseradish-peroxidase-conjugated anti-rabbit 1gG
(Cell Signaling Technology) for 2 h at room temperature,
the membranes were evaluated using an enhanced
chemiluminescence (ECL) system (Amersham Biosciences,
Buckinghamshire, England) according to the manufacturer’s
instructions, and the band density was determined by Image
J software (NIH, Bethesda, MD). Each experiment was
performed at least in triplicate.
Statistical analysis: Experimental data was expressed as
mean+SD. Group means were compared by a one-way
ANOVA, followed by Tukey’s post tests, for pair-wise
comparisons using a software system (Prism 4.0; GraphPad,
San Diego, CA) and a statistical software program
(SPSS13.0 for Windows; SPSS, Chicago, IL). A p value
less than 0.05 was considered significant.

RESULTS

Hyperglycemia increases calcium entry in RF/6A cells: The
resting [Ca*]i was not significantly different between
RF/6A cells exposed to 5.5 mM D-glucose (NG) and those
exposed to 30 mM D- HG (Figure 1A-C, J). Stimulation of
RF/6A cells with ATP caused a biphasic increase in [Ca"]i
consisting of an initial transient peak that was also observed
in the absence of extracellular Ca?" (Figure 1D-F). The rapid
peak was followed by a sustained plateau phase that
remained above the original baseline (Figure 1G-I) but
required a re-addition of Ca?* to the external medium. Thus,
ATP evoked a biphasic [Ca?']i signal mediated by rapid
transient release from internal stores and delayed but
sustained Ca?" influx. Although the initial peak [Ca?"]i under
NG was not different from that measured in RF/6A cells
preincubated in HG (p>0.05), there was a significant
increase (p<0.05) in the sustained phase of Ca?" in cells
exposed to HG compared to cells exposed to NG (Figure
1J). To exclude the potential effect of hyperosmolarity on
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[Ca?]i signals, we used D-mannitol to adjust osmotic
pressure. Administration of 24.5 mM D-mannitol in NG
media did not significantly affect either the initial peak or
the sustained phase of [Ca*"]i compared to cells exposed to
NG (p>0.05).

Ca’* entry regulates hyperglycemia-induced apoptosis: To
investigate whether HG induced apoptosis under our
experimental conditions, treated cells were stained with
Annexin V-FITC and PI, and apoptosis was quantified by
flow cytometry. Cells were incubated for 96 h in NG
(Figure 2A), NG plus 100 pM 2-APB (Figure 2B), HG
(Figure 2C), HG plus 100 uM 2-APB (Figure 2D), or HG +
10 uM KN93 (Figure 2E). The number of apoptotic cells
under each condition was indicated by two-dimensional dot
plots, with dots in the lower-right quadrant (Q4)
representing cells in early stage apoptosis (Annexin+/PI-),
and those in the upper-right quadrant (Q2) representing cells
in late stage apoptosis (Annexin+/PI+). The results showed
a significant increase in the number of apoptotic cells in
cultures exposed to HG for 96 h (18.80+2.67%) compared
to cultures exposed to NG (5.44+1.42%, p<0.05). The
increase in the number of apoptotic cells in the
hyperglycemic group was reversed in the presence of the
Ca?" entry blocker 2-APB, and even reached the level of
normal condition (7.83+1.65%, p<0.05 compared with HG,
and p>0.05 compared with NG), while 2-APB had no effect
on apoptosis in cells incubated in NG (5.61+1.21%, p>0.05
compared with NG). Taken together, this data suggests that
Ca?" entry is necessary for hyperglycemia-induced apoptosis
in cultured RF/6A cells.

