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TSER polymorphism is not associated with risk
of pediatric acute lymphoblastic leukemia
A meta-analysis
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Abstract
Background: Accumulating studies have explored the effect of thymidylate synthase enhancer region (TSER) variation on risk of
pediatric acute lymphoblastic leukemia (ALL) with controversial results. Therefore, this quantitative meta-analysis was performed to
assess synthetically the association of TSER variation with susceptibility to develop pediatric ALL.

Methods: The PubMed, ScienceDirect, Google Scholar, Wanfang Database, and China National Knowledge Infrastructure were
systematically retrieved to obtain the published case-control studies about the relationship between TSER variation and pediatric ALL
risk. The quality assessment of the included studies was preformed and relevant information was collected. Odds ratios (ORs) and
95% confidence intervals (CIs) were applied to evaluate the strength of association.

Results: This meta-analysis finally included 2681 children with ALL and 3854 matched controls from 11 investigations. The
quantitative synthesis results found no significant association between TSER variation and susceptibility to pediatric ALL in overall
comparisons under 5 genetic models (2R/3R vs 3R/3R: OR=0.95, 95%CI=0.84–1.07, P=0.41; 2R/2R vs 3R/3R: OR=0.99, 95%
CI=0.84–1.16, P=0.90; 2R2R vs 3R/3R+2R/3R: OR=1.05, 95% CI=0.92–1.21, P=0.45; 2R/3R+2R/2R vs 3R/3R: OR=0.97,
95% CI=0.87–1.09, P=0.63; 2R vs 3R: OR=1.03, 95% CI=0.92–1.15, P=0.61). Similarly, there was no significant association
existed in the stratification analyses according to ethnicity, control source, and quality score.

Conclusion: This meta-analysis shows that TSER variation is not related to the development risk of pediatric ALL.

Abbreviations: ALL = acute lymphoblastic leukemia, CI = confidence interval, HWE = Hardy–Weinberg equilibrium, NOS =
Newcastle–Ottawa Scale, OR = odds ratio, TSER = thymidylate synthase enhancer region, TYMS = thymidylate synthase.

Keywords: acute lymphoblastic leukemia, meta-analysis, polymorphism, thymidylate synthase
1. Introduction

Pediatric acute lymphoblastic leukemia (ALL) accounts for 30%
of all malignancy diagnosed in children and 80% of pediatric
leukemia.[1] Although the clinical outcomes with contemporary
treatment regimens of this disease have been well improved, the
etiology and precise mechanisms of ALL development have not
been fully clarified.[2–4] In general, the interactions between
environmental exposures and inherited susceptibility are consid-
ered to implicate in the pathogenesis of ALL. Folate metabolism
not only supplies the methyl group for proper DNA biosynthesis,
it also provides the universal methyl donor for DNA methylation
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(Supplemental Figure, http://links.lww.com/MD/B573). Plenty of
studies have clarified that low folate intake causes uracil
misincorporation in the process of DNA replication reactions,
resulting in DNA double-strand breakage, chromosomal dele-
tion, and catastrophic DNA repair.[5,6] What is more, hypo-
methylation of DNA may also cause the activation of proto-
oncogenes.[7,8] Emerging evidence has shown that variations in
genes encoding folate-metabolizing enzymes disturb the balance
of folate metabolism and have been associated with an altered
susceptibility to cancer.[9–11]

Thymidylate synthase (TYMS) catalyzes the methylation of
deoxyuridine monophosphate (dUMP) to deoxythymidine
monophospate (dTMP), and maintains the balance of deoxy-
nucleotide pool, which is needed for normal DNA replication and
damage repair.[12,13] Therefore, TYMS functions as an essential
regulator in the process of DNA biosynthesis, repair, and
methylation. The TYMS gene with 7 exons locates at 18p11.32.
There are several functionally important variants in the TYMS
untranslated regions, of which thymidylate synthase enhancer
region (TSER) variation has been most widely investigated.[14–16]

