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Abstract

Fundamental questions remain unresolved in diabetes: What is the actual mechanism of glucose toxicity? Why is
there insulin resistance in type 2 diabetes? Why do diets rich in sugars or saturated fatty acids increase the risk of
developing diabetes? Studying the C. elegans homologs of the anti-diabetic adiponectin receptors (AdipoR1 and
AdipoR2) has led us to exciting new discoveries and to revisit what may be termed “The Membrane Theory of
Diabetes”. We hypothesize that excess saturated fatty acids (obtained through a diet rich in saturated fats or
through conversion of sugars into saturated fats via lipogenesis) leads to rigid cellular membranes that in turn
impair insulin signalling, glucose uptake and blood circulation, thus creating a vicious cycle that contributes to the
development of overt type 2 diabetes. This hypothesis is supported by our own studies in C. elegans and by a
wealth of literature concerning membrane composition in diabetics. The purpose of this review is to survey this
literature in the light of the new results, and to provide an admittedly membrane-centric view of diabetes.
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Background
Diabetes and new insights from C. elegans
The worldwide rise in the incidence of type 2 diabetes is
a recent phenomenon that coincides with lifestyle
changes during the 20th century. A diet of excess com-
bined with an increasingly sedentary lifestyle clearly
leads to an energy imbalance and the accumulation of
fat depots. While there is no doubt that obesity and gen-
etic variants are risk factors for developing type 2 dia-
betes, what, precisely, is the molecular and cell biology
link between diet and diabetes? Many explanations have
been proposed. Here, we revisit a “membrane-centric”
view of diabetes because of some new results obtained
with the small nematode worm C. elegans. Specifically,
as little as 10 mM glucose is lethal to C. elegans mutants
lacking a functional homolog of the mammalian adipo-
nectin receptors [1–3]. This toxicity is accompanied by
an increase in the abundance of saturated fatty acids
(SFAs) in membrane phospholipids and a dramatic de-
crease in membrane fluidity. Given the proposed anti-
diabetic activities of the adiponectin receptors [4–8], the
C. elegans studies prompted us to examine the literature

for possible connections between glucose toxicity, cellu-
lar membranes and diabetes.

Decreased membrane fluidity in diabetics
Red blood cells (RBCs) in diabetics are abnormally rigid.
This fact is known since at least 1978 when purified
RBCs were filmed as they deformed under different,
quantifiable amounts of air pressure inside glass micro-
capillaries [9]. These findings were confirmed independ-
ently using a filtration rate assay [10], and more recently
using high-speed filming of RBCs through microchan-
nels [11]. The decreased deformability of RBCs is a likely
source of shear stress that contributes to microcapillary
hardening in diabetics, an idea proposed in 1978 by Mc-
Millan et al. [9]. Several methods were later used to
show that the low deformability of RBCs in diabetics is
caused by a reduced fluidity of the cellular membranes.
Already in 1979, Baba et al. measured depolarization of
a fluorescent probe and found reduced membrane fluid-
ity in the RBCs of diabetics [12]. Similar findings were
made in 1983 by Kamada and Otsuji, this time using
spin labeling and electron spin resonance measurements
[13]. Kamada et al. also showed that newly produced
RBCs in diabetics start off with an already reduced fluid-
ity, indicating that the low fluidity is not a result of faster
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decay of the RBCs in diabetics, but rather likely reflects
a basic problem with the pool of fatty acids (FAs) avail-
able for membrane homeostasis [14]. Most studies of
membrane properties are done on RBCs because of their
easy availability. However, decreased membrane fluidity
in diabetics has also been measured in several other cell
types, including ileal enterocytes of the intestinal brush
border [15, 16], the sarcolema of cardiac myocytes [17],
leukocytes [18], synaptic vesicles in the cerebral cortex
[19] and platelets [20, 21], and is likely affecting most
cell types.

Abnormal phospholipid composition in diabetics
Phospholipid composition has a great influence on
membrane properties. An excellent proof of this is
homeoviscous adaptation in poikilotherms or deep water
organisms: temperature [22, 23] and hydrostatic pressure
[24–26] can have profound effects on membrane fluidity
to which cells adapt by compensatory changes in lipid
composition, a phenomenon termed “homeoviscous
adaptation” [22, 23, 27]. Specifically, certain lipid types
increase membrane fluidity (e.g., phospholipids contain-
ing unsaturated fatty acids (UFAs)), while others de-
crease it (e.g., cholesterol, ceramides and phospholipids
containing saturated fatty acids (SFAs)) [28–33].
Several independent studies have found that the cellular

membranes of diabetics are rich in rigidity-promoting
lipids: excess cholesterol [34], excess sphingomyelin [35],
and excess SFAs [36–39] have all been associated with dia-
betes. Even more tantalizing is the predictive power of
lipid composition. At least two large longitudinal studies
measured the phospholipid composition of RBCs in thou-
sands of healthy subjects and followed them for several
years [40–42]. In both studies, individuals with the highest
proportion of SFAs were most likely to later develop type
2 diabetes. This suggests that low membrane fluidity may
precede diabetes. However, like many other observations
mentioned in this review, it remains to be seen to what
degree this constitutes a “marker” or a “maker” of
imminent diabetes.