Hyperglycemia activates CaMKII: The CaMKII is a serine/
threonine kinase activated in response to sustained or
oscillating increases in [Ca*']i [7]. Thus, we examined the
CaMKII protein expression and phospho-activation after 96
h of HG treatment. Western blot analysis showed that the
total CaMKII protein levels in RF/6A cells were not
significantly changed by HG treatment compared to cells
incubated in NG (Figure 3). In contrast, CaMKII kinase
activation, as indicated by CaMKII phosphorylation (p-
CaMKIl expression), was markedly increased in RF/6A
cells treated with 30 mM glucose. Notably, a
hyperglycemia-induced increase in p-CaMKII expression
was blocked by 2-APB, although 2-APB had no effect on
total CaMKIl expression. The role of CaMKII in HG-
induced apoptosis was evaluated by incubating RF/6A cells
in HG plus 10 pM KN93 before Annexin V-FITC and PI
staining. The results showed that the inhibition of CaMKII
activity significantly decreased the number of apoptotic
cells after 96 h of treatment with HG compared to HG alone
(18.80+2.67% versus 8.91£1.74%, p<0.05; Figure 2), and
that the number of apoptotic cells in the HG + CaMKIl
group was similar to those in the NG condition (8.91+1.74%
versus 5.44+1.42%, p>0.05; Figure 2). Taken together, this
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Figure 1. Prolonged hyperglycemia
increases ATP-evoked Ca?* influx in
RF/6A cells. RF/6A cells were treated
for 96 h with 5.5 mM glucose (NG),
NG plus 24.5 mM D-mannitol, or 30
mM  glucose (HG), and the
fluorescence intensity was analyzed as
described in Methods. A-C: Images of
fluo-3-loaded cells pre-incubated with
NG, NG plus D-mannitol, or HG. D-F:
Images of peak [Ca2"]i responses
acquired during ATP (200 pM)
stimulation in CaZ'-free saline (CaZ*
release). G-I: Images of cells after the
re-addition of 1.8 mM Ca?* to the
extracellular medium (Ca?* entry). J:
Average baseline [Ca2"]i, peak [Ca2"]i
in Ca?*-free saline, and sustained
[CaZ']i after the re-addition of
extracellular Ca2*. Each bar represents
the average (SD) of 30-35 cells. *
p<0.05 versus NG or NG + D-
mannitol.

Ca®" entry

data suggests that CaMKII plays a critical role in
hyperglycemia-induced apoptosis in RF/6A cells.

Hyperglycemia increases JNK phosphorylation and Fas
expression partially through CaMKII: Fas is a death
receptor involved in the apoptosis of many cell types, and
Fas activation is known to contribute to the development of
diabetes and DR [14,15]. Previous reports have suggested

the links between CaMKII and JNK [16], and between JNK
and Fas induction [17]. We therefore speculated that the
activation of a CaMKII-JNK—Fas pathway in RF/6A cells
cultured in HG may promote apoptosis. To examine the role
of JNK activation (p-JNK) and Fas induction in HG-
mediated apoptosis, and the role of CaMKII as an upstream
activator, RF/6A cells were incubated for 96 h in serum-free
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Figure 2. Hyperglycemia induces
[Ca?*]i-dependent  and  CaMKII-
dependent apoptosis in RF/6A cells.
RF/6A cells were treated with 5.5 mM
glucose. A NG, B NG + 2-APB, C 30
mM glucose (HG), D HG + 2-APB, or
E HG + KN93 for 96 h, stained by
Annexin V/PI and subjected to flow
cytometry analysis. Early apoptotic
populations were in the lower-right
quadrant (Q4, Annexin V-positive) and
late apoptotic cells were in the upper-
right quadrant (Q2, Annexin V-
positive/PI-positive). F: Percentages of
early and late apoptotic cells under
each condition were expressed as the
meantSD  of six  independent
experiments. * p<0.05 versus NG or
NG+2-APB; # p<0.05 versus HG; *#
p>0.05 versus NG or NG+2-APB.
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Figure 3. Hyperglycemia promotes
CaMKII activation in RF/6A cells. A:
RF/6A cells were incubated for 96 h in
a serum-free medium with 5.5 mM
glucose (NG), 30 mM glucose (HG),
or HG plus 2-APB, and subjected to
western blotting analysis for CaMKIl
and p-CaMKIl protein levels. B-actin
served as loading control. B: CaMKIl
and p-CaMKII levels were quantified
by densitometry analysis under each
treatment condition. Bars represented
meantSD  from at least three
independent experiments with seven
cells per treatment group. * p<0.05
versus NG; # p<0.05 versus HG; *
p>0.05 versus NG.
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* Figure 4. Hyperglycemia induces
[CaZ'li-dependent  and  CaMKII-