TSER, a tandem-repeat polymorphism, which includes double
(2R) or triple (3R) repeats of a 28bp sequence in the TYMS 50-
untranslated enhanced region, may be associated with an
alteration in TYMS mRNA expression.[17,18] Considering the
pivotal role of folate in the development of cancer and the
potential influence of TSER polymorphism in the TYMS gene on
DNA biosynthesis and methylation, it is reasonable that TSER
variation might be related to susceptibility to develop malignan-
cies. Increasing studies have found that TSER polymorphism has
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been linked to human various cancer risks, such as non-Hodgkin
lymphoma, breast cancer, and colorectal cancer.[19–21] Recently,
numberous investigations have explored the effect of TSER
variation on development risk of pediatric ALL, yet the reported
results remain controversial. The discrepancies among these
studies may be ascribed to the genetic backgrounds difference and
relatively small sample size in individual investigation. Therefore,
a quantitative meta-analysis was performed to evaluate synthet-
ically the association of TSER variation with pediatric ALL risk.

2. Materials and methods

2.1. Studies identification

The PubMed, ScienceDirect, Google Scholar, Wanfang Data-
bases, and China National Knowledge Infrastructure were
systematically searched to screen reports about the association
of TSER variation and risk of pediatric ALL utilizing the
following keywords: “childhood” or “pediatric” or “children,”
“leukemia” or “acute lymphoblastic leukemia” or “ALL,”
“thymidylate synthase” or “TS” or “TYMS,” “polymorphism”

or “mutation” or “variation” or “variant.” The latest literature
search was performed on January 20, 2016 and there was no
language restriction. In addition, the reference lists in the
retrieved articles were screened to identify relevant investigations.
Ethical approval was not necessary because this study was a
meta-analysis.
Figure 1. Flow diagram of lit
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2.2. Inclusion criteria

The following inclusion criteria were applied for literature
selection: case-control designed study; confirmed diagnosis for
the case group of pediatric ALL; available genotypes distribution
data for cases and controls. The letters, case reports, commen-
tary, and review articles were excluded. If the same or
overlapping data was reported by multiple articles, we chose
the one with larger sample size.
2.3. Quality assessment

Two authors independently preformed the quality assessment of
included studies according to the Newcastle–Ottawa Scale
(NOS).[22] The NOS method, with a maximum score of nine
points, includes 3 quality categories: selection, comparability,
and exposure evaluation. Studies with more than 6 scores were
identified as high quality. Any disagreement was resolved by
reevaluation of the originally included studies.
2.4. Data collection

The information was collected from each eligible investigation
independently by 2 authors: first author’s name, publication year,
country, ethnicity, sample size, control source, method used for
genotyping, genotypes distribution data of the TSER variation in
case and control group.
erature selection process.



Table 1

Main features of eligible investigations for meta-analysis.

First author Year Country Ethnicity Control source Genotyping method Quality score

Canalle 2011 Brazil Mixed HB PCR 6
Silva 2013 Brazil Mixed PB PCR 7
de Jonge 2009 Netherlands Caucasian PB PCR 5
Gast 2007 Germany Caucasian PB PCR 8
Lightfoot 2010 UK Caucasian PB PCR 8
Petra 2007 Slovenia Caucasian PB PCR 5
Rahimi 2012 Iran Caucasian PB PCR 6
Chan 2011 Indonesia Asian HB PCR-RFLP 5
Giovannetti 2008 Indonesia Asian HB PCR 4
Nazki 2012 India Asian PB PCR 8
Yeoh 2010 Singapore; Malaysia Asian HB PCR-RFLP 6

HB=hospital-based, PB=population-based, PCR=polymerase chain reaction, RFLP= restriction fragment length polymorphism.
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2.5. Statistical analysis

The x2 test was employed to check Hardy–Weinberg equilibrium
(HWE) of genotypes distribution frequencies in control groups
and P<0.05 was considered as departure from equilibrium. The
strength of association between TSER variation and pediatric
ALL risk was measured by odds ratios (ORs) and 95%
confidence intervals (CIs) under the homozygote model (2R/2R
vs 3R/3R), heterozygote model (2R/3R vs 3R/3R), dominant
model (2R/3R+2R/2R vs 3R/3R), recessive model (2R2R vs 3R/
3R+2R/3R), and allele model (2R vs 3R), respectively. The x2-
test-based Q test was performed to estimate the heterogeneity
between included studies. When P>0.05, showing that no
statistically significant heterogeneity existed, the fixed-effects
model (Mantel–Haenszel) was employed to compute the pooled
ORs; alternatively, the random-effects model (DerSimonian–
Laird) was used. Stratification analyses were carried out based on
ethnicity, control source, and NOS score. Sensitivity analysis was
conducted by omission of studies deviated from HWE to assess
the stability of combined results. Both qualitative funnel plot and
quantitative Egger test were employed to assess publication bias.
All the statistical tests were done with RevMan v5.3 (The
Cochrane Collaboration, Oxford, UK) and STATA v12.0 (Stata
Corporation, College Station, TX), and P<0.05 was deemed to
have statistical significance.
Table 2