Low membrane fluidity as a cause of diabetes
Optimal membrane properties are essential for numer-
ous cellular processes that are often defective in dia-
betics: vesicular trafficking (including insulin secretion
by beta cells [43]), glucose transport [44], endocytosis
[45, 46], regulation of metabolic rate [47], platelet aggre-
gation [20], etc. Of special interest in the context of dia-
betes is the importance of membrane fluidity on the
function of membrane proteins. Several studies have
shown that insulin receptor signaling is impaired by low
membrane fluidity, probably because lateral diffusion
and localization to membrane microdomains is import-
ant for ligand binding and signaling [44, 48–50]. This is

particularly important for two reasons: 1) it has long
been known that insulin signaling activates FA desa-
turases in the liver and is thus important for regulating
membrane fluidity [51–54]; and 2) insulin signaling is
important for inducing the transport of GLUT4 to the
plasma membranes of muscle cells and adipocytes,
which is essential for quick clearance of blood glucose
[55]. Also important is that GLUT4 transport to the
plasma membrane is itself impaired by decreased mem-
brane fluidity, which further exacerbates the problems of
glucose clearance [50, 56]. Defects in phospholipid
membrane composition of adipocytes is also responsible
for inflammation and limits the insulin-induced expan-
sion of adipose tissues in obese human [57]. Thus, a
state of low membrane fluidity is very much diabetes-
prone since it impairs insulin signaling and response.

Effect of diet on membrane composition
Several studies have shown that the composition of
membrane phospholipids is influenced by the fatty acid
composition of the diet. For example, fish oil supple-
ments lead to an increased abundance of polyunsatur-
ated fatty acids (PUFAs) in RBC membranes [58, 59].
Also, rats fed with diets differing in their FA compos-
ition (i.e., a range of SFA: UFA ratios) show phospholipid
compositions that reflects the dietary fats [60, 61]. Simi-
lar findings were made with human subjects assigned to
diets differing in their FA composition [62]. These re-
sults show that dietary fatty acids can be directly incor-
porated into phospholipids. Consequently, a diet rich in
SFAs will tend to reduce the fluidity of cellular mem-
branes. This is also true of a carbohydrate-rich diet since
glucose can readily be converted into SFAs via de novo
lipogenesis (DNL) in liver and adipocytes, which can
then be made available throughout the body via the
bloodstream as lipids transported in lipoproteins, or as
free fatty acids [63]. The so-called “Western diet” there-
fore may promote diabetes by lowering membrane fluid-
ity, hence impairing insulin signaling and other
processes. Conversely, improvements in membrane flu-
idity may explain the insulin-sensitizing benefits of
PUFA-rich diets [64, 65].
Incidentally, DNL is tightly associated with desatur-

ation of the newly synthesized SFAs so as to create a bal-
anced composition of the FA pool. This is evidenced
from the observation that supplementing cultivated adi-
pocytes with the SFA palmitate activates a membrane-
protective desaturase activity that is paradoxically ac-
companied by the coordinated activation of the entire
DNL pathway, which produces even more palmitate
[66]. However, while the enzymes for DNL are restricted
to a few tissues, most cells express one or two desa-
turases [67–69]. Why? Probably so that each cell can lo-
cally adjust its mix of SFAs, monounsaturated fatty acids
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(MUFAs) and PUFAs available for membrane turnover,
as we shall now discuss.