dependent JNK phosphorylation and
Fas protein expression in RF/6A cells.
RF/6A cells were incubated for 96 h in
serum-free medium containing 5.5
glucose (NG), 30 mM glucose (HG),
or HG plus 2-APB, KN93, or
SP600125 as indicated, and subjected
to western blotting analysis for A:
INK, and p-JNK and for B: Fas. B-
actin served as the loading control.
INK, p-JNK, and Fas levels were
quantified by densitometry analysis in
each treatment group (right panels).
Bars represented mean+SD from at
least three independent experiments
with seven cells per treatment group. *
p<0.05 versus NG; # p<0.05 versus
HG; # p<0.05 versus NG.
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DMEM containing either NG, HG, or HG plus either
100 uM 2-APB or 10 uM KN93. HG induced a significant
increase in JNK phosphorylation (Figure 4A) and Fas
induction (Figure 4B), and both responses were partially
reduced by 2-APB (100 pM) or by KN93 (10 uM).
Moreover, treatment of cells with 10 uM SP600125, the
JNK inhibitor, also partially reduced HG-induced Fas
production, consistent with the activation of a CaMKII
—JNK—-Fas pathway by HG.

Release of mitochondrial cytochrome c¢ and loss of
mitochondrial membrane potential are CaMKII-dependent
in HG-cultured RF/6A cells: We have previously shown that
the activation of the mitochondrial apoptosis pathway
mediates retinal capillary cell death in response to HG in
vitro and in diabetic rats in vivo [18]. A drastic increase in
the mitochondrial outer member permeability is associated
with the loss of the transmembrane potential, AYm, and the
release of mitochondrial cytochrome ¢ into the cytosol with
ensuing activation of the caspase-dependent apoptosis
pathway. To detect changes in AWm indicative of
mitochondria-dependent apoptosis, we used the cationic
lipophilic fluorochrome JC-1. Incubation of RF/6A cells in
HG elicited a decrease in the red/green fluorescence ratio (a
green shift) in JC-1 fluorescence emission, indicative of
A¥Ym depolarization, while 2-APB or KNO93 partially

reversed the increase in green fluorescence (Figure 5A-
D,E). We then measured cytochrome c release associated
with changes in AYm. Incubation of RF/6A cells in HG led
to the release of cytochrome c from the mitochondria
(Figure 6A) into the cytosol (Figure 6B), and this could be
partially suppressed by 2-APB or KN93.

DISCUSSION

Prolonged hyperglycemia increased ATP-evoked Ca* entry
in retinal capillary endothelial cells. Systematic
pharmacological studies indicated that increased Ca*" entry
led to phospho-activation of CaMKII, which in turn
activated JNK, leading to Fas induction. This signaling
pathway activated both Fas-dependent and mitochondria-
dependent apoptosis.

It has long been known that [Ca*']i is one of the key
upstream signals responsible for the activation of apoptotic
pathways [4,5,10,19,20]. Previous studies have shown that
hyperglycemia changes extracellular ATP levels in rat
retinal cultures and other tissues, and excessive release of
extracellular ATP subsequently leads to the changes in
intracellular [Ca?*]i [21-23]. Therefore, ATP is implicated in
the triggering and regulation of the [Ca?']i responses to
various stimulation, including hyperglycemia [6,24,25].
Here, using digitized confocal images, we demonstrated that
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Figure 5. Hyperglycemia evokes
[Ca?*]i-dependent  and CaMKII-
dependent mitochondrial membrane
depolarization in RF/6A cells. A-D:
Analysis of mitochondrial membrane
potential (A¥Ym) in each treatment
group. RF/6A cells were treated for 96
h with A: 5.5 mM glucose (NG), B: 30
mM glucose (HG), C: HG plus either
2-APB, or D: KN93, and AYm was
analyzed by JC-1 staining. Loss of
A¥Ym was demonstrated by the change
in JC-1 fluorescence from red (JC-1
aggregates) to green (JC-1 monomers).
E: The bar diagram showed the ratio of
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Figure 6. Hyperglycemia causes
[Ca?t]i-dependent  and  CaMKII-
dependent release of mitochondrial
cytochrome c¢ into the cytosol in
RF/6A cells. RF/6A cells were treated
with 5.5 mM glucose (NG), 30 mM
glucose (HG), or HG plus 2-APB or
KNO93. A: Cytochrome c¢ in the
mitochondrion was detected by
western  blotting  analysis.  B:
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Cytochrom ¢ in the cytoplasm was
detected by western blotting analysis.
B-actin served as the loading control.
The cytochrome ¢ in mitochondrial and
cytosolic fractions was quantified by
densitometry analysis (right panels) for
all treatment groups. Data represented
meantSD  from at least three
independent experiments with seven
cells per group. * p<0.05 versus NG; #
p<0.05 versus HG; # p<0.05 versus
NG.
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HG exposure increased ATP-induced Ca?" entry but not
Ca?" release from intracellular stores, providing evidence for
the potential role of ATP-induced Ca?** changes in
hyperglycemia, and confirming previous results in other
endothelial cells [5,6]. Furthermore, our study demonstrated
that the Ca?* entry blocker 2-APB prevented the increase in
apoptosis induced by HG, indicating the pivotal role of Ca?*
influx in  hyperglycemia-induced retinal capillary
endothelial cell apoptosis.