Genotypes distribution data of TSER variation among cases and con

Reference

Sample size Case

Case Control 3R/3R 2R/3R 2R/2R 3

Canalle et al 126 300 29 64 33 12
Chan et al 184 177 152 30 2 33
de Jonge et al 244 491 80 113 51 27
Gast et al 457 541 128 234 95 49
Giovannetti et al 71 44 54 16 1 12
Lightfoot et al 759 754 222 344 193 78
Nazki et al 43 144 19 16 8 5
Petra et al 68 252 17 34 17 6
Rahimi et al 71 109 28 27 16 8
Silva et al 140 390 45 70 25 16
Yeoh et al 518 652 384 122 12 89

HWE=Hardy–Weinberg equilibrium.

3

3. Results

3.1. Features of included studies

Figure 1 shows the flow diagram of the literature selection. Two
hundred seventeen relevant records were retrieved based on
systematical search. One hundred twenty-nine irrelevant studies
and reviews were excluded after glancing the titles and abstracts;
during the further assessment, 11 full-text articles were excluded.
Finally, this meta-analysis included 2681 children with ALL and
3854 matched controls from 11 studies.[23–33]Table 1 lists the
main features of eligible investigations. The included cases had a
definitive diagnosis according to the universal diagnosis criteria
of pediatric ALL. Of these eligible studies, 5 studies were
focused on Caucasian descents,[25–29] 4 studies on Asians,[30–33]

and 2 investigations on mixed population.[23,24] Four inves-
tigations were hospital-based [23,30,31,33] and 7 were population-
based [24–29,32] designed when classified according to the control
source. Four studies were divided into low quality with a NOS
score of 4 or 5 points, and 7with score 6 or greater were assigned
as high quality. The alleles and genotypes distribution data of
TSER variation in case group and control group are summarized
in Table 2. The genotypes distribution frequencies among the
controls were in agreement with HWE for all included articles
except for 2 investigations.[23,29]
trols.

Control

R 2R 3R/3R 2R/3R 2R/2R 3R 2R PHWE

2 130 78 169 53 325 275 0.02
4 34 153 24 0 330 24 0.33
3 215 123 252 116 498 484 0.55
0 424 141 289 111 571 511 0.10
4 18 40 4 0 84 4 0.75
8 730 205 368 181 778 730 0.53
4 32 83 47 14 213 75 0.07
8 68 52 124 76 228 276 0.91
3 59 52 30 27 134 84 0.001
0 120 130 194 66 454 326 0.66
0 146 483 154 15 1120 184 0.51
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3.2. Quantitative synthesis results

The main results of heterogeneity estimate and quantitative
synthesis are summarized in Table 3. No significant heterogeneity
was detected between the included investigations in all 5 genetic
models for TSER polymorphism. If all the eligible investigations
were combined into the quantitative analysis, the results found no
statistically significant association between TSER variation and
susceptibility to pediatric ALL under 5 genetic models (2R/3R vs
3R/3R: OR=0.95, 95% CI=0.84–1.07, P=0.41; 2R/2R vs 3R/
3R: OR=0.99, 95% CI=0.84–1.16, P=0.90; 2R2R vs 3R/3R
+2R/3R: OR=1.05, 95% CI=0.92–1.21, P=0.45; 2R/3R+2R/
2R vs 3R/3R: OR=0.97, 95% CI=0.87–1.09, P=0.63; 2R vs
3R: OR=1.03, 95% CI=0.92–1.15, P=0.61). Similarly, no
significant association was found in the stratification analyses
according to ethnicity (Asian, Caucasian, andMixed), NOS score
(low quality and high quality), and control source (hospital-based
and population-based) (Fig. 2, Table 3).