Regulation of membrane fluidity
Regulatory mechanisms must exist within each cell to
adjust membrane composition and maintain near-
optimal properties. This is evident from the fact that
substantial changes in dietary fatty acid composition are
usually required for relatively small changes in mem-
brane composition. To put it bluntly: without such regu-
latory mechanisms, some of us would be butter-like
solids at room temperature while other would be oil-like
liquids, depending on whether our diets are rich in ani-
mal fats or vegetable oils. In spite of their obvious im-
portance, it is only in recent years that molecular
regulators of membrane composition have been identi-
fied. First came the discovery of the bacterial fluidity
regulator DesK, a kinase that activates a fatty acid desa-
turase upon reduced membrane fluidity; this helps re-
store membrane fluidity during homeoviscous
adaptation to low temperature [70–75]. In the yeast Sac-
charomyces cerevisiae, the transmembrane protein Mga2
was found to act as a sensor for endoplasmic reticulum
(ER) membrane lipid saturation: it is cleaved when ER
membranes become too rigid, thus releasing a transcrip-
tion factor domain that activates expression of a Δ9 fatty
acid desaturase, hence restoring membrane fluidity [76].
Finally, a plasma membrane fluidity regulator was re-
cently identified in the nematode C. elegans and consists
of at least two proteins, PAQR-2 and IGLR-2 that are
homologs of the ubiquitously expressed human adipo-
nectin receptors and LRIG-type proteins, respectively
[1–3, 77]. The mechanism of fluidity sensing is not
known for PAQR-2/IGLR-2. However, our work in C.
elegans suggests that PAQR-2 improves membrane fluid-
ity by causing the upregulation of FA desaturases, likely
via ligand-regulated transcription factors such as NHR-
49 (a functional ortholog of the mammalian PPARα) and
SBP-1 (an ortholog of the mammalian SREBP). Based on
sequence homology and structural considerations, we
and others suspect that PAQR-2 and the mammalian
adiponectin receptors are hydrolases acting on a lipid
substrate to release a ligand that regulates downstream
transcription factors [2, 77–79]. An alternative explan-
ation, inspired by studies on a yeast homolog, is that the
adiponectin receptors act as ceramidases that deplete
fluidity-lowering ceramides and release the signaling
molecule sphingosine-1-phosphate [6, 80].
Interestingly, worms lacking PAQR-2 or IGLR-2 are the

most glucose-intolerant C. elegans mutants identified so
far: they succumb in the presence of as little as 10 mM glu-
cose [3]. In these mutants, glucose causes a dramatic accu-
mulation of SFAs in membranes with a concomitant loss of
membrane fluidity, and this is likely due to the conversion

of glucose into SFAs via DNL. This shows that the PAQR-
2/IGLR-2 complex is essential for homeoviscous adaptation
in the presence of glucose, with obvious implications for
diabetes. Many membrane-related phenotypes of the
PAQR-2 or IGLR-2 deficient worms, including cold and
glucose intolerance, can be suppressed by the inclusion of
small amounts of non-ionic detergents, such as NP-40 or
Triton X-100, which act as membrane fluidizers. This is es-
pecially interesting because metformin, an antihyperglyce-
mic agent already commonly used to treat diabetes, may
also act by improving membrane fluidity [81–84]. It will
therefore be very interesting to define the roles of the mam-
malian homologs of PAQR-2/IGLR-2 in the context of the
carbohydrate and SFA-rich Western diet, and diabetes. Spe-
cifically: is the mammalian homolog of the PAQR-2/IGLR-
2 complex constantly “playing catch-up” to compensate for
the fluidity-lowering effects of the Western diet? Could the
well-documented diabetes-preventing effects of adiponectin
and its receptors be explained by their roles in membrane
homeostasis?

Genetics
Like all human traits, propensity to develop type 2 dia-
betes is influenced by genetic variation [85]. Several loci
likely to have an impact on membrane fluidity have been
linked to type 2 diabetes. In particular, several studies
have linked polymorphisms in desaturase activity to ab-
normal fatty acid composition and type 2 diabetes risk
[86–88]. Several polymorphisms in adiponectin or its re-
ceptors have also been linked to insulin resistance [89–
93]. One study of special interest established a provoca-
tive correlation between certain single-nucleotide poly-
morphorphisms in adiponectin and AdipoR1 with the
levels of plasma SFAs and insulin resistance [89]. The
authors of this study concluded that “Personalized diet-
ary advice to decrease SFA consumption in these indi-
viduals may be recommended as a possible therapeutic
measure to improve insulin sensitivity.” There is also
genetic evidence for the “flip side” of the membrane flu-
idity coin: Greenland Inuits with a highly fluidity-
promoting omega-3 fat-rich diet show strong signs of
positive selection for reduced-activity variants of delta-5
and delta-6 desaturases [94], which essentially reduces
their ability to generate excessively fluid membranes.

Conclusions
Here then is a bite-sized theory that attempts to weave
together the observations listed above into a “Membrane
Theory of Diabetes”. SFAs obtained from the diet or via
lipogenesis in the liver and adipocytes pose a relentless
challenge to fluidity-sustaining systems, even more so in
genetically predisposed individuals. This is likely exacer-
bated by unnatural fats of various types generated during
the production of margarines or superheated vegetable
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oils used for frying much of our (fast) foods, and which
may not be handled efficiently by the cellular machinery
[95–97]. Chronic low fluidity in our membranes has sev-
eral diabetes-promoting consequences, including impair-
ing insulin secretion and signaling, reduced efficacy of
GLUT4 localization to membranes and hardening of
blood vessels. The idea that low membrane fluidity is an
important component of diabetes pathophysiology is an
old one that has been reviewed a few times [50, 56, 88,
98–100]. However, the recent identification of eukaryotic
regulators of membrane fluidity should revive interest in
this subject since they open novel experimental and
therapeutic avenues.
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