CaMKIll is a serine/threonine kinase widely distributed
in mammalian cells that transduces sustained (graded) Ca?*
increases and variable frequency Ca?" spikes into unique
cellular responses by phosphorylating distinct subsets of
target proteins, including Ca*-dependent cell death
effectors [7,26,27]. Moreover, CaMKIl has been shown to
regulate ion homeostasis, nitric oxide production, and the
permeability of endothelial cells [28], and may act as an
essential mediator in the development of diabetic vascular
dysfunction [29]. In the present study, we demonstrated that
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selective inhibition of CaMKII activity by KN93 protected
RF/6A cells from hyperglycemia-induced apoptosis,
consistent with recent studies showing that the activation of
CaMKII contributed to the death of other retinal cells in
diabetes [8,9].

Our data reveals a possible molecular mechanism
through which CaMKII mediates hyperglycemia-induced
apoptosis in retinal endothelial cells. The death-receptor and
mitochondrial pathways are two major apoptotic pathways
in mammalian cells [30]. In the death-receptor pathway, the
binding of Fas to its ligand (FasL) activates downstream
caspases, such as caspase-8 and caspase-3, that initiate
apoptotic death [31]. The mitochondrial pathway is
activated by a multitude of extracellular and internal
stressors, including DNA damage. The collapse of the
mitochondrial membrane potential and cytochrome c release
from mitochondria are critical steps in this pathway during
cellular Ca*" overload [32]. Here, we demonstrate that the
inhibition of CaMKII-JNK signaling partially abrogated
hyperglycemia-induced upregulation of Fas. Furthermore,
the hyperglycemia-induced decrease in AWYm was partially
prevented by both the CaMKII inhibitor KN93 and by the
Ca?" entry blocker 2-APB. Similarly, both KN93 and 2-APB
inhibited CAMKII activation as evidenced by the increased
p-CaMKIl level, and both partially blocked cytochrome c
release from the mitochondria into the cytosol. These
results, together with previous findings, establish a critical
role for CAMKII activation in hyperglycemia-induced
apoptosis in retinal endothelial cells. However, our results
do not exclude contributions from other apoptotic signaling
pathways. For example, enhanced Ca?" entry concomitant
with hyperglycemia may also activate the calcium-
dependent phosphatase calcineurin, leading to the
dephosphorylation of the pro-apoptotic protein BAD that
facilitates apoptosis in other cells [5,33].

In conclusion, the present study demonstrates that Ca?*
entry through 2-APB-sensitive channels plays a significant
role in hyperglycemia-induced apoptosis in retinal
endothelial cells, and this response is at least partially
mediated by the activation of CaMKII. In turn, phospho-
activated CaMKIl activates both Fas-receptor and
mitochondrial apoptosis pathways. Inhibition of CaMKII
and other strategies targeting specific signaling pathways
linking CaMKII to apoptosis may offer therapeutic
approaches to a variety of hyperglycemia-induced diseases
such as DR.
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