3.3. Publication bias and sensitivity analysis

Sensitivity analysis, in which the pooled ORs were recalculated
after removal investigations not in consistent with HWE,
revealed that the combined results remained virtually unchanged,
suggesting the robustness of our results (Table 3). The shapes of
inverted funnel plots were symmetrical, which suggested that no
obvious publication bias was found (Fig. 3). In addition, the
results of Egger test also had no statistical significance for the
assessment of publication bias.

4. Discussion

TYMS, a key enzyme participated in the DNA biosynthesis,
catalyzes the conversion of dUMP to dTMP to provide the only
de novo synthesis of thymidine.[34] It has been proved that TYMS
regulates the expression of some crucial cancer genes as an RNA-
binding protein via translational repression.[35–37] Therefore,
alteration in TYMS activity is thought to be connected with
tumorigenesis through disruption of genome integrity, imbalance
in repair mechanisms, changes of methylation status, and cell
cycle dysregulation. Moreover, TYMS is one of the therapeutic
targets for many chemotherapeutic drugs like methotrexate and
5-fluorouracil.[38] The described several functional variants of
TYMS gene untranslated regions affect TYMS mRNA stability,
transcription, or protein expression. It has been reported that the
3R form of TSER variation was related to a higher transcription
level of TYMS than those with 2R form.[17,39] It is plausible to
speculate that TSER polymorphism might lead to alterations in
DNA biosynthesis and methylation, and influence the cancer
susceptibility.
To date, many epidemiological studies regarding the associa-

tion of TSER variation with risk of pediatric ALL have been
reported, but the published results remain controversial. Gast
et al[26] found no statistical differences in genotype and allele
distribution for TSER polymorphism between children with ALL
and the controls. Canalle et al[23] showed that, compared with
children who carried only 2R form, individuals who carried 3R
form of TSER had a significantly reduced risk to develop
pediatric ALL. Reduced leukemia risk was also observed for the
3R2R variant (OR=0.7, 95% CI=0.4–1.0, P=0.04) and 2R
allelic carriers (OR=0.7, 95%CI=0.5–1.0, P=0.03) in de Jonge
et al study.[25] To elucidate this inconsistency, a synthetical meta-
analysis was conducted. In our study, no significant heterogeneity
was observed among overall studies under all 5 genetic models.



Figure 2. Forest plot about association of TSER variation and pediatric ALL risk under the heterozygote model (2R/3R vs 3R/3R). ALL = acute lymphoblastic
leukemia, CI = confidence interval, M–H = Mantel–Haenszel method, TSER = thymidylate synthase enhancer region.

Qiao et al. Medicine (2017) 96:7 www.md-journal.com
The combined data demonstrated that there was no significant
association of TSER variation and risk of pediatric ALL in overall
comparison under all genetic models. No significant association
was found in the stratification analyses based on ethnicity,
control source, and quality score. Our results were not in
accordance with the conclusion published by Weng et al,[40]
Figure 3. Funnel plot assessing publication bias in dominant model (2R/3R
+2R/2R vs 3R/3R). OR = odds ratio, SE = standard error.

5

which showed TSER variation might dedicate to significantly
increased risk of childhood ALL (3R/3R vs 2R/2R: OR=1.46,
95% CI=1.03–2.06). Since our study added several new
investigations and included 2681 children with ALL and 3854
matched controls, which allowed for sufficient statistical power
and more precise estimation, our conclusion is more reliable.
However, several limitations in our study need to be addressed

in interpreting the results. First, due to data insufficiency, 2
relevant investigations were removed from the quantitative
synthesis. Second, our analysis largely focused on single-factor
estimates not adjusted for other confounders such as gender,
lifestyles, and other potential factors, which may cause confound-
ing bias and influence the combined results. The combined
analyses of some subgroups may have no sufficient testing power
to accurately assess the real association. In addition, the gene-
environment interactions that may modify cancer susceptibility
were not assessed in our study ascribed to the limited relevant
information.
5. Conclusion

In brief, this meta-analysis suggested that TSER polymorphism in
TYMS gene was not related to susceptibility to develop pediatric
ALL. However, in the future, well-designed studies with more
participants are demanded to verify this conclusion.
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